绘制Mandelbrot集合

相关文档: Mandelbrot集合

_images/fractal_mandelbrot01.png

纯Python计算版本

# -*- coding: utf-8 -*-

import numpy as np
import pylab as pl
import time
from matplotlib import cm

def iter_point(c):
    z = c
    for i in xrange(1, 100): # 最多迭代100次
        if abs(z)>2: break # 半径大于2则认为逃逸
        z = z*z+c
    return i # 返回迭代次数
    
def draw_mandelbrot(cx, cy, d):
    """
    绘制点(cx, cy)附近正负d的范围的Mandelbrot
    """
    x0, x1, y0, y1 = cx-d, cx+d, cy-d, cy+d 
    y, x = np.ogrid[y0:y1:200j, x0:x1:200j]
    c = x + y*1j
    start = time.clock()
    mandelbrot = np.frompyfunc(iter_point,1,1)(c).astype(np.float)
    print "time=",time.clock() - start
    pl.imshow(mandelbrot, cmap=cm.Blues_r, extent=[x0,x1,y0,y1])
    pl.gca().set_axis_off()
    
x,y = 0.27322626, 0.595153338

pl.subplot(231)
draw_mandelbrot(-0.5,0,1.5)
for i in range(2,7):    
    pl.subplot(230+i)
    draw_mandelbrot(x, y, 0.2**(i-1))
pl.subplots_adjust(0.02, 0, 0.98, 1, 0.02, 0)
pl.show()

Weave版本

# -*- coding: utf-8 -*-

import numpy as np
import pylab as pl
import time
import scipy.weave as weave
from matplotlib import cm
    
def weave_iter_point(c):
    code = """
    std::complex<double> z;
    int i;
    z = c;
    for(i=1;i<100;i++) 
    {
        if(std::abs(z) > 2) break;
        z = z*z+c;
    }
    return_val=i;
    """
    
    f = weave.inline(code, ["c"], compiler="gcc")
    return f

def draw_mandelbrot(cx, cy, d,N=200):
    """
    绘制点(cx, cy)附近正负d的范围的Mandelbrot
    """
    x0, x1, y0, y1 = cx-d, cx+d, cy-d, cy+d 
    y, x = np.ogrid[y0:y1:N*1j, x0:x1:N*1j]
    c = x + y*1j
    start = time.clock()
    mandelbrot = np.frompyfunc(weave_iter_point,1,1)(c).astype(np.float)
    print "time=",time.clock() - start
    pl.imshow(mandelbrot, cmap=cm.Blues_r, extent=[x0,x1,y0,y1])
    pl.gca().set_axis_off()
    
x,y = 0.27322626, 0.595153338

pl.subplot(231)
draw_mandelbrot(-0.5,0,1.5)
for i in range(2,7):    
    pl.subplot(230+i)
    draw_mandelbrot(x, y, 0.2**(i-1))
pl.subplots_adjust(0.02, 0, 0.98, 1, 0.02, 0.02)

pl.show()

NumPy加速版本

# -*- coding: utf-8 -*-

import numpy as np
import pylab as pl
import time
from matplotlib import cm

def draw_mandelbrot(cx, cy, d, N=200):
    """
    绘制点(cx, cy)附近正负d的范围的Mandelbrot
    """
    global mandelbrot

    x0, x1, y0, y1 = cx-d, cx+d, cy-d, cy+d 
    y, x = np.ogrid[y0:y1:N*1j, x0:x1:N*1j]
    c = x + y*1j

    # 创建X,Y轴的坐标数组
    ix, iy = np.mgrid[0:N,0:N]
    
    # 创建保存mandelbrot图的二维数组,缺省值为最大迭代次数
    mandelbrot = np.ones(c.shape, dtype=np.int)*100
    
    # 将数组都变成一维的
    ix.shape = -1
    iy.shape = -1
    c.shape = -1
    z = c.copy() # 从c开始迭代,因此开始的迭代次数为1
    
    start = time.clock()
    
    for i in xrange(1,100):
        # 进行一次迭代
        z *= z
        z += c
        # 找到所有结果逃逸了的点
        tmp = np.abs(z) > 2.0
        # 将这些逃逸点的迭代次数赋值给mandelbrot图
        mandelbrot[ix[tmp], iy[tmp]] = i
        
        # 找到所有没有逃逸的点
        np.logical_not(tmp, tmp)
        # 更新ix, iy, c, z只包含没有逃逸的点
        ix,iy,c,z = ix[tmp], iy[tmp], c[tmp],z[tmp]
        if len(z) == 0: break

    print "time=",time.clock() - start
    pl.imshow(mandelbrot, cmap=cm.Blues_r, extent=[x0,x1,y0,y1])
    pl.gca().set_axis_off()
    
x,y = 0.27322626, 0.595153338

pl.subplot(231)
draw_mandelbrot(-0.5,0,1.5)
for i in range(2,7):    
    pl.subplot(230+i)
    draw_mandelbrot(x, y, 0.2**(i-1))
pl.subplots_adjust(0.02, 0, 0.98, 1, 0.02, 0)
pl.show()

平滑版本

_images/fractal_mandelbrot02.png
# -*- coding: utf-8 -*-

import numpy as np
import pylab as pl
from math import log
from matplotlib import cm

escape_radius = 10
iter_num = 20

def smooth_iter_point(c):
    z = c
    for i in xrange(1, iter_num): 
        if abs(z)>escape_radius: break 
        z = z*z+c
    absz = abs(z)
    if absz > 2.0:
        mu = i - log(log(abs(z),2),2)
    else:
        mu = i
    return mu # 返回正规化的迭代次数
    
def iter_point(c):
    z = c
    for i in xrange(1, iter_num):
        if abs(z)>escape_radius: break 
        z = z*z+c
    return i
    
def draw_mandelbrot(cx, cy, d, N=200):
    global mandelbrot
    """
    绘制点(cx, cy)附近正负d的范围的Mandelbrot
    """
    x0, x1, y0, y1 = cx-d, cx+d, cy-d, cy+d 
    y, x = np.ogrid[y0:y1:N*1j, x0:x1:N*1j]
    c = x + y*1j
    mand = np.frompyfunc(iter_point,1,1)(c).astype(np.float)
    smooth_mand = np.frompyfunc(smooth_iter_point,1,1)(c).astype(np.float)
    pl.subplot(121)
    pl.gca().set_axis_off()
    pl.imshow(mand, cmap=cm.Blues_r, extent=[x0,x1,y0,y1])
    pl.subplot(122)    
    pl.imshow(smooth_mand, cmap=cm.Blues_r, extent=[x0,x1,y0,y1])
    pl.gca().set_axis_off()
    
draw_mandelbrot(-0.5,0,1.5,300)
pl.subplots_adjust(0.02, 0, 0.98, 1, 0.02, 0)
pl.show()

首页目录

上一篇文章

双摆系统的动画模拟

下一篇文章

迭代函数系统的分形