Home · All Classes · Main Classes · Grouped Classes · Modules · Functions |
[Previous: Qt Linguist Manual: Translators] [Contents]
Support for multiple languages is extremely simple in Qt applications, and adds little overhead to the programmer's workload.
Qt minimizes the performance cost of using translations by translating the phrases for each window as they are created. In most applications the main window is created just once. Dialogs are often created once and then shown and hidden as required. Once the initial translation has taken place there is no further runtime overhead for the translated windows. Only those windows that are created, destroyed and subsequently created will have a translation performance cost.
Creating applications that can switch language at runtime is possible with Qt, but requires a certain amount of programmer intervention and will of course incur some runtime performance cost.
Programmers should make their application look for and load the appropriate translation file and mark user-visible text and Ctrl keyboard accelerators as targets for translation.
Each piece of text that requires translating requires context to help the translator identify where in the program the text occurs. In the case of multiple identical texts that require different translations, the translator also requires some information to disambiguate the source texts. Marking text for translation will automatically cause the class name to be used as basic context information. In some cases the programmer may be required to add additional information to help the translator.
Translation files consist of all the user-visible text and Ctrl key accelerators in an application and translations of that text. Translation files are created as follows:
For lupdate to work successfully, it must know which translation files to produce. The files are simply listed in the application's .pro Qt project file, for example:
TRANSLATIONS = arrowpad_fr.ts \
See the lupdate and lrelease sections.
int main(int argc, char *argv[]) { QApplication app(argc, argv);
This is how a simple main() function of a Qt application begins.
int main(int argc, char *argv[]) { QApplication app(argc, argv); QTranslator translator; translator.load("hellotr_la"); app.installTranslator(&translator);
For a translation-aware application a translator object is created, a translation is loaded and the translator object installed into the application.
int main(int argc, char *argv[]) { QApplication app(argc, argv); QString locale = QLocale::system().name(); QTranslator translator; translator.load(QString("arrowpad_") + locale); app.installTranslator(&translator);
In production applications a more flexible approach, for example, loading translations according to locale, might be more appropriate. If the .ts files are all named according to a convention such as appname_locale, e.g. tt2_fr, tt2_de etc, then the code above will load the current locale's translation at runtime.
If there is no translation file for the current locale the application will fall back to using the original source text.
User-visible strings are marked as translation targets by wrapping them in a tr() call, for example:
button = new QPushButton("&Quit", this);
would become
button = new QPushButton(tr("&Quit"), this);
All QObject subclasses that use the Q_OBJECT macro implement the tr() function.
Although the tr() call is normally made directly since it is usually called as a member function of a QObject subclass, in other cases an explicit class name can be supplied, for example:
QPushButton::tr("&Quit")
or
QObject::tr("&Quit")
The lupdate program automatically provides a context for every source text. This context is the class name of the class that contains the tr() call. This is sufficient in the vast majority of cases. Sometimes however, the translator will need further information to uniquely identify a source text; for example, a dialog that contained two separate frames, each of which contained an "Enabled" option would need each identified because in some languages the translation would differ between the two. This is easily achieved using the two argument form of the tr() call, e.g.
rbc = new QRadioButton(tr("Enabled", "Color frame"), this);
and
rbh = new QRadioButton(tr("Enabled", "Hue frame"), this);
Ctrl key accelerators are also translatable:
exitAct = new QAction(tr("E&xit"), this); exitAct->setShortcut(tr("Ctrl+Q", "Quit"));
It is strongly recommended that the two argument form of tr() is used for Ctrl key accelerators. The second argument is the only clue the translator has as to the function performed by the accelerator.
In large complex applications it may be difficult for the translator to see where a particular source text comes from. This problem can be solved by adding a comment using the keyword TRANSLATOR which describes the navigation steps to reach the text in question; e.g.
/* TRANSLATOR FindDialog Choose Edit|Find from the menu bar or press Ctrl+F to pop up the Find dialog. ...
These comments are particularly useful for widget classes.
C++ namespaces and the using namespace statement can confuse lupdate. It will interpret MyClass::tr() as meaning just that, not as MyNamespace::MyClass::tr(), even if MyClass is defined in the MyNamespace namespace. Runtime translation of these strings will fail because of that.
You can work around this limitation by putting a TRANSLATOR comment at the beginning of the source files that use MyClass::tr():
/* TRANSLATOR MyNamespace::MyClass Necessary for lupdate. ...
After the comment, all references to MyClass::tr() will be understood as meaning MyNamespace::MyClass::tr().
If the quoted text is not in a member function of a QObject subclass, use either the tr() function of an appropriate class, or the QCoreApplication::translate() function directly:
void some_global_function(LoginWidget *logwid) { QLabel *label = new QLabel( LoginWidget::tr("Password:"), logwid); } void same_global_function(LoginWidget *logwid) { QLabel *label = new QLabel( qApp->translate("LoginWidget", "Password:"), logwid); }
If you need to have translatable text completely outside a function, there are two macros to help: QT_TR_NOOP() and QT_TRANSLATE_NOOP(). These macros merely mark the text for extraction by lupdate. The macros expand to just the text (without the context).
Example of QT_TR_NOOP():
QString FriendlyConversation::greeting(int greet_type) { static const char* greeting_strings[] = { QT_TR_NOOP("Hello"), QT_TR_NOOP("Goodbye") }; return tr(greeting_strings[greet_type]); }
Example of QT_TRANSLATE_NOOP():
static const char* greeting_strings[] = { QT_TRANSLATE_NOOP("FriendlyConversation", "Hello"), QT_TRANSLATE_NOOP("FriendlyConversation", "Goodbye") }; QString FriendlyConversation::greeting(int greet_type) { return tr(greeting_strings[greet_type]); } QString global_greeting(int greet_type) { return qApp->translate("FriendlyConversation", greeting_strings[greet_type]); }
Three tutorials are presented:
These tutorials cover all that you need to know to prepare your Qt applications for translation.
At the beginning of a project add the translation source files to be used to the project file and add calls to lupdate and lrelease to the makefile.
During the project all the programmer must do is wrap any user-visible text in tr() calls. They should also use the two argument form for Ctrl key accelerators, or when asked by the translator for the cases where the same text translates into two different forms in the same context. The programmer should also include TRANSLATION comments to help the translator navigate the application.
[Previous: Qt Linguist Manual: Translators] [Contents]
Copyright © 2007 Trolltech | Trademarks | Qt 4.2.3 |