| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > wdwom | Unicode version | ||
| Description: Prove 2-variable WOML rule in WDOL. This will make all WOML theorems available to us. The proof does not use ax-r3 439 or ax-wom 361. Since this is the same as ax-wom 361, from here on we will freely use those theorems invoking ax-wom 361. |
| Ref | Expression |
|---|---|
| wdwom.1 |
|
| Ref | Expression |
|---|---|
| wdwom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i2 45 |
. . 3
| |
| 2 | 1 | ax-r1 35 |
. 2
|
| 3 | le1 146 |
. . 3
| |
| 4 | df-i5 48 |
. . . . . 6
| |
| 5 | df-i1 44 |
. . . . . . . . 9
| |
| 6 | wdwom.1 |
. . . . . . . . 9
| |
| 7 | 5, 6 | ax-r2 36 |
. . . . . . . 8
|
| 8 | 7 | wql1lem 287 |
. . . . . . 7
|
| 9 | or4 84 |
. . . . . . . . . 10
| |
| 10 | anor1 88 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | ax-r1 35 |
. . . . . . . . . . . 12
|
| 12 | 11 | lor 70 |
. . . . . . . . . . 11
|
| 13 | 12 | ax-r5 38 |
. . . . . . . . . 10
|
| 14 | 9, 13 | ax-r2 36 |
. . . . . . . . 9
|
| 15 | or12 80 |
. . . . . . . . 9
| |
| 16 | df-cmtr 134 |
. . . . . . . . 9
| |
| 17 | 14, 15, 16 | 3tr1 63 |
. . . . . . . 8
|
| 18 | wdcom 1103 |
. . . . . . . 8
| |
| 19 | 17, 18 | ax-r2 36 |
. . . . . . 7
|
| 20 | 8, 19 | skr0 242 |
. . . . . 6
|
| 21 | 4, 20 | ax-r2 36 |
. . . . 5
|
| 22 | 21 | ax-r1 35 |
. . . 4
|
| 23 | i5lei2 348 |
. . . 4
| |
| 24 | 22, 23 | bltr 138 |
. . 3
|
| 25 | 3, 24 | lebi 145 |
. 2
|
| 26 | 2, 25 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wdol 1102 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-i5 48 df-le1 130 df-le2 131 df-cmtr 134 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |