trait Distributive[F[_]] extends Functor[F]
Dual of scalaz.Traverse. To transform F[G[B]] to G[F[B]],
you may use Traverse[F] and Applicative[G], but alternatively
Functor[F] and Distributive[G], which permits greater sharing
and nonstrictness.
- Self Type
- Distributive[F]
- Source
- Distributive.scala
- Alphabetic
- By Inheritance
- Distributive
- Functor
- InvariantFunctor
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
- class Distribution[G[_]] extends AnyRef
-
trait
FunctorLaw extends InvariantFunctorLaw
- Definition Classes
- Functor
-
trait
InvariantFunctorLaw extends AnyRef
- Definition Classes
- InvariantFunctor
Abstract Value Members
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
apply[A, B](fa: F[A])(f: (A) ⇒ B): F[B]
Alias for
map.Alias for
map.- Definition Classes
- Functor
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]
The composition of Functor
Fand BifunctorG,[x, y]F[G[x, y]], is a BifunctorThe composition of Functor
Fand BifunctorG,[x, y]F[G[x, y]], is a Bifunctor- Definition Classes
- Functor
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
compose[G[_]](implicit G0: Distributive[G]): Distributive[[α]F[G[α]]]
The composition of Distributives
FandG,[x]F[G[x]], is a Distributive -
def
compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]
The composition of Functors
FandG,[x]F[G[x]], is a FunctorThe composition of Functors
FandG,[x]F[G[x]], is a Functor- Definition Classes
- Functor
- def cosequence[G[_], A](fa: G[F[A]])(implicit arg0: Functor[G]): F[G[A]]
-
def
counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]
- Definition Classes
- Functor
- def distribute[G[_], A, B](fa: G[A])(f: (A) ⇒ F[B])(implicit arg0: Functor[G]): F[G[B]]
- def distribution[G[_]](implicit arg0: Functor[G]): Distribution[G]
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fpair[A](fa: F[A]): F[(A, A)]
Twin all
As infa.Twin all
As infa.- Definition Classes
- Functor
-
def
fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]
Pair all
As infawith the result of function application.Pair all
As infawith the result of function application.- Definition Classes
- Functor
-
def
functorLaw: FunctorLaw
- Definition Classes
- Functor
-
val
functorSyntax: FunctorSyntax[F]
- Definition Classes
- Functor
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]
The composition of Functor F and Contravariant G,
[x]F[G[x]], is contravariant.The composition of Functor F and Contravariant G,
[x]F[G[x]], is contravariant.- Definition Classes
- Functor
-
def
invariantFunctorLaw: InvariantFunctorLaw
- Definition Classes
- InvariantFunctor
-
val
invariantFunctorSyntax: InvariantFunctorSyntax[F]
- Definition Classes
- InvariantFunctor
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]
Lift
fintoF.Lift
fintoF.- Definition Classes
- Functor
-
def
mapply[A, B](a: A)(f: F[(A) ⇒ B]): F[B]
Lift
apply(a), and apply the result tof.Lift
apply(a), and apply the result tof.- Definition Classes
- Functor
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
product[G[_]](implicit G0: Distributive[G]): Distributive[[α](F[α], G[α])]
The product of Distributives
FandG,[x](F[x], G[x]]), is a Distributive -
def
product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]
The product of Functors
FandG,[x](F[x], G[x]]), is a FunctorThe product of Functors
FandG,[x](F[x], G[x]]), is a Functor- Definition Classes
- Functor
-
def
strengthL[A, B](a: A, f: F[B]): F[(A, B)]
Inject
ato the left ofBs inf.Inject
ato the left ofBs inf.- Definition Classes
- Functor
-
def
strengthR[A, B](f: F[A], b: B): F[(A, B)]
Inject
bto the right ofAs inf.Inject
bto the right ofAs inf.- Definition Classes
- Functor
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
void[A](fa: F[A]): F[Unit]
Empty
faof meaningful pure values, preserving its structure.Empty
faof meaningful pure values, preserving its structure.- Definition Classes
- Functor
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]
Functors are covariant by nature, so we can treat an
F[A]as anF[B]ifAis a subtype ofB.Functors are covariant by nature, so we can treat an
F[A]as anF[B]ifAis a subtype ofB.- Definition Classes
- Functor
-
def
xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]
Converts
mato a value of typeF[B]using the provided functionsfandg.Converts
mato a value of typeF[B]using the provided functionsfandg.- Definition Classes
- Functor → InvariantFunctor
-
def
xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]
Converts
mato a value of typeF[B]using the provided bijection.Converts
mato a value of typeF[B]using the provided bijection.- Definition Classes
- InvariantFunctor
-
def
xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]
Converts
mato a value of typeF[B]using the provided isomorphism.Converts
mato a value of typeF[B]using the provided isomorphism.- Definition Classes
- InvariantFunctor