| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > wfh1 | Unicode version | ||
| Description: Weak structural analog of Foulis-Holland Theorem. |
| Ref | Expression |
|---|---|
| wfh.1 |
|
| wfh.2 |
|
| Ref | Expression |
|---|---|
| wfh1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wledi 405 |
. . 3
| |
| 2 | ancom 74 |
. . . . . . 7
| |
| 3 | 2 | bi1 118 |
. . . . . 6
|
| 4 | df-a 40 |
. . . . . . . . . 10
| |
| 5 | 4 | bi1 118 |
. . . . . . . . 9
|
| 6 | df-a 40 |
. . . . . . . . . 10
| |
| 7 | 6 | bi1 118 |
. . . . . . . . 9
|
| 8 | 5, 7 | w2or 372 |
. . . . . . . 8
|
| 9 | df-a 40 |
. . . . . . . . . . 11
| |
| 10 | 9 | bi1 118 |
. . . . . . . . . 10
|
| 11 | 10 | wr1 197 |
. . . . . . . . 9
|
| 12 | 11 | wcon3 209 |
. . . . . . . 8
|
| 13 | 8, 12 | wr2 371 |
. . . . . . 7
|
| 14 | 13 | wcon2 208 |
. . . . . 6
|
| 15 | 3, 14 | w2an 373 |
. . . . 5
|
| 16 | anass 76 |
. . . . . . . 8
| |
| 17 | 16 | bi1 118 |
. . . . . . 7
|
| 18 | wfh.1 |
. . . . . . . . . . . 12
| |
| 19 | 18 | wcomcom2 415 |
. . . . . . . . . . 11
|
| 20 | 19 | wcom3ii 419 |
. . . . . . . . . 10
|
| 21 | wfh.2 |
. . . . . . . . . . . 12
| |
| 22 | 21 | wcomcom2 415 |
. . . . . . . . . . 11
|
| 23 | 22 | wcom3ii 419 |
. . . . . . . . . 10
|
| 24 | 20, 23 | w2an 373 |
. . . . . . . . 9
|
| 25 | anandi 114 |
. . . . . . . . . 10
| |
| 26 | 25 | bi1 118 |
. . . . . . . . 9
|
| 27 | anandi 114 |
. . . . . . . . . 10
| |
| 28 | 27 | bi1 118 |
. . . . . . . . 9
|
| 29 | 24, 26, 28 | w3tr1 374 |
. . . . . . . 8
|
| 30 | 29 | wlan 370 |
. . . . . . 7
|
| 31 | 17, 30 | wr2 371 |
. . . . . 6
|
| 32 | an12 81 |
. . . . . . 7
| |
| 33 | 32 | bi1 118 |
. . . . . 6
|
| 34 | 31, 33 | wr2 371 |
. . . . 5
|
| 35 | 15, 34 | wr2 371 |
. . . 4
|
| 36 | oran 87 |
. . . . . . . . . . 11
| |
| 37 | 36 | bi1 118 |
. . . . . . . . . 10
|
| 38 | 37 | wr1 197 |
. . . . . . . . 9
|
| 39 | 38 | wcon3 209 |
. . . . . . . 8
|
| 40 | 39 | wlan 370 |
. . . . . . 7
|
| 41 | dff 101 |
. . . . . . . . 9
| |
| 42 | 41 | bi1 118 |
. . . . . . . 8
|
| 43 | 42 | wr1 197 |
. . . . . . 7
|
| 44 | 40, 43 | wr2 371 |
. . . . . 6
|
| 45 | 44 | wlan 370 |
. . . . 5
|
| 46 | an0 108 |
. . . . . 6
| |
| 47 | 46 | bi1 118 |
. . . . 5
|
| 48 | 45, 47 | wr2 371 |
. . . 4
|
| 49 | 35, 48 | wr2 371 |
. . 3
|
| 50 | 1, 49 | wom5 381 |
. 2
|
| 51 | 50 | wr1 197 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
| This theorem is referenced by: wfh3 425 wcom2or 427 wnbdi 429 wlem14 430 ska2 432 wddi1 1105 |
| Copyright terms: Public domain | W3C validator |