sealed abstract class FreeAp[F[_], A] extends AnyRef
Free applicative functors. Less expressive than free monads, but more flexible to inspect and interpret.
- Source
- FreeAp.scala
- Alphabetic
- By Inheritance
- FreeAp
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
analyze[M](f: ~>[F, [α]M])(implicit arg0: Monoid[M]): M
Performs a monoidal analysis over this free program.
Performs a monoidal analysis over this free program. Maps the effects in
Fto values in the monoidM, discarding the values of those effects. Example:def count[F[_],B](p: FreeAp[F,B]): Int = p.analyze(new (F ~> λ[α => Int]) { def apply[A](a: F[A]) = 1 })
-
def
ap[B](f: FreeAp[F, (A) ⇒ B]): FreeAp[F, B]
Idiomatic function application
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
foldMap[G[_]](f: ~>[F, G])(implicit arg0: Applicative[G]): G[A]
The canonical natural transformation that interprets this free program by giving it the semantics of the applicative functor
G.The canonical natural transformation that interprets this free program by giving it the semantics of the applicative functor
G. Not tail-recursive unlessGis a free monad. -
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hoist[G[_]](f: ~>[F, G]): FreeAp[G, A]
The natural transformation from
FreeAp[F,_]toFreeAp[G,_] -
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
map[B](f: (A) ⇒ B): FreeAp[F, B]
Append a function to the end of this program
-
def
monadic: Free[F, A]
Embeds this program in the free monad on
F. -
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
para[B](pure: (A) ⇒ B, ap: ~>[[α](F[α], FreeAp[F, (α) ⇒ A]), [α]B]): B
Provides access to the first instruction of this program, if present
-
def
retract(implicit F: Applicative[F]): F[A]
Interprets this free
Fprogram using the semantics of theApplicativeinstance forF. -
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )