| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > wnbdi | Unicode version | ||
| Description: Negated biconditional (distributive form) |
| Ref | Expression |
|---|---|
| wnbdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnb 95 |
. . 3
| |
| 2 | 1 | bi1 118 |
. 2
|
| 3 | wcomorr 412 |
. . . . 5
| |
| 4 | 3 | wcomcom 414 |
. . . 4
|
| 5 | 4 | wcomcom2 415 |
. . 3
|
| 6 | wcomorr 412 |
. . . . . 6
| |
| 7 | ax-a2 31 |
. . . . . . 7
| |
| 8 | 7 | bi1 118 |
. . . . . 6
|
| 9 | 6, 8 | wcbtr 411 |
. . . . 5
|
| 10 | 9 | wcomcom 414 |
. . . 4
|
| 11 | 10 | wcomcom2 415 |
. . 3
|
| 12 | 5, 11 | wfh1 423 |
. 2
|
| 13 | 2, 12 | wr2 371 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |