clang API Documentation
00001 //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the ASTContext interface. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "clang/AST/ASTContext.h" 00015 #include "CXXABI.h" 00016 #include "clang/AST/ASTMutationListener.h" 00017 #include "clang/AST/Attr.h" 00018 #include "clang/AST/CharUnits.h" 00019 #include "clang/AST/Comment.h" 00020 #include "clang/AST/CommentCommandTraits.h" 00021 #include "clang/AST/DeclCXX.h" 00022 #include "clang/AST/DeclObjC.h" 00023 #include "clang/AST/DeclTemplate.h" 00024 #include "clang/AST/Expr.h" 00025 #include "clang/AST/ExprCXX.h" 00026 #include "clang/AST/ExternalASTSource.h" 00027 #include "clang/AST/Mangle.h" 00028 #include "clang/AST/MangleNumberingContext.h" 00029 #include "clang/AST/RecordLayout.h" 00030 #include "clang/AST/RecursiveASTVisitor.h" 00031 #include "clang/AST/TypeLoc.h" 00032 #include "clang/AST/VTableBuilder.h" 00033 #include "clang/Basic/Builtins.h" 00034 #include "clang/Basic/SourceManager.h" 00035 #include "clang/Basic/TargetInfo.h" 00036 #include "llvm/ADT/SmallString.h" 00037 #include "llvm/ADT/StringExtras.h" 00038 #include "llvm/ADT/Triple.h" 00039 #include "llvm/Support/Capacity.h" 00040 #include "llvm/Support/MathExtras.h" 00041 #include "llvm/Support/raw_ostream.h" 00042 #include <map> 00043 00044 using namespace clang; 00045 00046 unsigned ASTContext::NumImplicitDefaultConstructors; 00047 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared; 00048 unsigned ASTContext::NumImplicitCopyConstructors; 00049 unsigned ASTContext::NumImplicitCopyConstructorsDeclared; 00050 unsigned ASTContext::NumImplicitMoveConstructors; 00051 unsigned ASTContext::NumImplicitMoveConstructorsDeclared; 00052 unsigned ASTContext::NumImplicitCopyAssignmentOperators; 00053 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared; 00054 unsigned ASTContext::NumImplicitMoveAssignmentOperators; 00055 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared; 00056 unsigned ASTContext::NumImplicitDestructors; 00057 unsigned ASTContext::NumImplicitDestructorsDeclared; 00058 00059 enum FloatingRank { 00060 HalfRank, FloatRank, DoubleRank, LongDoubleRank 00061 }; 00062 00063 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const { 00064 if (!CommentsLoaded && ExternalSource) { 00065 ExternalSource->ReadComments(); 00066 00067 #ifndef NDEBUG 00068 ArrayRef<RawComment *> RawComments = Comments.getComments(); 00069 assert(std::is_sorted(RawComments.begin(), RawComments.end(), 00070 BeforeThanCompare<RawComment>(SourceMgr))); 00071 #endif 00072 00073 CommentsLoaded = true; 00074 } 00075 00076 assert(D); 00077 00078 // User can not attach documentation to implicit declarations. 00079 if (D->isImplicit()) 00080 return nullptr; 00081 00082 // User can not attach documentation to implicit instantiations. 00083 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 00084 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 00085 return nullptr; 00086 } 00087 00088 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 00089 if (VD->isStaticDataMember() && 00090 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 00091 return nullptr; 00092 } 00093 00094 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) { 00095 if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 00096 return nullptr; 00097 } 00098 00099 if (const ClassTemplateSpecializationDecl *CTSD = 00100 dyn_cast<ClassTemplateSpecializationDecl>(D)) { 00101 TemplateSpecializationKind TSK = CTSD->getSpecializationKind(); 00102 if (TSK == TSK_ImplicitInstantiation || 00103 TSK == TSK_Undeclared) 00104 return nullptr; 00105 } 00106 00107 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) { 00108 if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 00109 return nullptr; 00110 } 00111 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) { 00112 // When tag declaration (but not definition!) is part of the 00113 // decl-specifier-seq of some other declaration, it doesn't get comment 00114 if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition()) 00115 return nullptr; 00116 } 00117 // TODO: handle comments for function parameters properly. 00118 if (isa<ParmVarDecl>(D)) 00119 return nullptr; 00120 00121 // TODO: we could look up template parameter documentation in the template 00122 // documentation. 00123 if (isa<TemplateTypeParmDecl>(D) || 00124 isa<NonTypeTemplateParmDecl>(D) || 00125 isa<TemplateTemplateParmDecl>(D)) 00126 return nullptr; 00127 00128 ArrayRef<RawComment *> RawComments = Comments.getComments(); 00129 00130 // If there are no comments anywhere, we won't find anything. 00131 if (RawComments.empty()) 00132 return nullptr; 00133 00134 // Find declaration location. 00135 // For Objective-C declarations we generally don't expect to have multiple 00136 // declarators, thus use declaration starting location as the "declaration 00137 // location". 00138 // For all other declarations multiple declarators are used quite frequently, 00139 // so we use the location of the identifier as the "declaration location". 00140 SourceLocation DeclLoc; 00141 if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) || 00142 isa<ObjCPropertyDecl>(D) || 00143 isa<RedeclarableTemplateDecl>(D) || 00144 isa<ClassTemplateSpecializationDecl>(D)) 00145 DeclLoc = D->getLocStart(); 00146 else { 00147 DeclLoc = D->getLocation(); 00148 if (DeclLoc.isMacroID()) { 00149 if (isa<TypedefDecl>(D)) { 00150 // If location of the typedef name is in a macro, it is because being 00151 // declared via a macro. Try using declaration's starting location as 00152 // the "declaration location". 00153 DeclLoc = D->getLocStart(); 00154 } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) { 00155 // If location of the tag decl is inside a macro, but the spelling of 00156 // the tag name comes from a macro argument, it looks like a special 00157 // macro like NS_ENUM is being used to define the tag decl. In that 00158 // case, adjust the source location to the expansion loc so that we can 00159 // attach the comment to the tag decl. 00160 if (SourceMgr.isMacroArgExpansion(DeclLoc) && 00161 TD->isCompleteDefinition()) 00162 DeclLoc = SourceMgr.getExpansionLoc(DeclLoc); 00163 } 00164 } 00165 } 00166 00167 // If the declaration doesn't map directly to a location in a file, we 00168 // can't find the comment. 00169 if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) 00170 return nullptr; 00171 00172 // Find the comment that occurs just after this declaration. 00173 ArrayRef<RawComment *>::iterator Comment; 00174 { 00175 // When searching for comments during parsing, the comment we are looking 00176 // for is usually among the last two comments we parsed -- check them 00177 // first. 00178 RawComment CommentAtDeclLoc( 00179 SourceMgr, SourceRange(DeclLoc), false, 00180 LangOpts.CommentOpts.ParseAllComments); 00181 BeforeThanCompare<RawComment> Compare(SourceMgr); 00182 ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1; 00183 bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc); 00184 if (!Found && RawComments.size() >= 2) { 00185 MaybeBeforeDecl--; 00186 Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc); 00187 } 00188 00189 if (Found) { 00190 Comment = MaybeBeforeDecl + 1; 00191 assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(), 00192 &CommentAtDeclLoc, Compare)); 00193 } else { 00194 // Slow path. 00195 Comment = std::lower_bound(RawComments.begin(), RawComments.end(), 00196 &CommentAtDeclLoc, Compare); 00197 } 00198 } 00199 00200 // Decompose the location for the declaration and find the beginning of the 00201 // file buffer. 00202 std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc); 00203 00204 // First check whether we have a trailing comment. 00205 if (Comment != RawComments.end() && 00206 (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() && 00207 (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) || 00208 isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) { 00209 std::pair<FileID, unsigned> CommentBeginDecomp 00210 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin()); 00211 // Check that Doxygen trailing comment comes after the declaration, starts 00212 // on the same line and in the same file as the declaration. 00213 if (DeclLocDecomp.first == CommentBeginDecomp.first && 00214 SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) 00215 == SourceMgr.getLineNumber(CommentBeginDecomp.first, 00216 CommentBeginDecomp.second)) { 00217 return *Comment; 00218 } 00219 } 00220 00221 // The comment just after the declaration was not a trailing comment. 00222 // Let's look at the previous comment. 00223 if (Comment == RawComments.begin()) 00224 return nullptr; 00225 --Comment; 00226 00227 // Check that we actually have a non-member Doxygen comment. 00228 if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment()) 00229 return nullptr; 00230 00231 // Decompose the end of the comment. 00232 std::pair<FileID, unsigned> CommentEndDecomp 00233 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd()); 00234 00235 // If the comment and the declaration aren't in the same file, then they 00236 // aren't related. 00237 if (DeclLocDecomp.first != CommentEndDecomp.first) 00238 return nullptr; 00239 00240 // Get the corresponding buffer. 00241 bool Invalid = false; 00242 const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first, 00243 &Invalid).data(); 00244 if (Invalid) 00245 return nullptr; 00246 00247 // Extract text between the comment and declaration. 00248 StringRef Text(Buffer + CommentEndDecomp.second, 00249 DeclLocDecomp.second - CommentEndDecomp.second); 00250 00251 // There should be no other declarations or preprocessor directives between 00252 // comment and declaration. 00253 if (Text.find_first_of(";{}#@") != StringRef::npos) 00254 return nullptr; 00255 00256 return *Comment; 00257 } 00258 00259 namespace { 00260 /// If we have a 'templated' declaration for a template, adjust 'D' to 00261 /// refer to the actual template. 00262 /// If we have an implicit instantiation, adjust 'D' to refer to template. 00263 const Decl *adjustDeclToTemplate(const Decl *D) { 00264 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 00265 // Is this function declaration part of a function template? 00266 if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 00267 return FTD; 00268 00269 // Nothing to do if function is not an implicit instantiation. 00270 if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) 00271 return D; 00272 00273 // Function is an implicit instantiation of a function template? 00274 if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) 00275 return FTD; 00276 00277 // Function is instantiated from a member definition of a class template? 00278 if (const FunctionDecl *MemberDecl = 00279 FD->getInstantiatedFromMemberFunction()) 00280 return MemberDecl; 00281 00282 return D; 00283 } 00284 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 00285 // Static data member is instantiated from a member definition of a class 00286 // template? 00287 if (VD->isStaticDataMember()) 00288 if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember()) 00289 return MemberDecl; 00290 00291 return D; 00292 } 00293 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) { 00294 // Is this class declaration part of a class template? 00295 if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate()) 00296 return CTD; 00297 00298 // Class is an implicit instantiation of a class template or partial 00299 // specialization? 00300 if (const ClassTemplateSpecializationDecl *CTSD = 00301 dyn_cast<ClassTemplateSpecializationDecl>(CRD)) { 00302 if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation) 00303 return D; 00304 llvm::PointerUnion<ClassTemplateDecl *, 00305 ClassTemplatePartialSpecializationDecl *> 00306 PU = CTSD->getSpecializedTemplateOrPartial(); 00307 return PU.is<ClassTemplateDecl*>() ? 00308 static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) : 00309 static_cast<const Decl*>( 00310 PU.get<ClassTemplatePartialSpecializationDecl *>()); 00311 } 00312 00313 // Class is instantiated from a member definition of a class template? 00314 if (const MemberSpecializationInfo *Info = 00315 CRD->getMemberSpecializationInfo()) 00316 return Info->getInstantiatedFrom(); 00317 00318 return D; 00319 } 00320 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) { 00321 // Enum is instantiated from a member definition of a class template? 00322 if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum()) 00323 return MemberDecl; 00324 00325 return D; 00326 } 00327 // FIXME: Adjust alias templates? 00328 return D; 00329 } 00330 } // unnamed namespace 00331 00332 const RawComment *ASTContext::getRawCommentForAnyRedecl( 00333 const Decl *D, 00334 const Decl **OriginalDecl) const { 00335 D = adjustDeclToTemplate(D); 00336 00337 // Check whether we have cached a comment for this declaration already. 00338 { 00339 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos = 00340 RedeclComments.find(D); 00341 if (Pos != RedeclComments.end()) { 00342 const RawCommentAndCacheFlags &Raw = Pos->second; 00343 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) { 00344 if (OriginalDecl) 00345 *OriginalDecl = Raw.getOriginalDecl(); 00346 return Raw.getRaw(); 00347 } 00348 } 00349 } 00350 00351 // Search for comments attached to declarations in the redeclaration chain. 00352 const RawComment *RC = nullptr; 00353 const Decl *OriginalDeclForRC = nullptr; 00354 for (auto I : D->redecls()) { 00355 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos = 00356 RedeclComments.find(I); 00357 if (Pos != RedeclComments.end()) { 00358 const RawCommentAndCacheFlags &Raw = Pos->second; 00359 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) { 00360 RC = Raw.getRaw(); 00361 OriginalDeclForRC = Raw.getOriginalDecl(); 00362 break; 00363 } 00364 } else { 00365 RC = getRawCommentForDeclNoCache(I); 00366 OriginalDeclForRC = I; 00367 RawCommentAndCacheFlags Raw; 00368 if (RC) { 00369 Raw.setRaw(RC); 00370 Raw.setKind(RawCommentAndCacheFlags::FromDecl); 00371 } else 00372 Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl); 00373 Raw.setOriginalDecl(I); 00374 RedeclComments[I] = Raw; 00375 if (RC) 00376 break; 00377 } 00378 } 00379 00380 // If we found a comment, it should be a documentation comment. 00381 assert(!RC || RC->isDocumentation()); 00382 00383 if (OriginalDecl) 00384 *OriginalDecl = OriginalDeclForRC; 00385 00386 // Update cache for every declaration in the redeclaration chain. 00387 RawCommentAndCacheFlags Raw; 00388 Raw.setRaw(RC); 00389 Raw.setKind(RawCommentAndCacheFlags::FromRedecl); 00390 Raw.setOriginalDecl(OriginalDeclForRC); 00391 00392 for (auto I : D->redecls()) { 00393 RawCommentAndCacheFlags &R = RedeclComments[I]; 00394 if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl) 00395 R = Raw; 00396 } 00397 00398 return RC; 00399 } 00400 00401 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod, 00402 SmallVectorImpl<const NamedDecl *> &Redeclared) { 00403 const DeclContext *DC = ObjCMethod->getDeclContext(); 00404 if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) { 00405 const ObjCInterfaceDecl *ID = IMD->getClassInterface(); 00406 if (!ID) 00407 return; 00408 // Add redeclared method here. 00409 for (const auto *Ext : ID->known_extensions()) { 00410 if (ObjCMethodDecl *RedeclaredMethod = 00411 Ext->getMethod(ObjCMethod->getSelector(), 00412 ObjCMethod->isInstanceMethod())) 00413 Redeclared.push_back(RedeclaredMethod); 00414 } 00415 } 00416 } 00417 00418 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC, 00419 const Decl *D) const { 00420 comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo; 00421 ThisDeclInfo->CommentDecl = D; 00422 ThisDeclInfo->IsFilled = false; 00423 ThisDeclInfo->fill(); 00424 ThisDeclInfo->CommentDecl = FC->getDecl(); 00425 if (!ThisDeclInfo->TemplateParameters) 00426 ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters; 00427 comments::FullComment *CFC = 00428 new (*this) comments::FullComment(FC->getBlocks(), 00429 ThisDeclInfo); 00430 return CFC; 00431 00432 } 00433 00434 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const { 00435 const RawComment *RC = getRawCommentForDeclNoCache(D); 00436 return RC ? RC->parse(*this, nullptr, D) : nullptr; 00437 } 00438 00439 comments::FullComment *ASTContext::getCommentForDecl( 00440 const Decl *D, 00441 const Preprocessor *PP) const { 00442 if (D->isInvalidDecl()) 00443 return nullptr; 00444 D = adjustDeclToTemplate(D); 00445 00446 const Decl *Canonical = D->getCanonicalDecl(); 00447 llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos = 00448 ParsedComments.find(Canonical); 00449 00450 if (Pos != ParsedComments.end()) { 00451 if (Canonical != D) { 00452 comments::FullComment *FC = Pos->second; 00453 comments::FullComment *CFC = cloneFullComment(FC, D); 00454 return CFC; 00455 } 00456 return Pos->second; 00457 } 00458 00459 const Decl *OriginalDecl; 00460 00461 const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl); 00462 if (!RC) { 00463 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) { 00464 SmallVector<const NamedDecl*, 8> Overridden; 00465 const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D); 00466 if (OMD && OMD->isPropertyAccessor()) 00467 if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) 00468 if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) 00469 return cloneFullComment(FC, D); 00470 if (OMD) 00471 addRedeclaredMethods(OMD, Overridden); 00472 getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden); 00473 for (unsigned i = 0, e = Overridden.size(); i < e; i++) 00474 if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) 00475 return cloneFullComment(FC, D); 00476 } 00477 else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) { 00478 // Attach any tag type's documentation to its typedef if latter 00479 // does not have one of its own. 00480 QualType QT = TD->getUnderlyingType(); 00481 if (const TagType *TT = QT->getAs<TagType>()) 00482 if (const Decl *TD = TT->getDecl()) 00483 if (comments::FullComment *FC = getCommentForDecl(TD, PP)) 00484 return cloneFullComment(FC, D); 00485 } 00486 else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) { 00487 while (IC->getSuperClass()) { 00488 IC = IC->getSuperClass(); 00489 if (comments::FullComment *FC = getCommentForDecl(IC, PP)) 00490 return cloneFullComment(FC, D); 00491 } 00492 } 00493 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) { 00494 if (const ObjCInterfaceDecl *IC = CD->getClassInterface()) 00495 if (comments::FullComment *FC = getCommentForDecl(IC, PP)) 00496 return cloneFullComment(FC, D); 00497 } 00498 else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 00499 if (!(RD = RD->getDefinition())) 00500 return nullptr; 00501 // Check non-virtual bases. 00502 for (const auto &I : RD->bases()) { 00503 if (I.isVirtual() || (I.getAccessSpecifier() != AS_public)) 00504 continue; 00505 QualType Ty = I.getType(); 00506 if (Ty.isNull()) 00507 continue; 00508 if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) { 00509 if (!(NonVirtualBase= NonVirtualBase->getDefinition())) 00510 continue; 00511 00512 if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP)) 00513 return cloneFullComment(FC, D); 00514 } 00515 } 00516 // Check virtual bases. 00517 for (const auto &I : RD->vbases()) { 00518 if (I.getAccessSpecifier() != AS_public) 00519 continue; 00520 QualType Ty = I.getType(); 00521 if (Ty.isNull()) 00522 continue; 00523 if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) { 00524 if (!(VirtualBase= VirtualBase->getDefinition())) 00525 continue; 00526 if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP)) 00527 return cloneFullComment(FC, D); 00528 } 00529 } 00530 } 00531 return nullptr; 00532 } 00533 00534 // If the RawComment was attached to other redeclaration of this Decl, we 00535 // should parse the comment in context of that other Decl. This is important 00536 // because comments can contain references to parameter names which can be 00537 // different across redeclarations. 00538 if (D != OriginalDecl) 00539 return getCommentForDecl(OriginalDecl, PP); 00540 00541 comments::FullComment *FC = RC->parse(*this, PP, D); 00542 ParsedComments[Canonical] = FC; 00543 return FC; 00544 } 00545 00546 void 00547 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID, 00548 TemplateTemplateParmDecl *Parm) { 00549 ID.AddInteger(Parm->getDepth()); 00550 ID.AddInteger(Parm->getPosition()); 00551 ID.AddBoolean(Parm->isParameterPack()); 00552 00553 TemplateParameterList *Params = Parm->getTemplateParameters(); 00554 ID.AddInteger(Params->size()); 00555 for (TemplateParameterList::const_iterator P = Params->begin(), 00556 PEnd = Params->end(); 00557 P != PEnd; ++P) { 00558 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { 00559 ID.AddInteger(0); 00560 ID.AddBoolean(TTP->isParameterPack()); 00561 continue; 00562 } 00563 00564 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { 00565 ID.AddInteger(1); 00566 ID.AddBoolean(NTTP->isParameterPack()); 00567 ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr()); 00568 if (NTTP->isExpandedParameterPack()) { 00569 ID.AddBoolean(true); 00570 ID.AddInteger(NTTP->getNumExpansionTypes()); 00571 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { 00572 QualType T = NTTP->getExpansionType(I); 00573 ID.AddPointer(T.getCanonicalType().getAsOpaquePtr()); 00574 } 00575 } else 00576 ID.AddBoolean(false); 00577 continue; 00578 } 00579 00580 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P); 00581 ID.AddInteger(2); 00582 Profile(ID, TTP); 00583 } 00584 } 00585 00586 TemplateTemplateParmDecl * 00587 ASTContext::getCanonicalTemplateTemplateParmDecl( 00588 TemplateTemplateParmDecl *TTP) const { 00589 // Check if we already have a canonical template template parameter. 00590 llvm::FoldingSetNodeID ID; 00591 CanonicalTemplateTemplateParm::Profile(ID, TTP); 00592 void *InsertPos = nullptr; 00593 CanonicalTemplateTemplateParm *Canonical 00594 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); 00595 if (Canonical) 00596 return Canonical->getParam(); 00597 00598 // Build a canonical template parameter list. 00599 TemplateParameterList *Params = TTP->getTemplateParameters(); 00600 SmallVector<NamedDecl *, 4> CanonParams; 00601 CanonParams.reserve(Params->size()); 00602 for (TemplateParameterList::const_iterator P = Params->begin(), 00603 PEnd = Params->end(); 00604 P != PEnd; ++P) { 00605 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) 00606 CanonParams.push_back( 00607 TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(), 00608 SourceLocation(), 00609 SourceLocation(), 00610 TTP->getDepth(), 00611 TTP->getIndex(), nullptr, false, 00612 TTP->isParameterPack())); 00613 else if (NonTypeTemplateParmDecl *NTTP 00614 = dyn_cast<NonTypeTemplateParmDecl>(*P)) { 00615 QualType T = getCanonicalType(NTTP->getType()); 00616 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); 00617 NonTypeTemplateParmDecl *Param; 00618 if (NTTP->isExpandedParameterPack()) { 00619 SmallVector<QualType, 2> ExpandedTypes; 00620 SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; 00621 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { 00622 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I))); 00623 ExpandedTInfos.push_back( 00624 getTrivialTypeSourceInfo(ExpandedTypes.back())); 00625 } 00626 00627 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 00628 SourceLocation(), 00629 SourceLocation(), 00630 NTTP->getDepth(), 00631 NTTP->getPosition(), nullptr, 00632 T, 00633 TInfo, 00634 ExpandedTypes.data(), 00635 ExpandedTypes.size(), 00636 ExpandedTInfos.data()); 00637 } else { 00638 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 00639 SourceLocation(), 00640 SourceLocation(), 00641 NTTP->getDepth(), 00642 NTTP->getPosition(), nullptr, 00643 T, 00644 NTTP->isParameterPack(), 00645 TInfo); 00646 } 00647 CanonParams.push_back(Param); 00648 00649 } else 00650 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl( 00651 cast<TemplateTemplateParmDecl>(*P))); 00652 } 00653 00654 TemplateTemplateParmDecl *CanonTTP 00655 = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 00656 SourceLocation(), TTP->getDepth(), 00657 TTP->getPosition(), 00658 TTP->isParameterPack(), 00659 nullptr, 00660 TemplateParameterList::Create(*this, SourceLocation(), 00661 SourceLocation(), 00662 CanonParams.data(), 00663 CanonParams.size(), 00664 SourceLocation())); 00665 00666 // Get the new insert position for the node we care about. 00667 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); 00668 assert(!Canonical && "Shouldn't be in the map!"); 00669 (void)Canonical; 00670 00671 // Create the canonical template template parameter entry. 00672 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); 00673 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos); 00674 return CanonTTP; 00675 } 00676 00677 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { 00678 if (!LangOpts.CPlusPlus) return nullptr; 00679 00680 switch (T.getCXXABI().getKind()) { 00681 case TargetCXXABI::GenericARM: // Same as Itanium at this level 00682 case TargetCXXABI::iOS: 00683 case TargetCXXABI::iOS64: 00684 case TargetCXXABI::GenericAArch64: 00685 case TargetCXXABI::GenericItanium: 00686 return CreateItaniumCXXABI(*this); 00687 case TargetCXXABI::Microsoft: 00688 return CreateMicrosoftCXXABI(*this); 00689 } 00690 llvm_unreachable("Invalid CXXABI type!"); 00691 } 00692 00693 static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T, 00694 const LangOptions &LOpts) { 00695 if (LOpts.FakeAddressSpaceMap) { 00696 // The fake address space map must have a distinct entry for each 00697 // language-specific address space. 00698 static const unsigned FakeAddrSpaceMap[] = { 00699 1, // opencl_global 00700 2, // opencl_local 00701 3, // opencl_constant 00702 4, // cuda_device 00703 5, // cuda_constant 00704 6 // cuda_shared 00705 }; 00706 return &FakeAddrSpaceMap; 00707 } else { 00708 return &T.getAddressSpaceMap(); 00709 } 00710 } 00711 00712 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI, 00713 const LangOptions &LangOpts) { 00714 switch (LangOpts.getAddressSpaceMapMangling()) { 00715 case LangOptions::ASMM_Target: 00716 return TI.useAddressSpaceMapMangling(); 00717 case LangOptions::ASMM_On: 00718 return true; 00719 case LangOptions::ASMM_Off: 00720 return false; 00721 } 00722 llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything."); 00723 } 00724 00725 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM, 00726 IdentifierTable &idents, SelectorTable &sels, 00727 Builtin::Context &builtins) 00728 : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()), 00729 DependentTemplateSpecializationTypes(this_()), 00730 SubstTemplateTemplateParmPacks(this_()), 00731 GlobalNestedNameSpecifier(nullptr), Int128Decl(nullptr), 00732 UInt128Decl(nullptr), Float128StubDecl(nullptr), 00733 BuiltinVaListDecl(nullptr), ObjCIdDecl(nullptr), ObjCSelDecl(nullptr), 00734 ObjCClassDecl(nullptr), ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr), 00735 CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr), 00736 FILEDecl(nullptr), jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr), 00737 ucontext_tDecl(nullptr), BlockDescriptorType(nullptr), 00738 BlockDescriptorExtendedType(nullptr), cudaConfigureCallDecl(nullptr), 00739 NullTypeSourceInfo(QualType()), FirstLocalImport(), LastLocalImport(), 00740 SourceMgr(SM), LangOpts(LOpts), 00741 SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFile, SM)), 00742 AddrSpaceMap(nullptr), Target(nullptr), PrintingPolicy(LOpts), 00743 Idents(idents), Selectors(sels), BuiltinInfo(builtins), 00744 DeclarationNames(*this), ExternalSource(nullptr), Listener(nullptr), 00745 Comments(SM), CommentsLoaded(false), 00746 CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), LastSDM(nullptr, 0) { 00747 TUDecl = TranslationUnitDecl::Create(*this); 00748 } 00749 00750 ASTContext::~ASTContext() { 00751 ReleaseParentMapEntries(); 00752 00753 // Release the DenseMaps associated with DeclContext objects. 00754 // FIXME: Is this the ideal solution? 00755 ReleaseDeclContextMaps(); 00756 00757 // Call all of the deallocation functions on all of their targets. 00758 for (DeallocationMap::const_iterator I = Deallocations.begin(), 00759 E = Deallocations.end(); I != E; ++I) 00760 for (unsigned J = 0, N = I->second.size(); J != N; ++J) 00761 (I->first)((I->second)[J]); 00762 00763 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed 00764 // because they can contain DenseMaps. 00765 for (llvm::DenseMap<const ObjCContainerDecl*, 00766 const ASTRecordLayout*>::iterator 00767 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) 00768 // Increment in loop to prevent using deallocated memory. 00769 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second)) 00770 R->Destroy(*this); 00771 00772 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator 00773 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { 00774 // Increment in loop to prevent using deallocated memory. 00775 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second)) 00776 R->Destroy(*this); 00777 } 00778 00779 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), 00780 AEnd = DeclAttrs.end(); 00781 A != AEnd; ++A) 00782 A->second->~AttrVec(); 00783 00784 llvm::DeleteContainerSeconds(MangleNumberingContexts); 00785 } 00786 00787 void ASTContext::ReleaseParentMapEntries() { 00788 if (!AllParents) return; 00789 for (const auto &Entry : *AllParents) { 00790 if (Entry.second.is<ast_type_traits::DynTypedNode *>()) { 00791 delete Entry.second.get<ast_type_traits::DynTypedNode *>(); 00792 } else { 00793 assert(Entry.second.is<ParentVector *>()); 00794 delete Entry.second.get<ParentVector *>(); 00795 } 00796 } 00797 } 00798 00799 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) { 00800 Deallocations[Callback].push_back(Data); 00801 } 00802 00803 void 00804 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) { 00805 ExternalSource = Source; 00806 } 00807 00808 void ASTContext::PrintStats() const { 00809 llvm::errs() << "\n*** AST Context Stats:\n"; 00810 llvm::errs() << " " << Types.size() << " types total.\n"; 00811 00812 unsigned counts[] = { 00813 #define TYPE(Name, Parent) 0, 00814 #define ABSTRACT_TYPE(Name, Parent) 00815 #include "clang/AST/TypeNodes.def" 00816 0 // Extra 00817 }; 00818 00819 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 00820 Type *T = Types[i]; 00821 counts[(unsigned)T->getTypeClass()]++; 00822 } 00823 00824 unsigned Idx = 0; 00825 unsigned TotalBytes = 0; 00826 #define TYPE(Name, Parent) \ 00827 if (counts[Idx]) \ 00828 llvm::errs() << " " << counts[Idx] << " " << #Name \ 00829 << " types\n"; \ 00830 TotalBytes += counts[Idx] * sizeof(Name##Type); \ 00831 ++Idx; 00832 #define ABSTRACT_TYPE(Name, Parent) 00833 #include "clang/AST/TypeNodes.def" 00834 00835 llvm::errs() << "Total bytes = " << TotalBytes << "\n"; 00836 00837 // Implicit special member functions. 00838 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" 00839 << NumImplicitDefaultConstructors 00840 << " implicit default constructors created\n"; 00841 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" 00842 << NumImplicitCopyConstructors 00843 << " implicit copy constructors created\n"; 00844 if (getLangOpts().CPlusPlus) 00845 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" 00846 << NumImplicitMoveConstructors 00847 << " implicit move constructors created\n"; 00848 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" 00849 << NumImplicitCopyAssignmentOperators 00850 << " implicit copy assignment operators created\n"; 00851 if (getLangOpts().CPlusPlus) 00852 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" 00853 << NumImplicitMoveAssignmentOperators 00854 << " implicit move assignment operators created\n"; 00855 llvm::errs() << NumImplicitDestructorsDeclared << "/" 00856 << NumImplicitDestructors 00857 << " implicit destructors created\n"; 00858 00859 if (ExternalSource) { 00860 llvm::errs() << "\n"; 00861 ExternalSource->PrintStats(); 00862 } 00863 00864 BumpAlloc.PrintStats(); 00865 } 00866 00867 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name, 00868 RecordDecl::TagKind TK) const { 00869 SourceLocation Loc; 00870 RecordDecl *NewDecl; 00871 if (getLangOpts().CPlusPlus) 00872 NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, 00873 Loc, &Idents.get(Name)); 00874 else 00875 NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc, 00876 &Idents.get(Name)); 00877 NewDecl->setImplicit(); 00878 return NewDecl; 00879 } 00880 00881 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T, 00882 StringRef Name) const { 00883 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); 00884 TypedefDecl *NewDecl = TypedefDecl::Create( 00885 const_cast<ASTContext &>(*this), getTranslationUnitDecl(), 00886 SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo); 00887 NewDecl->setImplicit(); 00888 return NewDecl; 00889 } 00890 00891 TypedefDecl *ASTContext::getInt128Decl() const { 00892 if (!Int128Decl) 00893 Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t"); 00894 return Int128Decl; 00895 } 00896 00897 TypedefDecl *ASTContext::getUInt128Decl() const { 00898 if (!UInt128Decl) 00899 UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t"); 00900 return UInt128Decl; 00901 } 00902 00903 TypeDecl *ASTContext::getFloat128StubType() const { 00904 assert(LangOpts.CPlusPlus && "should only be called for c++"); 00905 if (!Float128StubDecl) 00906 Float128StubDecl = buildImplicitRecord("__float128"); 00907 00908 return Float128StubDecl; 00909 } 00910 00911 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { 00912 BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K); 00913 R = CanQualType::CreateUnsafe(QualType(Ty, 0)); 00914 Types.push_back(Ty); 00915 } 00916 00917 void ASTContext::InitBuiltinTypes(const TargetInfo &Target) { 00918 assert((!this->Target || this->Target == &Target) && 00919 "Incorrect target reinitialization"); 00920 assert(VoidTy.isNull() && "Context reinitialized?"); 00921 00922 this->Target = &Target; 00923 00924 ABI.reset(createCXXABI(Target)); 00925 AddrSpaceMap = getAddressSpaceMap(Target, LangOpts); 00926 AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts); 00927 00928 // C99 6.2.5p19. 00929 InitBuiltinType(VoidTy, BuiltinType::Void); 00930 00931 // C99 6.2.5p2. 00932 InitBuiltinType(BoolTy, BuiltinType::Bool); 00933 // C99 6.2.5p3. 00934 if (LangOpts.CharIsSigned) 00935 InitBuiltinType(CharTy, BuiltinType::Char_S); 00936 else 00937 InitBuiltinType(CharTy, BuiltinType::Char_U); 00938 // C99 6.2.5p4. 00939 InitBuiltinType(SignedCharTy, BuiltinType::SChar); 00940 InitBuiltinType(ShortTy, BuiltinType::Short); 00941 InitBuiltinType(IntTy, BuiltinType::Int); 00942 InitBuiltinType(LongTy, BuiltinType::Long); 00943 InitBuiltinType(LongLongTy, BuiltinType::LongLong); 00944 00945 // C99 6.2.5p6. 00946 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); 00947 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); 00948 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); 00949 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); 00950 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); 00951 00952 // C99 6.2.5p10. 00953 InitBuiltinType(FloatTy, BuiltinType::Float); 00954 InitBuiltinType(DoubleTy, BuiltinType::Double); 00955 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); 00956 00957 // GNU extension, 128-bit integers. 00958 InitBuiltinType(Int128Ty, BuiltinType::Int128); 00959 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128); 00960 00961 // C++ 3.9.1p5 00962 if (TargetInfo::isTypeSigned(Target.getWCharType())) 00963 InitBuiltinType(WCharTy, BuiltinType::WChar_S); 00964 else // -fshort-wchar makes wchar_t be unsigned. 00965 InitBuiltinType(WCharTy, BuiltinType::WChar_U); 00966 if (LangOpts.CPlusPlus && LangOpts.WChar) 00967 WideCharTy = WCharTy; 00968 else { 00969 // C99 (or C++ using -fno-wchar). 00970 WideCharTy = getFromTargetType(Target.getWCharType()); 00971 } 00972 00973 WIntTy = getFromTargetType(Target.getWIntType()); 00974 00975 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ 00976 InitBuiltinType(Char16Ty, BuiltinType::Char16); 00977 else // C99 00978 Char16Ty = getFromTargetType(Target.getChar16Type()); 00979 00980 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ 00981 InitBuiltinType(Char32Ty, BuiltinType::Char32); 00982 else // C99 00983 Char32Ty = getFromTargetType(Target.getChar32Type()); 00984 00985 // Placeholder type for type-dependent expressions whose type is 00986 // completely unknown. No code should ever check a type against 00987 // DependentTy and users should never see it; however, it is here to 00988 // help diagnose failures to properly check for type-dependent 00989 // expressions. 00990 InitBuiltinType(DependentTy, BuiltinType::Dependent); 00991 00992 // Placeholder type for functions. 00993 InitBuiltinType(OverloadTy, BuiltinType::Overload); 00994 00995 // Placeholder type for bound members. 00996 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember); 00997 00998 // Placeholder type for pseudo-objects. 00999 InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject); 01000 01001 // "any" type; useful for debugger-like clients. 01002 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny); 01003 01004 // Placeholder type for unbridged ARC casts. 01005 InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast); 01006 01007 // Placeholder type for builtin functions. 01008 InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn); 01009 01010 // C99 6.2.5p11. 01011 FloatComplexTy = getComplexType(FloatTy); 01012 DoubleComplexTy = getComplexType(DoubleTy); 01013 LongDoubleComplexTy = getComplexType(LongDoubleTy); 01014 01015 // Builtin types for 'id', 'Class', and 'SEL'. 01016 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId); 01017 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass); 01018 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel); 01019 01020 if (LangOpts.OpenCL) { 01021 InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d); 01022 InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray); 01023 InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer); 01024 InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d); 01025 InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray); 01026 InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d); 01027 01028 InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler); 01029 InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent); 01030 } 01031 01032 // Builtin type for __objc_yes and __objc_no 01033 ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? 01034 SignedCharTy : BoolTy); 01035 01036 ObjCConstantStringType = QualType(); 01037 01038 ObjCSuperType = QualType(); 01039 01040 // void * type 01041 VoidPtrTy = getPointerType(VoidTy); 01042 01043 // nullptr type (C++0x 2.14.7) 01044 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr); 01045 01046 // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 01047 InitBuiltinType(HalfTy, BuiltinType::Half); 01048 01049 // Builtin type used to help define __builtin_va_list. 01050 VaListTagTy = QualType(); 01051 } 01052 01053 DiagnosticsEngine &ASTContext::getDiagnostics() const { 01054 return SourceMgr.getDiagnostics(); 01055 } 01056 01057 AttrVec& ASTContext::getDeclAttrs(const Decl *D) { 01058 AttrVec *&Result = DeclAttrs[D]; 01059 if (!Result) { 01060 void *Mem = Allocate(sizeof(AttrVec)); 01061 Result = new (Mem) AttrVec; 01062 } 01063 01064 return *Result; 01065 } 01066 01067 /// \brief Erase the attributes corresponding to the given declaration. 01068 void ASTContext::eraseDeclAttrs(const Decl *D) { 01069 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D); 01070 if (Pos != DeclAttrs.end()) { 01071 Pos->second->~AttrVec(); 01072 DeclAttrs.erase(Pos); 01073 } 01074 } 01075 01076 // FIXME: Remove ? 01077 MemberSpecializationInfo * 01078 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { 01079 assert(Var->isStaticDataMember() && "Not a static data member"); 01080 return getTemplateOrSpecializationInfo(Var) 01081 .dyn_cast<MemberSpecializationInfo *>(); 01082 } 01083 01084 ASTContext::TemplateOrSpecializationInfo 01085 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) { 01086 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos = 01087 TemplateOrInstantiation.find(Var); 01088 if (Pos == TemplateOrInstantiation.end()) 01089 return TemplateOrSpecializationInfo(); 01090 01091 return Pos->second; 01092 } 01093 01094 void 01095 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, 01096 TemplateSpecializationKind TSK, 01097 SourceLocation PointOfInstantiation) { 01098 assert(Inst->isStaticDataMember() && "Not a static data member"); 01099 assert(Tmpl->isStaticDataMember() && "Not a static data member"); 01100 setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo( 01101 Tmpl, TSK, PointOfInstantiation)); 01102 } 01103 01104 void 01105 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst, 01106 TemplateOrSpecializationInfo TSI) { 01107 assert(!TemplateOrInstantiation[Inst] && 01108 "Already noted what the variable was instantiated from"); 01109 TemplateOrInstantiation[Inst] = TSI; 01110 } 01111 01112 FunctionDecl *ASTContext::getClassScopeSpecializationPattern( 01113 const FunctionDecl *FD){ 01114 assert(FD && "Specialization is 0"); 01115 llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos 01116 = ClassScopeSpecializationPattern.find(FD); 01117 if (Pos == ClassScopeSpecializationPattern.end()) 01118 return nullptr; 01119 01120 return Pos->second; 01121 } 01122 01123 void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD, 01124 FunctionDecl *Pattern) { 01125 assert(FD && "Specialization is 0"); 01126 assert(Pattern && "Class scope specialization pattern is 0"); 01127 ClassScopeSpecializationPattern[FD] = Pattern; 01128 } 01129 01130 NamedDecl * 01131 ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) { 01132 llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos 01133 = InstantiatedFromUsingDecl.find(UUD); 01134 if (Pos == InstantiatedFromUsingDecl.end()) 01135 return nullptr; 01136 01137 return Pos->second; 01138 } 01139 01140 void 01141 ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) { 01142 assert((isa<UsingDecl>(Pattern) || 01143 isa<UnresolvedUsingValueDecl>(Pattern) || 01144 isa<UnresolvedUsingTypenameDecl>(Pattern)) && 01145 "pattern decl is not a using decl"); 01146 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists"); 01147 InstantiatedFromUsingDecl[Inst] = Pattern; 01148 } 01149 01150 UsingShadowDecl * 01151 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { 01152 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos 01153 = InstantiatedFromUsingShadowDecl.find(Inst); 01154 if (Pos == InstantiatedFromUsingShadowDecl.end()) 01155 return nullptr; 01156 01157 return Pos->second; 01158 } 01159 01160 void 01161 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, 01162 UsingShadowDecl *Pattern) { 01163 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists"); 01164 InstantiatedFromUsingShadowDecl[Inst] = Pattern; 01165 } 01166 01167 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) { 01168 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos 01169 = InstantiatedFromUnnamedFieldDecl.find(Field); 01170 if (Pos == InstantiatedFromUnnamedFieldDecl.end()) 01171 return nullptr; 01172 01173 return Pos->second; 01174 } 01175 01176 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, 01177 FieldDecl *Tmpl) { 01178 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed"); 01179 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed"); 01180 assert(!InstantiatedFromUnnamedFieldDecl[Inst] && 01181 "Already noted what unnamed field was instantiated from"); 01182 01183 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; 01184 } 01185 01186 ASTContext::overridden_cxx_method_iterator 01187 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { 01188 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos 01189 = OverriddenMethods.find(Method->getCanonicalDecl()); 01190 if (Pos == OverriddenMethods.end()) 01191 return nullptr; 01192 01193 return Pos->second.begin(); 01194 } 01195 01196 ASTContext::overridden_cxx_method_iterator 01197 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { 01198 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos 01199 = OverriddenMethods.find(Method->getCanonicalDecl()); 01200 if (Pos == OverriddenMethods.end()) 01201 return nullptr; 01202 01203 return Pos->second.end(); 01204 } 01205 01206 unsigned 01207 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { 01208 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos 01209 = OverriddenMethods.find(Method->getCanonicalDecl()); 01210 if (Pos == OverriddenMethods.end()) 01211 return 0; 01212 01213 return Pos->second.size(); 01214 } 01215 01216 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, 01217 const CXXMethodDecl *Overridden) { 01218 assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl()); 01219 OverriddenMethods[Method].push_back(Overridden); 01220 } 01221 01222 void ASTContext::getOverriddenMethods( 01223 const NamedDecl *D, 01224 SmallVectorImpl<const NamedDecl *> &Overridden) const { 01225 assert(D); 01226 01227 if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) { 01228 Overridden.append(overridden_methods_begin(CXXMethod), 01229 overridden_methods_end(CXXMethod)); 01230 return; 01231 } 01232 01233 const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D); 01234 if (!Method) 01235 return; 01236 01237 SmallVector<const ObjCMethodDecl *, 8> OverDecls; 01238 Method->getOverriddenMethods(OverDecls); 01239 Overridden.append(OverDecls.begin(), OverDecls.end()); 01240 } 01241 01242 void ASTContext::addedLocalImportDecl(ImportDecl *Import) { 01243 assert(!Import->NextLocalImport && "Import declaration already in the chain"); 01244 assert(!Import->isFromASTFile() && "Non-local import declaration"); 01245 if (!FirstLocalImport) { 01246 FirstLocalImport = Import; 01247 LastLocalImport = Import; 01248 return; 01249 } 01250 01251 LastLocalImport->NextLocalImport = Import; 01252 LastLocalImport = Import; 01253 } 01254 01255 //===----------------------------------------------------------------------===// 01256 // Type Sizing and Analysis 01257 //===----------------------------------------------------------------------===// 01258 01259 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified 01260 /// scalar floating point type. 01261 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { 01262 const BuiltinType *BT = T->getAs<BuiltinType>(); 01263 assert(BT && "Not a floating point type!"); 01264 switch (BT->getKind()) { 01265 default: llvm_unreachable("Not a floating point type!"); 01266 case BuiltinType::Half: return Target->getHalfFormat(); 01267 case BuiltinType::Float: return Target->getFloatFormat(); 01268 case BuiltinType::Double: return Target->getDoubleFormat(); 01269 case BuiltinType::LongDouble: return Target->getLongDoubleFormat(); 01270 } 01271 } 01272 01273 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const { 01274 unsigned Align = Target->getCharWidth(); 01275 01276 bool UseAlignAttrOnly = false; 01277 if (unsigned AlignFromAttr = D->getMaxAlignment()) { 01278 Align = AlignFromAttr; 01279 01280 // __attribute__((aligned)) can increase or decrease alignment 01281 // *except* on a struct or struct member, where it only increases 01282 // alignment unless 'packed' is also specified. 01283 // 01284 // It is an error for alignas to decrease alignment, so we can 01285 // ignore that possibility; Sema should diagnose it. 01286 if (isa<FieldDecl>(D)) { 01287 UseAlignAttrOnly = D->hasAttr<PackedAttr>() || 01288 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); 01289 } else { 01290 UseAlignAttrOnly = true; 01291 } 01292 } 01293 else if (isa<FieldDecl>(D)) 01294 UseAlignAttrOnly = 01295 D->hasAttr<PackedAttr>() || 01296 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); 01297 01298 // If we're using the align attribute only, just ignore everything 01299 // else about the declaration and its type. 01300 if (UseAlignAttrOnly) { 01301 // do nothing 01302 01303 } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) { 01304 QualType T = VD->getType(); 01305 if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 01306 if (ForAlignof) 01307 T = RT->getPointeeType(); 01308 else 01309 T = getPointerType(RT->getPointeeType()); 01310 } 01311 QualType BaseT = getBaseElementType(T); 01312 if (!BaseT->isIncompleteType() && !T->isFunctionType()) { 01313 // Adjust alignments of declarations with array type by the 01314 // large-array alignment on the target. 01315 if (const ArrayType *arrayType = getAsArrayType(T)) { 01316 unsigned MinWidth = Target->getLargeArrayMinWidth(); 01317 if (!ForAlignof && MinWidth) { 01318 if (isa<VariableArrayType>(arrayType)) 01319 Align = std::max(Align, Target->getLargeArrayAlign()); 01320 else if (isa<ConstantArrayType>(arrayType) && 01321 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType))) 01322 Align = std::max(Align, Target->getLargeArrayAlign()); 01323 } 01324 } 01325 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr())); 01326 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 01327 if (VD->hasGlobalStorage()) 01328 Align = std::max(Align, getTargetInfo().getMinGlobalAlign()); 01329 } 01330 } 01331 01332 // Fields can be subject to extra alignment constraints, like if 01333 // the field is packed, the struct is packed, or the struct has a 01334 // a max-field-alignment constraint (#pragma pack). So calculate 01335 // the actual alignment of the field within the struct, and then 01336 // (as we're expected to) constrain that by the alignment of the type. 01337 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) { 01338 const RecordDecl *Parent = Field->getParent(); 01339 // We can only produce a sensible answer if the record is valid. 01340 if (!Parent->isInvalidDecl()) { 01341 const ASTRecordLayout &Layout = getASTRecordLayout(Parent); 01342 01343 // Start with the record's overall alignment. 01344 unsigned FieldAlign = toBits(Layout.getAlignment()); 01345 01346 // Use the GCD of that and the offset within the record. 01347 uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex()); 01348 if (Offset > 0) { 01349 // Alignment is always a power of 2, so the GCD will be a power of 2, 01350 // which means we get to do this crazy thing instead of Euclid's. 01351 uint64_t LowBitOfOffset = Offset & (~Offset + 1); 01352 if (LowBitOfOffset < FieldAlign) 01353 FieldAlign = static_cast<unsigned>(LowBitOfOffset); 01354 } 01355 01356 Align = std::min(Align, FieldAlign); 01357 } 01358 } 01359 } 01360 01361 return toCharUnitsFromBits(Align); 01362 } 01363 01364 // getTypeInfoDataSizeInChars - Return the size of a type, in 01365 // chars. If the type is a record, its data size is returned. This is 01366 // the size of the memcpy that's performed when assigning this type 01367 // using a trivial copy/move assignment operator. 01368 std::pair<CharUnits, CharUnits> 01369 ASTContext::getTypeInfoDataSizeInChars(QualType T) const { 01370 std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T); 01371 01372 // In C++, objects can sometimes be allocated into the tail padding 01373 // of a base-class subobject. We decide whether that's possible 01374 // during class layout, so here we can just trust the layout results. 01375 if (getLangOpts().CPlusPlus) { 01376 if (const RecordType *RT = T->getAs<RecordType>()) { 01377 const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl()); 01378 sizeAndAlign.first = layout.getDataSize(); 01379 } 01380 } 01381 01382 return sizeAndAlign; 01383 } 01384 01385 /// getConstantArrayInfoInChars - Performing the computation in CharUnits 01386 /// instead of in bits prevents overflowing the uint64_t for some large arrays. 01387 std::pair<CharUnits, CharUnits> 01388 static getConstantArrayInfoInChars(const ASTContext &Context, 01389 const ConstantArrayType *CAT) { 01390 std::pair<CharUnits, CharUnits> EltInfo = 01391 Context.getTypeInfoInChars(CAT->getElementType()); 01392 uint64_t Size = CAT->getSize().getZExtValue(); 01393 assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <= 01394 (uint64_t)(-1)/Size) && 01395 "Overflow in array type char size evaluation"); 01396 uint64_t Width = EltInfo.first.getQuantity() * Size; 01397 unsigned Align = EltInfo.second.getQuantity(); 01398 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() || 01399 Context.getTargetInfo().getPointerWidth(0) == 64) 01400 Width = llvm::RoundUpToAlignment(Width, Align); 01401 return std::make_pair(CharUnits::fromQuantity(Width), 01402 CharUnits::fromQuantity(Align)); 01403 } 01404 01405 std::pair<CharUnits, CharUnits> 01406 ASTContext::getTypeInfoInChars(const Type *T) const { 01407 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) 01408 return getConstantArrayInfoInChars(*this, CAT); 01409 TypeInfo Info = getTypeInfo(T); 01410 return std::make_pair(toCharUnitsFromBits(Info.Width), 01411 toCharUnitsFromBits(Info.Align)); 01412 } 01413 01414 std::pair<CharUnits, CharUnits> 01415 ASTContext::getTypeInfoInChars(QualType T) const { 01416 return getTypeInfoInChars(T.getTypePtr()); 01417 } 01418 01419 bool ASTContext::isAlignmentRequired(const Type *T) const { 01420 return getTypeInfo(T).AlignIsRequired; 01421 } 01422 01423 bool ASTContext::isAlignmentRequired(QualType T) const { 01424 return isAlignmentRequired(T.getTypePtr()); 01425 } 01426 01427 TypeInfo ASTContext::getTypeInfo(const Type *T) const { 01428 TypeInfoMap::iterator I = MemoizedTypeInfo.find(T); 01429 if (I != MemoizedTypeInfo.end()) 01430 return I->second; 01431 01432 // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup. 01433 TypeInfo TI = getTypeInfoImpl(T); 01434 MemoizedTypeInfo[T] = TI; 01435 return TI; 01436 } 01437 01438 /// getTypeInfoImpl - Return the size of the specified type, in bits. This 01439 /// method does not work on incomplete types. 01440 /// 01441 /// FIXME: Pointers into different addr spaces could have different sizes and 01442 /// alignment requirements: getPointerInfo should take an AddrSpace, this 01443 /// should take a QualType, &c. 01444 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const { 01445 uint64_t Width = 0; 01446 unsigned Align = 8; 01447 bool AlignIsRequired = false; 01448 switch (T->getTypeClass()) { 01449 #define TYPE(Class, Base) 01450 #define ABSTRACT_TYPE(Class, Base) 01451 #define NON_CANONICAL_TYPE(Class, Base) 01452 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 01453 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \ 01454 case Type::Class: \ 01455 assert(!T->isDependentType() && "should not see dependent types here"); \ 01456 return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr()); 01457 #include "clang/AST/TypeNodes.def" 01458 llvm_unreachable("Should not see dependent types"); 01459 01460 case Type::FunctionNoProto: 01461 case Type::FunctionProto: 01462 // GCC extension: alignof(function) = 32 bits 01463 Width = 0; 01464 Align = 32; 01465 break; 01466 01467 case Type::IncompleteArray: 01468 case Type::VariableArray: 01469 Width = 0; 01470 Align = getTypeAlign(cast<ArrayType>(T)->getElementType()); 01471 break; 01472 01473 case Type::ConstantArray: { 01474 const ConstantArrayType *CAT = cast<ConstantArrayType>(T); 01475 01476 TypeInfo EltInfo = getTypeInfo(CAT->getElementType()); 01477 uint64_t Size = CAT->getSize().getZExtValue(); 01478 assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && 01479 "Overflow in array type bit size evaluation"); 01480 Width = EltInfo.Width * Size; 01481 Align = EltInfo.Align; 01482 if (!getTargetInfo().getCXXABI().isMicrosoft() || 01483 getTargetInfo().getPointerWidth(0) == 64) 01484 Width = llvm::RoundUpToAlignment(Width, Align); 01485 break; 01486 } 01487 case Type::ExtVector: 01488 case Type::Vector: { 01489 const VectorType *VT = cast<VectorType>(T); 01490 TypeInfo EltInfo = getTypeInfo(VT->getElementType()); 01491 Width = EltInfo.Width * VT->getNumElements(); 01492 Align = Width; 01493 // If the alignment is not a power of 2, round up to the next power of 2. 01494 // This happens for non-power-of-2 length vectors. 01495 if (Align & (Align-1)) { 01496 Align = llvm::NextPowerOf2(Align); 01497 Width = llvm::RoundUpToAlignment(Width, Align); 01498 } 01499 // Adjust the alignment based on the target max. 01500 uint64_t TargetVectorAlign = Target->getMaxVectorAlign(); 01501 if (TargetVectorAlign && TargetVectorAlign < Align) 01502 Align = TargetVectorAlign; 01503 break; 01504 } 01505 01506 case Type::Builtin: 01507 switch (cast<BuiltinType>(T)->getKind()) { 01508 default: llvm_unreachable("Unknown builtin type!"); 01509 case BuiltinType::Void: 01510 // GCC extension: alignof(void) = 8 bits. 01511 Width = 0; 01512 Align = 8; 01513 break; 01514 01515 case BuiltinType::Bool: 01516 Width = Target->getBoolWidth(); 01517 Align = Target->getBoolAlign(); 01518 break; 01519 case BuiltinType::Char_S: 01520 case BuiltinType::Char_U: 01521 case BuiltinType::UChar: 01522 case BuiltinType::SChar: 01523 Width = Target->getCharWidth(); 01524 Align = Target->getCharAlign(); 01525 break; 01526 case BuiltinType::WChar_S: 01527 case BuiltinType::WChar_U: 01528 Width = Target->getWCharWidth(); 01529 Align = Target->getWCharAlign(); 01530 break; 01531 case BuiltinType::Char16: 01532 Width = Target->getChar16Width(); 01533 Align = Target->getChar16Align(); 01534 break; 01535 case BuiltinType::Char32: 01536 Width = Target->getChar32Width(); 01537 Align = Target->getChar32Align(); 01538 break; 01539 case BuiltinType::UShort: 01540 case BuiltinType::Short: 01541 Width = Target->getShortWidth(); 01542 Align = Target->getShortAlign(); 01543 break; 01544 case BuiltinType::UInt: 01545 case BuiltinType::Int: 01546 Width = Target->getIntWidth(); 01547 Align = Target->getIntAlign(); 01548 break; 01549 case BuiltinType::ULong: 01550 case BuiltinType::Long: 01551 Width = Target->getLongWidth(); 01552 Align = Target->getLongAlign(); 01553 break; 01554 case BuiltinType::ULongLong: 01555 case BuiltinType::LongLong: 01556 Width = Target->getLongLongWidth(); 01557 Align = Target->getLongLongAlign(); 01558 break; 01559 case BuiltinType::Int128: 01560 case BuiltinType::UInt128: 01561 Width = 128; 01562 Align = 128; // int128_t is 128-bit aligned on all targets. 01563 break; 01564 case BuiltinType::Half: 01565 Width = Target->getHalfWidth(); 01566 Align = Target->getHalfAlign(); 01567 break; 01568 case BuiltinType::Float: 01569 Width = Target->getFloatWidth(); 01570 Align = Target->getFloatAlign(); 01571 break; 01572 case BuiltinType::Double: 01573 Width = Target->getDoubleWidth(); 01574 Align = Target->getDoubleAlign(); 01575 break; 01576 case BuiltinType::LongDouble: 01577 Width = Target->getLongDoubleWidth(); 01578 Align = Target->getLongDoubleAlign(); 01579 break; 01580 case BuiltinType::NullPtr: 01581 Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t) 01582 Align = Target->getPointerAlign(0); // == sizeof(void*) 01583 break; 01584 case BuiltinType::ObjCId: 01585 case BuiltinType::ObjCClass: 01586 case BuiltinType::ObjCSel: 01587 Width = Target->getPointerWidth(0); 01588 Align = Target->getPointerAlign(0); 01589 break; 01590 case BuiltinType::OCLSampler: 01591 // Samplers are modeled as integers. 01592 Width = Target->getIntWidth(); 01593 Align = Target->getIntAlign(); 01594 break; 01595 case BuiltinType::OCLEvent: 01596 case BuiltinType::OCLImage1d: 01597 case BuiltinType::OCLImage1dArray: 01598 case BuiltinType::OCLImage1dBuffer: 01599 case BuiltinType::OCLImage2d: 01600 case BuiltinType::OCLImage2dArray: 01601 case BuiltinType::OCLImage3d: 01602 // Currently these types are pointers to opaque types. 01603 Width = Target->getPointerWidth(0); 01604 Align = Target->getPointerAlign(0); 01605 break; 01606 } 01607 break; 01608 case Type::ObjCObjectPointer: 01609 Width = Target->getPointerWidth(0); 01610 Align = Target->getPointerAlign(0); 01611 break; 01612 case Type::BlockPointer: { 01613 unsigned AS = getTargetAddressSpace( 01614 cast<BlockPointerType>(T)->getPointeeType()); 01615 Width = Target->getPointerWidth(AS); 01616 Align = Target->getPointerAlign(AS); 01617 break; 01618 } 01619 case Type::LValueReference: 01620 case Type::RValueReference: { 01621 // alignof and sizeof should never enter this code path here, so we go 01622 // the pointer route. 01623 unsigned AS = getTargetAddressSpace( 01624 cast<ReferenceType>(T)->getPointeeType()); 01625 Width = Target->getPointerWidth(AS); 01626 Align = Target->getPointerAlign(AS); 01627 break; 01628 } 01629 case Type::Pointer: { 01630 unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType()); 01631 Width = Target->getPointerWidth(AS); 01632 Align = Target->getPointerAlign(AS); 01633 break; 01634 } 01635 case Type::MemberPointer: { 01636 const MemberPointerType *MPT = cast<MemberPointerType>(T); 01637 std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT); 01638 break; 01639 } 01640 case Type::Complex: { 01641 // Complex types have the same alignment as their elements, but twice the 01642 // size. 01643 TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType()); 01644 Width = EltInfo.Width * 2; 01645 Align = EltInfo.Align; 01646 break; 01647 } 01648 case Type::ObjCObject: 01649 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr()); 01650 case Type::Adjusted: 01651 case Type::Decayed: 01652 return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr()); 01653 case Type::ObjCInterface: { 01654 const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T); 01655 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); 01656 Width = toBits(Layout.getSize()); 01657 Align = toBits(Layout.getAlignment()); 01658 break; 01659 } 01660 case Type::Record: 01661 case Type::Enum: { 01662 const TagType *TT = cast<TagType>(T); 01663 01664 if (TT->getDecl()->isInvalidDecl()) { 01665 Width = 8; 01666 Align = 8; 01667 break; 01668 } 01669 01670 if (const EnumType *ET = dyn_cast<EnumType>(TT)) 01671 return getTypeInfo(ET->getDecl()->getIntegerType()); 01672 01673 const RecordType *RT = cast<RecordType>(TT); 01674 const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl()); 01675 Width = toBits(Layout.getSize()); 01676 Align = toBits(Layout.getAlignment()); 01677 break; 01678 } 01679 01680 case Type::SubstTemplateTypeParm: 01681 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)-> 01682 getReplacementType().getTypePtr()); 01683 01684 case Type::Auto: { 01685 const AutoType *A = cast<AutoType>(T); 01686 assert(!A->getDeducedType().isNull() && 01687 "cannot request the size of an undeduced or dependent auto type"); 01688 return getTypeInfo(A->getDeducedType().getTypePtr()); 01689 } 01690 01691 case Type::Paren: 01692 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr()); 01693 01694 case Type::Typedef: { 01695 const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl(); 01696 TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr()); 01697 // If the typedef has an aligned attribute on it, it overrides any computed 01698 // alignment we have. This violates the GCC documentation (which says that 01699 // attribute(aligned) can only round up) but matches its implementation. 01700 if (unsigned AttrAlign = Typedef->getMaxAlignment()) { 01701 Align = AttrAlign; 01702 AlignIsRequired = true; 01703 } else { 01704 Align = Info.Align; 01705 AlignIsRequired = Info.AlignIsRequired; 01706 } 01707 Width = Info.Width; 01708 break; 01709 } 01710 01711 case Type::Elaborated: 01712 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr()); 01713 01714 case Type::Attributed: 01715 return getTypeInfo( 01716 cast<AttributedType>(T)->getEquivalentType().getTypePtr()); 01717 01718 case Type::Atomic: { 01719 // Start with the base type information. 01720 TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType()); 01721 Width = Info.Width; 01722 Align = Info.Align; 01723 01724 // If the size of the type doesn't exceed the platform's max 01725 // atomic promotion width, make the size and alignment more 01726 // favorable to atomic operations: 01727 if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) { 01728 // Round the size up to a power of 2. 01729 if (!llvm::isPowerOf2_64(Width)) 01730 Width = llvm::NextPowerOf2(Width); 01731 01732 // Set the alignment equal to the size. 01733 Align = static_cast<unsigned>(Width); 01734 } 01735 } 01736 01737 } 01738 01739 assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2"); 01740 return TypeInfo(Width, Align, AlignIsRequired); 01741 } 01742 01743 /// toCharUnitsFromBits - Convert a size in bits to a size in characters. 01744 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { 01745 return CharUnits::fromQuantity(BitSize / getCharWidth()); 01746 } 01747 01748 /// toBits - Convert a size in characters to a size in characters. 01749 int64_t ASTContext::toBits(CharUnits CharSize) const { 01750 return CharSize.getQuantity() * getCharWidth(); 01751 } 01752 01753 /// getTypeSizeInChars - Return the size of the specified type, in characters. 01754 /// This method does not work on incomplete types. 01755 CharUnits ASTContext::getTypeSizeInChars(QualType T) const { 01756 return getTypeInfoInChars(T).first; 01757 } 01758 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { 01759 return getTypeInfoInChars(T).first; 01760 } 01761 01762 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in 01763 /// characters. This method does not work on incomplete types. 01764 CharUnits ASTContext::getTypeAlignInChars(QualType T) const { 01765 return toCharUnitsFromBits(getTypeAlign(T)); 01766 } 01767 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { 01768 return toCharUnitsFromBits(getTypeAlign(T)); 01769 } 01770 01771 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified 01772 /// type for the current target in bits. This can be different than the ABI 01773 /// alignment in cases where it is beneficial for performance to overalign 01774 /// a data type. 01775 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { 01776 TypeInfo TI = getTypeInfo(T); 01777 unsigned ABIAlign = TI.Align; 01778 01779 if (Target->getTriple().getArch() == llvm::Triple::xcore) 01780 return ABIAlign; // Never overalign on XCore. 01781 01782 // Double and long long should be naturally aligned if possible. 01783 T = T->getBaseElementTypeUnsafe(); 01784 if (const ComplexType *CT = T->getAs<ComplexType>()) 01785 T = CT->getElementType().getTypePtr(); 01786 if (T->isSpecificBuiltinType(BuiltinType::Double) || 01787 T->isSpecificBuiltinType(BuiltinType::LongLong) || 01788 T->isSpecificBuiltinType(BuiltinType::ULongLong)) 01789 // Don't increase the alignment if an alignment attribute was specified on a 01790 // typedef declaration. 01791 if (!TI.AlignIsRequired) 01792 return std::max(ABIAlign, (unsigned)getTypeSize(T)); 01793 01794 return ABIAlign; 01795 } 01796 01797 /// getAlignOfGlobalVar - Return the alignment in bits that should be given 01798 /// to a global variable of the specified type. 01799 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const { 01800 return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign()); 01801 } 01802 01803 /// getAlignOfGlobalVarInChars - Return the alignment in characters that 01804 /// should be given to a global variable of the specified type. 01805 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const { 01806 return toCharUnitsFromBits(getAlignOfGlobalVar(T)); 01807 } 01808 01809 /// DeepCollectObjCIvars - 01810 /// This routine first collects all declared, but not synthesized, ivars in 01811 /// super class and then collects all ivars, including those synthesized for 01812 /// current class. This routine is used for implementation of current class 01813 /// when all ivars, declared and synthesized are known. 01814 /// 01815 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, 01816 bool leafClass, 01817 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { 01818 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) 01819 DeepCollectObjCIvars(SuperClass, false, Ivars); 01820 if (!leafClass) { 01821 for (const auto *I : OI->ivars()) 01822 Ivars.push_back(I); 01823 } else { 01824 ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI); 01825 for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; 01826 Iv= Iv->getNextIvar()) 01827 Ivars.push_back(Iv); 01828 } 01829 } 01830 01831 /// CollectInheritedProtocols - Collect all protocols in current class and 01832 /// those inherited by it. 01833 void ASTContext::CollectInheritedProtocols(const Decl *CDecl, 01834 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { 01835 if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) { 01836 // We can use protocol_iterator here instead of 01837 // all_referenced_protocol_iterator since we are walking all categories. 01838 for (auto *Proto : OI->all_referenced_protocols()) { 01839 Protocols.insert(Proto->getCanonicalDecl()); 01840 for (auto *P : Proto->protocols()) { 01841 Protocols.insert(P->getCanonicalDecl()); 01842 CollectInheritedProtocols(P, Protocols); 01843 } 01844 } 01845 01846 // Categories of this Interface. 01847 for (const auto *Cat : OI->visible_categories()) 01848 CollectInheritedProtocols(Cat, Protocols); 01849 01850 if (ObjCInterfaceDecl *SD = OI->getSuperClass()) 01851 while (SD) { 01852 CollectInheritedProtocols(SD, Protocols); 01853 SD = SD->getSuperClass(); 01854 } 01855 } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) { 01856 for (auto *Proto : OC->protocols()) { 01857 Protocols.insert(Proto->getCanonicalDecl()); 01858 for (const auto *P : Proto->protocols()) 01859 CollectInheritedProtocols(P, Protocols); 01860 } 01861 } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) { 01862 for (auto *Proto : OP->protocols()) { 01863 Protocols.insert(Proto->getCanonicalDecl()); 01864 for (const auto *P : Proto->protocols()) 01865 CollectInheritedProtocols(P, Protocols); 01866 } 01867 } 01868 } 01869 01870 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { 01871 unsigned count = 0; 01872 // Count ivars declared in class extension. 01873 for (const auto *Ext : OI->known_extensions()) 01874 count += Ext->ivar_size(); 01875 01876 // Count ivar defined in this class's implementation. This 01877 // includes synthesized ivars. 01878 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) 01879 count += ImplDecl->ivar_size(); 01880 01881 return count; 01882 } 01883 01884 bool ASTContext::isSentinelNullExpr(const Expr *E) { 01885 if (!E) 01886 return false; 01887 01888 // nullptr_t is always treated as null. 01889 if (E->getType()->isNullPtrType()) return true; 01890 01891 if (E->getType()->isAnyPointerType() && 01892 E->IgnoreParenCasts()->isNullPointerConstant(*this, 01893 Expr::NPC_ValueDependentIsNull)) 01894 return true; 01895 01896 // Unfortunately, __null has type 'int'. 01897 if (isa<GNUNullExpr>(E)) return true; 01898 01899 return false; 01900 } 01901 01902 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists. 01903 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { 01904 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator 01905 I = ObjCImpls.find(D); 01906 if (I != ObjCImpls.end()) 01907 return cast<ObjCImplementationDecl>(I->second); 01908 return nullptr; 01909 } 01910 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists. 01911 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { 01912 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator 01913 I = ObjCImpls.find(D); 01914 if (I != ObjCImpls.end()) 01915 return cast<ObjCCategoryImplDecl>(I->second); 01916 return nullptr; 01917 } 01918 01919 /// \brief Set the implementation of ObjCInterfaceDecl. 01920 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, 01921 ObjCImplementationDecl *ImplD) { 01922 assert(IFaceD && ImplD && "Passed null params"); 01923 ObjCImpls[IFaceD] = ImplD; 01924 } 01925 /// \brief Set the implementation of ObjCCategoryDecl. 01926 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, 01927 ObjCCategoryImplDecl *ImplD) { 01928 assert(CatD && ImplD && "Passed null params"); 01929 ObjCImpls[CatD] = ImplD; 01930 } 01931 01932 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface( 01933 const NamedDecl *ND) const { 01934 if (const ObjCInterfaceDecl *ID = 01935 dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext())) 01936 return ID; 01937 if (const ObjCCategoryDecl *CD = 01938 dyn_cast<ObjCCategoryDecl>(ND->getDeclContext())) 01939 return CD->getClassInterface(); 01940 if (const ObjCImplDecl *IMD = 01941 dyn_cast<ObjCImplDecl>(ND->getDeclContext())) 01942 return IMD->getClassInterface(); 01943 01944 return nullptr; 01945 } 01946 01947 /// \brief Get the copy initialization expression of VarDecl,or NULL if 01948 /// none exists. 01949 Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) { 01950 assert(VD && "Passed null params"); 01951 assert(VD->hasAttr<BlocksAttr>() && 01952 "getBlockVarCopyInits - not __block var"); 01953 llvm::DenseMap<const VarDecl*, Expr*>::iterator 01954 I = BlockVarCopyInits.find(VD); 01955 return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr; 01956 } 01957 01958 /// \brief Set the copy inialization expression of a block var decl. 01959 void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) { 01960 assert(VD && Init && "Passed null params"); 01961 assert(VD->hasAttr<BlocksAttr>() && 01962 "setBlockVarCopyInits - not __block var"); 01963 BlockVarCopyInits[VD] = Init; 01964 } 01965 01966 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, 01967 unsigned DataSize) const { 01968 if (!DataSize) 01969 DataSize = TypeLoc::getFullDataSizeForType(T); 01970 else 01971 assert(DataSize == TypeLoc::getFullDataSizeForType(T) && 01972 "incorrect data size provided to CreateTypeSourceInfo!"); 01973 01974 TypeSourceInfo *TInfo = 01975 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8); 01976 new (TInfo) TypeSourceInfo(T); 01977 return TInfo; 01978 } 01979 01980 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, 01981 SourceLocation L) const { 01982 TypeSourceInfo *DI = CreateTypeSourceInfo(T); 01983 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L); 01984 return DI; 01985 } 01986 01987 const ASTRecordLayout & 01988 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { 01989 return getObjCLayout(D, nullptr); 01990 } 01991 01992 const ASTRecordLayout & 01993 ASTContext::getASTObjCImplementationLayout( 01994 const ObjCImplementationDecl *D) const { 01995 return getObjCLayout(D->getClassInterface(), D); 01996 } 01997 01998 //===----------------------------------------------------------------------===// 01999 // Type creation/memoization methods 02000 //===----------------------------------------------------------------------===// 02001 02002 QualType 02003 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { 02004 unsigned fastQuals = quals.getFastQualifiers(); 02005 quals.removeFastQualifiers(); 02006 02007 // Check if we've already instantiated this type. 02008 llvm::FoldingSetNodeID ID; 02009 ExtQuals::Profile(ID, baseType, quals); 02010 void *insertPos = nullptr; 02011 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) { 02012 assert(eq->getQualifiers() == quals); 02013 return QualType(eq, fastQuals); 02014 } 02015 02016 // If the base type is not canonical, make the appropriate canonical type. 02017 QualType canon; 02018 if (!baseType->isCanonicalUnqualified()) { 02019 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); 02020 canonSplit.Quals.addConsistentQualifiers(quals); 02021 canon = getExtQualType(canonSplit.Ty, canonSplit.Quals); 02022 02023 // Re-find the insert position. 02024 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos); 02025 } 02026 02027 ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals); 02028 ExtQualNodes.InsertNode(eq, insertPos); 02029 return QualType(eq, fastQuals); 02030 } 02031 02032 QualType 02033 ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const { 02034 QualType CanT = getCanonicalType(T); 02035 if (CanT.getAddressSpace() == AddressSpace) 02036 return T; 02037 02038 // If we are composing extended qualifiers together, merge together 02039 // into one ExtQuals node. 02040 QualifierCollector Quals; 02041 const Type *TypeNode = Quals.strip(T); 02042 02043 // If this type already has an address space specified, it cannot get 02044 // another one. 02045 assert(!Quals.hasAddressSpace() && 02046 "Type cannot be in multiple addr spaces!"); 02047 Quals.addAddressSpace(AddressSpace); 02048 02049 return getExtQualType(TypeNode, Quals); 02050 } 02051 02052 QualType ASTContext::getObjCGCQualType(QualType T, 02053 Qualifiers::GC GCAttr) const { 02054 QualType CanT = getCanonicalType(T); 02055 if (CanT.getObjCGCAttr() == GCAttr) 02056 return T; 02057 02058 if (const PointerType *ptr = T->getAs<PointerType>()) { 02059 QualType Pointee = ptr->getPointeeType(); 02060 if (Pointee->isAnyPointerType()) { 02061 QualType ResultType = getObjCGCQualType(Pointee, GCAttr); 02062 return getPointerType(ResultType); 02063 } 02064 } 02065 02066 // If we are composing extended qualifiers together, merge together 02067 // into one ExtQuals node. 02068 QualifierCollector Quals; 02069 const Type *TypeNode = Quals.strip(T); 02070 02071 // If this type already has an ObjCGC specified, it cannot get 02072 // another one. 02073 assert(!Quals.hasObjCGCAttr() && 02074 "Type cannot have multiple ObjCGCs!"); 02075 Quals.addObjCGCAttr(GCAttr); 02076 02077 return getExtQualType(TypeNode, Quals); 02078 } 02079 02080 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, 02081 FunctionType::ExtInfo Info) { 02082 if (T->getExtInfo() == Info) 02083 return T; 02084 02085 QualType Result; 02086 if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) { 02087 Result = getFunctionNoProtoType(FNPT->getReturnType(), Info); 02088 } else { 02089 const FunctionProtoType *FPT = cast<FunctionProtoType>(T); 02090 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 02091 EPI.ExtInfo = Info; 02092 Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI); 02093 } 02094 02095 return cast<FunctionType>(Result.getTypePtr()); 02096 } 02097 02098 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD, 02099 QualType ResultType) { 02100 FD = FD->getMostRecentDecl(); 02101 while (true) { 02102 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 02103 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 02104 FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI)); 02105 if (FunctionDecl *Next = FD->getPreviousDecl()) 02106 FD = Next; 02107 else 02108 break; 02109 } 02110 if (ASTMutationListener *L = getASTMutationListener()) 02111 L->DeducedReturnType(FD, ResultType); 02112 } 02113 02114 /// Get a function type and produce the equivalent function type with the 02115 /// specified exception specification. Type sugar that can be present on a 02116 /// declaration of a function with an exception specification is permitted 02117 /// and preserved. Other type sugar (for instance, typedefs) is not. 02118 static QualType getFunctionTypeWithExceptionSpec( 02119 ASTContext &Context, QualType Orig, 02120 const FunctionProtoType::ExceptionSpecInfo &ESI) { 02121 // Might have some parens. 02122 if (auto *PT = dyn_cast<ParenType>(Orig)) 02123 return Context.getParenType( 02124 getFunctionTypeWithExceptionSpec(Context, PT->getInnerType(), ESI)); 02125 02126 // Might have a calling-convention attribute. 02127 if (auto *AT = dyn_cast<AttributedType>(Orig)) 02128 return Context.getAttributedType( 02129 AT->getAttrKind(), 02130 getFunctionTypeWithExceptionSpec(Context, AT->getModifiedType(), ESI), 02131 getFunctionTypeWithExceptionSpec(Context, AT->getEquivalentType(), 02132 ESI)); 02133 02134 // Anything else must be a function type. Rebuild it with the new exception 02135 // specification. 02136 const FunctionProtoType *Proto = cast<FunctionProtoType>(Orig); 02137 return Context.getFunctionType( 02138 Proto->getReturnType(), Proto->getParamTypes(), 02139 Proto->getExtProtoInfo().withExceptionSpec(ESI)); 02140 } 02141 02142 void ASTContext::adjustExceptionSpec( 02143 FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI, 02144 bool AsWritten) { 02145 // Update the type. 02146 QualType Updated = 02147 getFunctionTypeWithExceptionSpec(*this, FD->getType(), ESI); 02148 FD->setType(Updated); 02149 02150 if (!AsWritten) 02151 return; 02152 02153 // Update the type in the type source information too. 02154 if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) { 02155 // If the type and the type-as-written differ, we may need to update 02156 // the type-as-written too. 02157 if (TSInfo->getType() != FD->getType()) 02158 Updated = getFunctionTypeWithExceptionSpec(*this, TSInfo->getType(), ESI); 02159 02160 // FIXME: When we get proper type location information for exceptions, 02161 // we'll also have to rebuild the TypeSourceInfo. For now, we just patch 02162 // up the TypeSourceInfo; 02163 assert(TypeLoc::getFullDataSizeForType(Updated) == 02164 TypeLoc::getFullDataSizeForType(TSInfo->getType()) && 02165 "TypeLoc size mismatch from updating exception specification"); 02166 TSInfo->overrideType(Updated); 02167 } 02168 } 02169 02170 /// getComplexType - Return the uniqued reference to the type for a complex 02171 /// number with the specified element type. 02172 QualType ASTContext::getComplexType(QualType T) const { 02173 // Unique pointers, to guarantee there is only one pointer of a particular 02174 // structure. 02175 llvm::FoldingSetNodeID ID; 02176 ComplexType::Profile(ID, T); 02177 02178 void *InsertPos = nullptr; 02179 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) 02180 return QualType(CT, 0); 02181 02182 // If the pointee type isn't canonical, this won't be a canonical type either, 02183 // so fill in the canonical type field. 02184 QualType Canonical; 02185 if (!T.isCanonical()) { 02186 Canonical = getComplexType(getCanonicalType(T)); 02187 02188 // Get the new insert position for the node we care about. 02189 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); 02190 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 02191 } 02192 ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical); 02193 Types.push_back(New); 02194 ComplexTypes.InsertNode(New, InsertPos); 02195 return QualType(New, 0); 02196 } 02197 02198 /// getPointerType - Return the uniqued reference to the type for a pointer to 02199 /// the specified type. 02200 QualType ASTContext::getPointerType(QualType T) const { 02201 // Unique pointers, to guarantee there is only one pointer of a particular 02202 // structure. 02203 llvm::FoldingSetNodeID ID; 02204 PointerType::Profile(ID, T); 02205 02206 void *InsertPos = nullptr; 02207 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 02208 return QualType(PT, 0); 02209 02210 // If the pointee type isn't canonical, this won't be a canonical type either, 02211 // so fill in the canonical type field. 02212 QualType Canonical; 02213 if (!T.isCanonical()) { 02214 Canonical = getPointerType(getCanonicalType(T)); 02215 02216 // Get the new insert position for the node we care about. 02217 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); 02218 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 02219 } 02220 PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical); 02221 Types.push_back(New); 02222 PointerTypes.InsertNode(New, InsertPos); 02223 return QualType(New, 0); 02224 } 02225 02226 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const { 02227 llvm::FoldingSetNodeID ID; 02228 AdjustedType::Profile(ID, Orig, New); 02229 void *InsertPos = nullptr; 02230 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 02231 if (AT) 02232 return QualType(AT, 0); 02233 02234 QualType Canonical = getCanonicalType(New); 02235 02236 // Get the new insert position for the node we care about. 02237 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 02238 assert(!AT && "Shouldn't be in the map!"); 02239 02240 AT = new (*this, TypeAlignment) 02241 AdjustedType(Type::Adjusted, Orig, New, Canonical); 02242 Types.push_back(AT); 02243 AdjustedTypes.InsertNode(AT, InsertPos); 02244 return QualType(AT, 0); 02245 } 02246 02247 QualType ASTContext::getDecayedType(QualType T) const { 02248 assert((T->isArrayType() || T->isFunctionType()) && "T does not decay"); 02249 02250 QualType Decayed; 02251 02252 // C99 6.7.5.3p7: 02253 // A declaration of a parameter as "array of type" shall be 02254 // adjusted to "qualified pointer to type", where the type 02255 // qualifiers (if any) are those specified within the [ and ] of 02256 // the array type derivation. 02257 if (T->isArrayType()) 02258 Decayed = getArrayDecayedType(T); 02259 02260 // C99 6.7.5.3p8: 02261 // A declaration of a parameter as "function returning type" 02262 // shall be adjusted to "pointer to function returning type", as 02263 // in 6.3.2.1. 02264 if (T->isFunctionType()) 02265 Decayed = getPointerType(T); 02266 02267 llvm::FoldingSetNodeID ID; 02268 AdjustedType::Profile(ID, T, Decayed); 02269 void *InsertPos = nullptr; 02270 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 02271 if (AT) 02272 return QualType(AT, 0); 02273 02274 QualType Canonical = getCanonicalType(Decayed); 02275 02276 // Get the new insert position for the node we care about. 02277 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 02278 assert(!AT && "Shouldn't be in the map!"); 02279 02280 AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical); 02281 Types.push_back(AT); 02282 AdjustedTypes.InsertNode(AT, InsertPos); 02283 return QualType(AT, 0); 02284 } 02285 02286 /// getBlockPointerType - Return the uniqued reference to the type for 02287 /// a pointer to the specified block. 02288 QualType ASTContext::getBlockPointerType(QualType T) const { 02289 assert(T->isFunctionType() && "block of function types only"); 02290 // Unique pointers, to guarantee there is only one block of a particular 02291 // structure. 02292 llvm::FoldingSetNodeID ID; 02293 BlockPointerType::Profile(ID, T); 02294 02295 void *InsertPos = nullptr; 02296 if (BlockPointerType *PT = 02297 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 02298 return QualType(PT, 0); 02299 02300 // If the block pointee type isn't canonical, this won't be a canonical 02301 // type either so fill in the canonical type field. 02302 QualType Canonical; 02303 if (!T.isCanonical()) { 02304 Canonical = getBlockPointerType(getCanonicalType(T)); 02305 02306 // Get the new insert position for the node we care about. 02307 BlockPointerType *NewIP = 02308 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 02309 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 02310 } 02311 BlockPointerType *New 02312 = new (*this, TypeAlignment) BlockPointerType(T, Canonical); 02313 Types.push_back(New); 02314 BlockPointerTypes.InsertNode(New, InsertPos); 02315 return QualType(New, 0); 02316 } 02317 02318 /// getLValueReferenceType - Return the uniqued reference to the type for an 02319 /// lvalue reference to the specified type. 02320 QualType 02321 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { 02322 assert(getCanonicalType(T) != OverloadTy && 02323 "Unresolved overloaded function type"); 02324 02325 // Unique pointers, to guarantee there is only one pointer of a particular 02326 // structure. 02327 llvm::FoldingSetNodeID ID; 02328 ReferenceType::Profile(ID, T, SpelledAsLValue); 02329 02330 void *InsertPos = nullptr; 02331 if (LValueReferenceType *RT = 02332 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) 02333 return QualType(RT, 0); 02334 02335 const ReferenceType *InnerRef = T->getAs<ReferenceType>(); 02336 02337 // If the referencee type isn't canonical, this won't be a canonical type 02338 // either, so fill in the canonical type field. 02339 QualType Canonical; 02340 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { 02341 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); 02342 Canonical = getLValueReferenceType(getCanonicalType(PointeeType)); 02343 02344 // Get the new insert position for the node we care about. 02345 LValueReferenceType *NewIP = 02346 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); 02347 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 02348 } 02349 02350 LValueReferenceType *New 02351 = new (*this, TypeAlignment) LValueReferenceType(T, Canonical, 02352 SpelledAsLValue); 02353 Types.push_back(New); 02354 LValueReferenceTypes.InsertNode(New, InsertPos); 02355 02356 return QualType(New, 0); 02357 } 02358 02359 /// getRValueReferenceType - Return the uniqued reference to the type for an 02360 /// rvalue reference to the specified type. 02361 QualType ASTContext::getRValueReferenceType(QualType T) const { 02362 // Unique pointers, to guarantee there is only one pointer of a particular 02363 // structure. 02364 llvm::FoldingSetNodeID ID; 02365 ReferenceType::Profile(ID, T, false); 02366 02367 void *InsertPos = nullptr; 02368 if (RValueReferenceType *RT = 02369 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) 02370 return QualType(RT, 0); 02371 02372 const ReferenceType *InnerRef = T->getAs<ReferenceType>(); 02373 02374 // If the referencee type isn't canonical, this won't be a canonical type 02375 // either, so fill in the canonical type field. 02376 QualType Canonical; 02377 if (InnerRef || !T.isCanonical()) { 02378 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); 02379 Canonical = getRValueReferenceType(getCanonicalType(PointeeType)); 02380 02381 // Get the new insert position for the node we care about. 02382 RValueReferenceType *NewIP = 02383 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); 02384 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 02385 } 02386 02387 RValueReferenceType *New 02388 = new (*this, TypeAlignment) RValueReferenceType(T, Canonical); 02389 Types.push_back(New); 02390 RValueReferenceTypes.InsertNode(New, InsertPos); 02391 return QualType(New, 0); 02392 } 02393 02394 /// getMemberPointerType - Return the uniqued reference to the type for a 02395 /// member pointer to the specified type, in the specified class. 02396 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const { 02397 // Unique pointers, to guarantee there is only one pointer of a particular 02398 // structure. 02399 llvm::FoldingSetNodeID ID; 02400 MemberPointerType::Profile(ID, T, Cls); 02401 02402 void *InsertPos = nullptr; 02403 if (MemberPointerType *PT = 02404 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 02405 return QualType(PT, 0); 02406 02407 // If the pointee or class type isn't canonical, this won't be a canonical 02408 // type either, so fill in the canonical type field. 02409 QualType Canonical; 02410 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) { 02411 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls)); 02412 02413 // Get the new insert position for the node we care about. 02414 MemberPointerType *NewIP = 02415 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 02416 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 02417 } 02418 MemberPointerType *New 02419 = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical); 02420 Types.push_back(New); 02421 MemberPointerTypes.InsertNode(New, InsertPos); 02422 return QualType(New, 0); 02423 } 02424 02425 /// getConstantArrayType - Return the unique reference to the type for an 02426 /// array of the specified element type. 02427 QualType ASTContext::getConstantArrayType(QualType EltTy, 02428 const llvm::APInt &ArySizeIn, 02429 ArrayType::ArraySizeModifier ASM, 02430 unsigned IndexTypeQuals) const { 02431 assert((EltTy->isDependentType() || 02432 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && 02433 "Constant array of VLAs is illegal!"); 02434 02435 // Convert the array size into a canonical width matching the pointer size for 02436 // the target. 02437 llvm::APInt ArySize(ArySizeIn); 02438 ArySize = 02439 ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy))); 02440 02441 llvm::FoldingSetNodeID ID; 02442 ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals); 02443 02444 void *InsertPos = nullptr; 02445 if (ConstantArrayType *ATP = 02446 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) 02447 return QualType(ATP, 0); 02448 02449 // If the element type isn't canonical or has qualifiers, this won't 02450 // be a canonical type either, so fill in the canonical type field. 02451 QualType Canon; 02452 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { 02453 SplitQualType canonSplit = getCanonicalType(EltTy).split(); 02454 Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, 02455 ASM, IndexTypeQuals); 02456 Canon = getQualifiedType(Canon, canonSplit.Quals); 02457 02458 // Get the new insert position for the node we care about. 02459 ConstantArrayType *NewIP = 02460 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); 02461 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 02462 } 02463 02464 ConstantArrayType *New = new(*this,TypeAlignment) 02465 ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals); 02466 ConstantArrayTypes.InsertNode(New, InsertPos); 02467 Types.push_back(New); 02468 return QualType(New, 0); 02469 } 02470 02471 /// getVariableArrayDecayedType - Turns the given type, which may be 02472 /// variably-modified, into the corresponding type with all the known 02473 /// sizes replaced with [*]. 02474 QualType ASTContext::getVariableArrayDecayedType(QualType type) const { 02475 // Vastly most common case. 02476 if (!type->isVariablyModifiedType()) return type; 02477 02478 QualType result; 02479 02480 SplitQualType split = type.getSplitDesugaredType(); 02481 const Type *ty = split.Ty; 02482 switch (ty->getTypeClass()) { 02483 #define TYPE(Class, Base) 02484 #define ABSTRACT_TYPE(Class, Base) 02485 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 02486 #include "clang/AST/TypeNodes.def" 02487 llvm_unreachable("didn't desugar past all non-canonical types?"); 02488 02489 // These types should never be variably-modified. 02490 case Type::Builtin: 02491 case Type::Complex: 02492 case Type::Vector: 02493 case Type::ExtVector: 02494 case Type::DependentSizedExtVector: 02495 case Type::ObjCObject: 02496 case Type::ObjCInterface: 02497 case Type::ObjCObjectPointer: 02498 case Type::Record: 02499 case Type::Enum: 02500 case Type::UnresolvedUsing: 02501 case Type::TypeOfExpr: 02502 case Type::TypeOf: 02503 case Type::Decltype: 02504 case Type::UnaryTransform: 02505 case Type::DependentName: 02506 case Type::InjectedClassName: 02507 case Type::TemplateSpecialization: 02508 case Type::DependentTemplateSpecialization: 02509 case Type::TemplateTypeParm: 02510 case Type::SubstTemplateTypeParmPack: 02511 case Type::Auto: 02512 case Type::PackExpansion: 02513 llvm_unreachable("type should never be variably-modified"); 02514 02515 // These types can be variably-modified but should never need to 02516 // further decay. 02517 case Type::FunctionNoProto: 02518 case Type::FunctionProto: 02519 case Type::BlockPointer: 02520 case Type::MemberPointer: 02521 return type; 02522 02523 // These types can be variably-modified. All these modifications 02524 // preserve structure except as noted by comments. 02525 // TODO: if we ever care about optimizing VLAs, there are no-op 02526 // optimizations available here. 02527 case Type::Pointer: 02528 result = getPointerType(getVariableArrayDecayedType( 02529 cast<PointerType>(ty)->getPointeeType())); 02530 break; 02531 02532 case Type::LValueReference: { 02533 const LValueReferenceType *lv = cast<LValueReferenceType>(ty); 02534 result = getLValueReferenceType( 02535 getVariableArrayDecayedType(lv->getPointeeType()), 02536 lv->isSpelledAsLValue()); 02537 break; 02538 } 02539 02540 case Type::RValueReference: { 02541 const RValueReferenceType *lv = cast<RValueReferenceType>(ty); 02542 result = getRValueReferenceType( 02543 getVariableArrayDecayedType(lv->getPointeeType())); 02544 break; 02545 } 02546 02547 case Type::Atomic: { 02548 const AtomicType *at = cast<AtomicType>(ty); 02549 result = getAtomicType(getVariableArrayDecayedType(at->getValueType())); 02550 break; 02551 } 02552 02553 case Type::ConstantArray: { 02554 const ConstantArrayType *cat = cast<ConstantArrayType>(ty); 02555 result = getConstantArrayType( 02556 getVariableArrayDecayedType(cat->getElementType()), 02557 cat->getSize(), 02558 cat->getSizeModifier(), 02559 cat->getIndexTypeCVRQualifiers()); 02560 break; 02561 } 02562 02563 case Type::DependentSizedArray: { 02564 const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty); 02565 result = getDependentSizedArrayType( 02566 getVariableArrayDecayedType(dat->getElementType()), 02567 dat->getSizeExpr(), 02568 dat->getSizeModifier(), 02569 dat->getIndexTypeCVRQualifiers(), 02570 dat->getBracketsRange()); 02571 break; 02572 } 02573 02574 // Turn incomplete types into [*] types. 02575 case Type::IncompleteArray: { 02576 const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty); 02577 result = getVariableArrayType( 02578 getVariableArrayDecayedType(iat->getElementType()), 02579 /*size*/ nullptr, 02580 ArrayType::Normal, 02581 iat->getIndexTypeCVRQualifiers(), 02582 SourceRange()); 02583 break; 02584 } 02585 02586 // Turn VLA types into [*] types. 02587 case Type::VariableArray: { 02588 const VariableArrayType *vat = cast<VariableArrayType>(ty); 02589 result = getVariableArrayType( 02590 getVariableArrayDecayedType(vat->getElementType()), 02591 /*size*/ nullptr, 02592 ArrayType::Star, 02593 vat->getIndexTypeCVRQualifiers(), 02594 vat->getBracketsRange()); 02595 break; 02596 } 02597 } 02598 02599 // Apply the top-level qualifiers from the original. 02600 return getQualifiedType(result, split.Quals); 02601 } 02602 02603 /// getVariableArrayType - Returns a non-unique reference to the type for a 02604 /// variable array of the specified element type. 02605 QualType ASTContext::getVariableArrayType(QualType EltTy, 02606 Expr *NumElts, 02607 ArrayType::ArraySizeModifier ASM, 02608 unsigned IndexTypeQuals, 02609 SourceRange Brackets) const { 02610 // Since we don't unique expressions, it isn't possible to unique VLA's 02611 // that have an expression provided for their size. 02612 QualType Canon; 02613 02614 // Be sure to pull qualifiers off the element type. 02615 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { 02616 SplitQualType canonSplit = getCanonicalType(EltTy).split(); 02617 Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM, 02618 IndexTypeQuals, Brackets); 02619 Canon = getQualifiedType(Canon, canonSplit.Quals); 02620 } 02621 02622 VariableArrayType *New = new(*this, TypeAlignment) 02623 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets); 02624 02625 VariableArrayTypes.push_back(New); 02626 Types.push_back(New); 02627 return QualType(New, 0); 02628 } 02629 02630 /// getDependentSizedArrayType - Returns a non-unique reference to 02631 /// the type for a dependently-sized array of the specified element 02632 /// type. 02633 QualType ASTContext::getDependentSizedArrayType(QualType elementType, 02634 Expr *numElements, 02635 ArrayType::ArraySizeModifier ASM, 02636 unsigned elementTypeQuals, 02637 SourceRange brackets) const { 02638 assert((!numElements || numElements->isTypeDependent() || 02639 numElements->isValueDependent()) && 02640 "Size must be type- or value-dependent!"); 02641 02642 // Dependently-sized array types that do not have a specified number 02643 // of elements will have their sizes deduced from a dependent 02644 // initializer. We do no canonicalization here at all, which is okay 02645 // because they can't be used in most locations. 02646 if (!numElements) { 02647 DependentSizedArrayType *newType 02648 = new (*this, TypeAlignment) 02649 DependentSizedArrayType(*this, elementType, QualType(), 02650 numElements, ASM, elementTypeQuals, 02651 brackets); 02652 Types.push_back(newType); 02653 return QualType(newType, 0); 02654 } 02655 02656 // Otherwise, we actually build a new type every time, but we 02657 // also build a canonical type. 02658 02659 SplitQualType canonElementType = getCanonicalType(elementType).split(); 02660 02661 void *insertPos = nullptr; 02662 llvm::FoldingSetNodeID ID; 02663 DependentSizedArrayType::Profile(ID, *this, 02664 QualType(canonElementType.Ty, 0), 02665 ASM, elementTypeQuals, numElements); 02666 02667 // Look for an existing type with these properties. 02668 DependentSizedArrayType *canonTy = 02669 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos); 02670 02671 // If we don't have one, build one. 02672 if (!canonTy) { 02673 canonTy = new (*this, TypeAlignment) 02674 DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0), 02675 QualType(), numElements, ASM, elementTypeQuals, 02676 brackets); 02677 DependentSizedArrayTypes.InsertNode(canonTy, insertPos); 02678 Types.push_back(canonTy); 02679 } 02680 02681 // Apply qualifiers from the element type to the array. 02682 QualType canon = getQualifiedType(QualType(canonTy,0), 02683 canonElementType.Quals); 02684 02685 // If we didn't need extra canonicalization for the element type, 02686 // then just use that as our result. 02687 if (QualType(canonElementType.Ty, 0) == elementType) 02688 return canon; 02689 02690 // Otherwise, we need to build a type which follows the spelling 02691 // of the element type. 02692 DependentSizedArrayType *sugaredType 02693 = new (*this, TypeAlignment) 02694 DependentSizedArrayType(*this, elementType, canon, numElements, 02695 ASM, elementTypeQuals, brackets); 02696 Types.push_back(sugaredType); 02697 return QualType(sugaredType, 0); 02698 } 02699 02700 QualType ASTContext::getIncompleteArrayType(QualType elementType, 02701 ArrayType::ArraySizeModifier ASM, 02702 unsigned elementTypeQuals) const { 02703 llvm::FoldingSetNodeID ID; 02704 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals); 02705 02706 void *insertPos = nullptr; 02707 if (IncompleteArrayType *iat = 02708 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos)) 02709 return QualType(iat, 0); 02710 02711 // If the element type isn't canonical, this won't be a canonical type 02712 // either, so fill in the canonical type field. We also have to pull 02713 // qualifiers off the element type. 02714 QualType canon; 02715 02716 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { 02717 SplitQualType canonSplit = getCanonicalType(elementType).split(); 02718 canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0), 02719 ASM, elementTypeQuals); 02720 canon = getQualifiedType(canon, canonSplit.Quals); 02721 02722 // Get the new insert position for the node we care about. 02723 IncompleteArrayType *existing = 02724 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos); 02725 assert(!existing && "Shouldn't be in the map!"); (void) existing; 02726 } 02727 02728 IncompleteArrayType *newType = new (*this, TypeAlignment) 02729 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); 02730 02731 IncompleteArrayTypes.InsertNode(newType, insertPos); 02732 Types.push_back(newType); 02733 return QualType(newType, 0); 02734 } 02735 02736 /// getVectorType - Return the unique reference to a vector type of 02737 /// the specified element type and size. VectorType must be a built-in type. 02738 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, 02739 VectorType::VectorKind VecKind) const { 02740 assert(vecType->isBuiltinType()); 02741 02742 // Check if we've already instantiated a vector of this type. 02743 llvm::FoldingSetNodeID ID; 02744 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind); 02745 02746 void *InsertPos = nullptr; 02747 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) 02748 return QualType(VTP, 0); 02749 02750 // If the element type isn't canonical, this won't be a canonical type either, 02751 // so fill in the canonical type field. 02752 QualType Canonical; 02753 if (!vecType.isCanonical()) { 02754 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind); 02755 02756 // Get the new insert position for the node we care about. 02757 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); 02758 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 02759 } 02760 VectorType *New = new (*this, TypeAlignment) 02761 VectorType(vecType, NumElts, Canonical, VecKind); 02762 VectorTypes.InsertNode(New, InsertPos); 02763 Types.push_back(New); 02764 return QualType(New, 0); 02765 } 02766 02767 /// getExtVectorType - Return the unique reference to an extended vector type of 02768 /// the specified element type and size. VectorType must be a built-in type. 02769 QualType 02770 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const { 02771 assert(vecType->isBuiltinType() || vecType->isDependentType()); 02772 02773 // Check if we've already instantiated a vector of this type. 02774 llvm::FoldingSetNodeID ID; 02775 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, 02776 VectorType::GenericVector); 02777 void *InsertPos = nullptr; 02778 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) 02779 return QualType(VTP, 0); 02780 02781 // If the element type isn't canonical, this won't be a canonical type either, 02782 // so fill in the canonical type field. 02783 QualType Canonical; 02784 if (!vecType.isCanonical()) { 02785 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); 02786 02787 // Get the new insert position for the node we care about. 02788 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); 02789 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 02790 } 02791 ExtVectorType *New = new (*this, TypeAlignment) 02792 ExtVectorType(vecType, NumElts, Canonical); 02793 VectorTypes.InsertNode(New, InsertPos); 02794 Types.push_back(New); 02795 return QualType(New, 0); 02796 } 02797 02798 QualType 02799 ASTContext::getDependentSizedExtVectorType(QualType vecType, 02800 Expr *SizeExpr, 02801 SourceLocation AttrLoc) const { 02802 llvm::FoldingSetNodeID ID; 02803 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType), 02804 SizeExpr); 02805 02806 void *InsertPos = nullptr; 02807 DependentSizedExtVectorType *Canon 02808 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); 02809 DependentSizedExtVectorType *New; 02810 if (Canon) { 02811 // We already have a canonical version of this array type; use it as 02812 // the canonical type for a newly-built type. 02813 New = new (*this, TypeAlignment) 02814 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0), 02815 SizeExpr, AttrLoc); 02816 } else { 02817 QualType CanonVecTy = getCanonicalType(vecType); 02818 if (CanonVecTy == vecType) { 02819 New = new (*this, TypeAlignment) 02820 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr, 02821 AttrLoc); 02822 02823 DependentSizedExtVectorType *CanonCheck 02824 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); 02825 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken"); 02826 (void)CanonCheck; 02827 DependentSizedExtVectorTypes.InsertNode(New, InsertPos); 02828 } else { 02829 QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr, 02830 SourceLocation()); 02831 New = new (*this, TypeAlignment) 02832 DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc); 02833 } 02834 } 02835 02836 Types.push_back(New); 02837 return QualType(New, 0); 02838 } 02839 02840 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. 02841 /// 02842 QualType 02843 ASTContext::getFunctionNoProtoType(QualType ResultTy, 02844 const FunctionType::ExtInfo &Info) const { 02845 const CallingConv CallConv = Info.getCC(); 02846 02847 // Unique functions, to guarantee there is only one function of a particular 02848 // structure. 02849 llvm::FoldingSetNodeID ID; 02850 FunctionNoProtoType::Profile(ID, ResultTy, Info); 02851 02852 void *InsertPos = nullptr; 02853 if (FunctionNoProtoType *FT = 02854 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) 02855 return QualType(FT, 0); 02856 02857 QualType Canonical; 02858 if (!ResultTy.isCanonical()) { 02859 Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info); 02860 02861 // Get the new insert position for the node we care about. 02862 FunctionNoProtoType *NewIP = 02863 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); 02864 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 02865 } 02866 02867 FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv); 02868 FunctionNoProtoType *New = new (*this, TypeAlignment) 02869 FunctionNoProtoType(ResultTy, Canonical, newInfo); 02870 Types.push_back(New); 02871 FunctionNoProtoTypes.InsertNode(New, InsertPos); 02872 return QualType(New, 0); 02873 } 02874 02875 /// \brief Determine whether \p T is canonical as the result type of a function. 02876 static bool isCanonicalResultType(QualType T) { 02877 return T.isCanonical() && 02878 (T.getObjCLifetime() == Qualifiers::OCL_None || 02879 T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone); 02880 } 02881 02882 QualType 02883 ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray, 02884 const FunctionProtoType::ExtProtoInfo &EPI) const { 02885 size_t NumArgs = ArgArray.size(); 02886 02887 // Unique functions, to guarantee there is only one function of a particular 02888 // structure. 02889 llvm::FoldingSetNodeID ID; 02890 FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI, 02891 *this); 02892 02893 void *InsertPos = nullptr; 02894 if (FunctionProtoType *FTP = 02895 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) 02896 return QualType(FTP, 0); 02897 02898 // Determine whether the type being created is already canonical or not. 02899 bool isCanonical = 02900 EPI.ExceptionSpec.Type == EST_None && isCanonicalResultType(ResultTy) && 02901 !EPI.HasTrailingReturn; 02902 for (unsigned i = 0; i != NumArgs && isCanonical; ++i) 02903 if (!ArgArray[i].isCanonicalAsParam()) 02904 isCanonical = false; 02905 02906 // If this type isn't canonical, get the canonical version of it. 02907 // The exception spec is not part of the canonical type. 02908 QualType Canonical; 02909 if (!isCanonical) { 02910 SmallVector<QualType, 16> CanonicalArgs; 02911 CanonicalArgs.reserve(NumArgs); 02912 for (unsigned i = 0; i != NumArgs; ++i) 02913 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i])); 02914 02915 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; 02916 CanonicalEPI.HasTrailingReturn = false; 02917 CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo(); 02918 02919 // Result types do not have ARC lifetime qualifiers. 02920 QualType CanResultTy = getCanonicalType(ResultTy); 02921 if (ResultTy.getQualifiers().hasObjCLifetime()) { 02922 Qualifiers Qs = CanResultTy.getQualifiers(); 02923 Qs.removeObjCLifetime(); 02924 CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs); 02925 } 02926 02927 Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI); 02928 02929 // Get the new insert position for the node we care about. 02930 FunctionProtoType *NewIP = 02931 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); 02932 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 02933 } 02934 02935 // FunctionProtoType objects are allocated with extra bytes after 02936 // them for three variable size arrays at the end: 02937 // - parameter types 02938 // - exception types 02939 // - consumed-arguments flags 02940 // Instead of the exception types, there could be a noexcept 02941 // expression, or information used to resolve the exception 02942 // specification. 02943 size_t Size = sizeof(FunctionProtoType) + 02944 NumArgs * sizeof(QualType); 02945 if (EPI.ExceptionSpec.Type == EST_Dynamic) { 02946 Size += EPI.ExceptionSpec.Exceptions.size() * sizeof(QualType); 02947 } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) { 02948 Size += sizeof(Expr*); 02949 } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) { 02950 Size += 2 * sizeof(FunctionDecl*); 02951 } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) { 02952 Size += sizeof(FunctionDecl*); 02953 } 02954 if (EPI.ConsumedParameters) 02955 Size += NumArgs * sizeof(bool); 02956 02957 FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment); 02958 FunctionProtoType::ExtProtoInfo newEPI = EPI; 02959 new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI); 02960 Types.push_back(FTP); 02961 FunctionProtoTypes.InsertNode(FTP, InsertPos); 02962 return QualType(FTP, 0); 02963 } 02964 02965 #ifndef NDEBUG 02966 static bool NeedsInjectedClassNameType(const RecordDecl *D) { 02967 if (!isa<CXXRecordDecl>(D)) return false; 02968 const CXXRecordDecl *RD = cast<CXXRecordDecl>(D); 02969 if (isa<ClassTemplatePartialSpecializationDecl>(RD)) 02970 return true; 02971 if (RD->getDescribedClassTemplate() && 02972 !isa<ClassTemplateSpecializationDecl>(RD)) 02973 return true; 02974 return false; 02975 } 02976 #endif 02977 02978 /// getInjectedClassNameType - Return the unique reference to the 02979 /// injected class name type for the specified templated declaration. 02980 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl, 02981 QualType TST) const { 02982 assert(NeedsInjectedClassNameType(Decl)); 02983 if (Decl->TypeForDecl) { 02984 assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); 02985 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) { 02986 assert(PrevDecl->TypeForDecl && "previous declaration has no type"); 02987 Decl->TypeForDecl = PrevDecl->TypeForDecl; 02988 assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); 02989 } else { 02990 Type *newType = 02991 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST); 02992 Decl->TypeForDecl = newType; 02993 Types.push_back(newType); 02994 } 02995 return QualType(Decl->TypeForDecl, 0); 02996 } 02997 02998 /// getTypeDeclType - Return the unique reference to the type for the 02999 /// specified type declaration. 03000 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const { 03001 assert(Decl && "Passed null for Decl param"); 03002 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case"); 03003 03004 if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl)) 03005 return getTypedefType(Typedef); 03006 03007 assert(!isa<TemplateTypeParmDecl>(Decl) && 03008 "Template type parameter types are always available."); 03009 03010 if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) { 03011 assert(Record->isFirstDecl() && "struct/union has previous declaration"); 03012 assert(!NeedsInjectedClassNameType(Record)); 03013 return getRecordType(Record); 03014 } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) { 03015 assert(Enum->isFirstDecl() && "enum has previous declaration"); 03016 return getEnumType(Enum); 03017 } else if (const UnresolvedUsingTypenameDecl *Using = 03018 dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) { 03019 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using); 03020 Decl->TypeForDecl = newType; 03021 Types.push_back(newType); 03022 } else 03023 llvm_unreachable("TypeDecl without a type?"); 03024 03025 return QualType(Decl->TypeForDecl, 0); 03026 } 03027 03028 /// getTypedefType - Return the unique reference to the type for the 03029 /// specified typedef name decl. 03030 QualType 03031 ASTContext::getTypedefType(const TypedefNameDecl *Decl, 03032 QualType Canonical) const { 03033 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 03034 03035 if (Canonical.isNull()) 03036 Canonical = getCanonicalType(Decl->getUnderlyingType()); 03037 TypedefType *newType = new(*this, TypeAlignment) 03038 TypedefType(Type::Typedef, Decl, Canonical); 03039 Decl->TypeForDecl = newType; 03040 Types.push_back(newType); 03041 return QualType(newType, 0); 03042 } 03043 03044 QualType ASTContext::getRecordType(const RecordDecl *Decl) const { 03045 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 03046 03047 if (const RecordDecl *PrevDecl = Decl->getPreviousDecl()) 03048 if (PrevDecl->TypeForDecl) 03049 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); 03050 03051 RecordType *newType = new (*this, TypeAlignment) RecordType(Decl); 03052 Decl->TypeForDecl = newType; 03053 Types.push_back(newType); 03054 return QualType(newType, 0); 03055 } 03056 03057 QualType ASTContext::getEnumType(const EnumDecl *Decl) const { 03058 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 03059 03060 if (const EnumDecl *PrevDecl = Decl->getPreviousDecl()) 03061 if (PrevDecl->TypeForDecl) 03062 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); 03063 03064 EnumType *newType = new (*this, TypeAlignment) EnumType(Decl); 03065 Decl->TypeForDecl = newType; 03066 Types.push_back(newType); 03067 return QualType(newType, 0); 03068 } 03069 03070 QualType ASTContext::getAttributedType(AttributedType::Kind attrKind, 03071 QualType modifiedType, 03072 QualType equivalentType) { 03073 llvm::FoldingSetNodeID id; 03074 AttributedType::Profile(id, attrKind, modifiedType, equivalentType); 03075 03076 void *insertPos = nullptr; 03077 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos); 03078 if (type) return QualType(type, 0); 03079 03080 QualType canon = getCanonicalType(equivalentType); 03081 type = new (*this, TypeAlignment) 03082 AttributedType(canon, attrKind, modifiedType, equivalentType); 03083 03084 Types.push_back(type); 03085 AttributedTypes.InsertNode(type, insertPos); 03086 03087 return QualType(type, 0); 03088 } 03089 03090 03091 /// \brief Retrieve a substitution-result type. 03092 QualType 03093 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm, 03094 QualType Replacement) const { 03095 assert(Replacement.isCanonical() 03096 && "replacement types must always be canonical"); 03097 03098 llvm::FoldingSetNodeID ID; 03099 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement); 03100 void *InsertPos = nullptr; 03101 SubstTemplateTypeParmType *SubstParm 03102 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 03103 03104 if (!SubstParm) { 03105 SubstParm = new (*this, TypeAlignment) 03106 SubstTemplateTypeParmType(Parm, Replacement); 03107 Types.push_back(SubstParm); 03108 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); 03109 } 03110 03111 return QualType(SubstParm, 0); 03112 } 03113 03114 /// \brief Retrieve a 03115 QualType ASTContext::getSubstTemplateTypeParmPackType( 03116 const TemplateTypeParmType *Parm, 03117 const TemplateArgument &ArgPack) { 03118 #ifndef NDEBUG 03119 for (const auto &P : ArgPack.pack_elements()) { 03120 assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type"); 03121 assert(P.getAsType().isCanonical() && "Pack contains non-canonical type"); 03122 } 03123 #endif 03124 03125 llvm::FoldingSetNodeID ID; 03126 SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack); 03127 void *InsertPos = nullptr; 03128 if (SubstTemplateTypeParmPackType *SubstParm 03129 = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) 03130 return QualType(SubstParm, 0); 03131 03132 QualType Canon; 03133 if (!Parm->isCanonicalUnqualified()) { 03134 Canon = getCanonicalType(QualType(Parm, 0)); 03135 Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon), 03136 ArgPack); 03137 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); 03138 } 03139 03140 SubstTemplateTypeParmPackType *SubstParm 03141 = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon, 03142 ArgPack); 03143 Types.push_back(SubstParm); 03144 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); 03145 return QualType(SubstParm, 0); 03146 } 03147 03148 /// \brief Retrieve the template type parameter type for a template 03149 /// parameter or parameter pack with the given depth, index, and (optionally) 03150 /// name. 03151 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, 03152 bool ParameterPack, 03153 TemplateTypeParmDecl *TTPDecl) const { 03154 llvm::FoldingSetNodeID ID; 03155 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); 03156 void *InsertPos = nullptr; 03157 TemplateTypeParmType *TypeParm 03158 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 03159 03160 if (TypeParm) 03161 return QualType(TypeParm, 0); 03162 03163 if (TTPDecl) { 03164 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); 03165 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon); 03166 03167 TemplateTypeParmType *TypeCheck 03168 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 03169 assert(!TypeCheck && "Template type parameter canonical type broken"); 03170 (void)TypeCheck; 03171 } else 03172 TypeParm = new (*this, TypeAlignment) 03173 TemplateTypeParmType(Depth, Index, ParameterPack); 03174 03175 Types.push_back(TypeParm); 03176 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos); 03177 03178 return QualType(TypeParm, 0); 03179 } 03180 03181 TypeSourceInfo * 03182 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name, 03183 SourceLocation NameLoc, 03184 const TemplateArgumentListInfo &Args, 03185 QualType Underlying) const { 03186 assert(!Name.getAsDependentTemplateName() && 03187 "No dependent template names here!"); 03188 QualType TST = getTemplateSpecializationType(Name, Args, Underlying); 03189 03190 TypeSourceInfo *DI = CreateTypeSourceInfo(TST); 03191 TemplateSpecializationTypeLoc TL = 03192 DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>(); 03193 TL.setTemplateKeywordLoc(SourceLocation()); 03194 TL.setTemplateNameLoc(NameLoc); 03195 TL.setLAngleLoc(Args.getLAngleLoc()); 03196 TL.setRAngleLoc(Args.getRAngleLoc()); 03197 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 03198 TL.setArgLocInfo(i, Args[i].getLocInfo()); 03199 return DI; 03200 } 03201 03202 QualType 03203 ASTContext::getTemplateSpecializationType(TemplateName Template, 03204 const TemplateArgumentListInfo &Args, 03205 QualType Underlying) const { 03206 assert(!Template.getAsDependentTemplateName() && 03207 "No dependent template names here!"); 03208 03209 unsigned NumArgs = Args.size(); 03210 03211 SmallVector<TemplateArgument, 4> ArgVec; 03212 ArgVec.reserve(NumArgs); 03213 for (unsigned i = 0; i != NumArgs; ++i) 03214 ArgVec.push_back(Args[i].getArgument()); 03215 03216 return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, 03217 Underlying); 03218 } 03219 03220 #ifndef NDEBUG 03221 static bool hasAnyPackExpansions(const TemplateArgument *Args, 03222 unsigned NumArgs) { 03223 for (unsigned I = 0; I != NumArgs; ++I) 03224 if (Args[I].isPackExpansion()) 03225 return true; 03226 03227 return true; 03228 } 03229 #endif 03230 03231 QualType 03232 ASTContext::getTemplateSpecializationType(TemplateName Template, 03233 const TemplateArgument *Args, 03234 unsigned NumArgs, 03235 QualType Underlying) const { 03236 assert(!Template.getAsDependentTemplateName() && 03237 "No dependent template names here!"); 03238 // Look through qualified template names. 03239 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) 03240 Template = TemplateName(QTN->getTemplateDecl()); 03241 03242 bool IsTypeAlias = 03243 Template.getAsTemplateDecl() && 03244 isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl()); 03245 QualType CanonType; 03246 if (!Underlying.isNull()) 03247 CanonType = getCanonicalType(Underlying); 03248 else { 03249 // We can get here with an alias template when the specialization contains 03250 // a pack expansion that does not match up with a parameter pack. 03251 assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) && 03252 "Caller must compute aliased type"); 03253 IsTypeAlias = false; 03254 CanonType = getCanonicalTemplateSpecializationType(Template, Args, 03255 NumArgs); 03256 } 03257 03258 // Allocate the (non-canonical) template specialization type, but don't 03259 // try to unique it: these types typically have location information that 03260 // we don't unique and don't want to lose. 03261 void *Mem = Allocate(sizeof(TemplateSpecializationType) + 03262 sizeof(TemplateArgument) * NumArgs + 03263 (IsTypeAlias? sizeof(QualType) : 0), 03264 TypeAlignment); 03265 TemplateSpecializationType *Spec 03266 = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType, 03267 IsTypeAlias ? Underlying : QualType()); 03268 03269 Types.push_back(Spec); 03270 return QualType(Spec, 0); 03271 } 03272 03273 QualType 03274 ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template, 03275 const TemplateArgument *Args, 03276 unsigned NumArgs) const { 03277 assert(!Template.getAsDependentTemplateName() && 03278 "No dependent template names here!"); 03279 03280 // Look through qualified template names. 03281 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) 03282 Template = TemplateName(QTN->getTemplateDecl()); 03283 03284 // Build the canonical template specialization type. 03285 TemplateName CanonTemplate = getCanonicalTemplateName(Template); 03286 SmallVector<TemplateArgument, 4> CanonArgs; 03287 CanonArgs.reserve(NumArgs); 03288 for (unsigned I = 0; I != NumArgs; ++I) 03289 CanonArgs.push_back(getCanonicalTemplateArgument(Args[I])); 03290 03291 // Determine whether this canonical template specialization type already 03292 // exists. 03293 llvm::FoldingSetNodeID ID; 03294 TemplateSpecializationType::Profile(ID, CanonTemplate, 03295 CanonArgs.data(), NumArgs, *this); 03296 03297 void *InsertPos = nullptr; 03298 TemplateSpecializationType *Spec 03299 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 03300 03301 if (!Spec) { 03302 // Allocate a new canonical template specialization type. 03303 void *Mem = Allocate((sizeof(TemplateSpecializationType) + 03304 sizeof(TemplateArgument) * NumArgs), 03305 TypeAlignment); 03306 Spec = new (Mem) TemplateSpecializationType(CanonTemplate, 03307 CanonArgs.data(), NumArgs, 03308 QualType(), QualType()); 03309 Types.push_back(Spec); 03310 TemplateSpecializationTypes.InsertNode(Spec, InsertPos); 03311 } 03312 03313 assert(Spec->isDependentType() && 03314 "Non-dependent template-id type must have a canonical type"); 03315 return QualType(Spec, 0); 03316 } 03317 03318 QualType 03319 ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword, 03320 NestedNameSpecifier *NNS, 03321 QualType NamedType) const { 03322 llvm::FoldingSetNodeID ID; 03323 ElaboratedType::Profile(ID, Keyword, NNS, NamedType); 03324 03325 void *InsertPos = nullptr; 03326 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); 03327 if (T) 03328 return QualType(T, 0); 03329 03330 QualType Canon = NamedType; 03331 if (!Canon.isCanonical()) { 03332 Canon = getCanonicalType(NamedType); 03333 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); 03334 assert(!CheckT && "Elaborated canonical type broken"); 03335 (void)CheckT; 03336 } 03337 03338 T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon); 03339 Types.push_back(T); 03340 ElaboratedTypes.InsertNode(T, InsertPos); 03341 return QualType(T, 0); 03342 } 03343 03344 QualType 03345 ASTContext::getParenType(QualType InnerType) const { 03346 llvm::FoldingSetNodeID ID; 03347 ParenType::Profile(ID, InnerType); 03348 03349 void *InsertPos = nullptr; 03350 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); 03351 if (T) 03352 return QualType(T, 0); 03353 03354 QualType Canon = InnerType; 03355 if (!Canon.isCanonical()) { 03356 Canon = getCanonicalType(InnerType); 03357 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); 03358 assert(!CheckT && "Paren canonical type broken"); 03359 (void)CheckT; 03360 } 03361 03362 T = new (*this) ParenType(InnerType, Canon); 03363 Types.push_back(T); 03364 ParenTypes.InsertNode(T, InsertPos); 03365 return QualType(T, 0); 03366 } 03367 03368 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, 03369 NestedNameSpecifier *NNS, 03370 const IdentifierInfo *Name, 03371 QualType Canon) const { 03372 if (Canon.isNull()) { 03373 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 03374 ElaboratedTypeKeyword CanonKeyword = Keyword; 03375 if (Keyword == ETK_None) 03376 CanonKeyword = ETK_Typename; 03377 03378 if (CanonNNS != NNS || CanonKeyword != Keyword) 03379 Canon = getDependentNameType(CanonKeyword, CanonNNS, Name); 03380 } 03381 03382 llvm::FoldingSetNodeID ID; 03383 DependentNameType::Profile(ID, Keyword, NNS, Name); 03384 03385 void *InsertPos = nullptr; 03386 DependentNameType *T 03387 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); 03388 if (T) 03389 return QualType(T, 0); 03390 03391 T = new (*this) DependentNameType(Keyword, NNS, Name, Canon); 03392 Types.push_back(T); 03393 DependentNameTypes.InsertNode(T, InsertPos); 03394 return QualType(T, 0); 03395 } 03396 03397 QualType 03398 ASTContext::getDependentTemplateSpecializationType( 03399 ElaboratedTypeKeyword Keyword, 03400 NestedNameSpecifier *NNS, 03401 const IdentifierInfo *Name, 03402 const TemplateArgumentListInfo &Args) const { 03403 // TODO: avoid this copy 03404 SmallVector<TemplateArgument, 16> ArgCopy; 03405 for (unsigned I = 0, E = Args.size(); I != E; ++I) 03406 ArgCopy.push_back(Args[I].getArgument()); 03407 return getDependentTemplateSpecializationType(Keyword, NNS, Name, 03408 ArgCopy.size(), 03409 ArgCopy.data()); 03410 } 03411 03412 QualType 03413 ASTContext::getDependentTemplateSpecializationType( 03414 ElaboratedTypeKeyword Keyword, 03415 NestedNameSpecifier *NNS, 03416 const IdentifierInfo *Name, 03417 unsigned NumArgs, 03418 const TemplateArgument *Args) const { 03419 assert((!NNS || NNS->isDependent()) && 03420 "nested-name-specifier must be dependent"); 03421 03422 llvm::FoldingSetNodeID ID; 03423 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS, 03424 Name, NumArgs, Args); 03425 03426 void *InsertPos = nullptr; 03427 DependentTemplateSpecializationType *T 03428 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 03429 if (T) 03430 return QualType(T, 0); 03431 03432 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 03433 03434 ElaboratedTypeKeyword CanonKeyword = Keyword; 03435 if (Keyword == ETK_None) CanonKeyword = ETK_Typename; 03436 03437 bool AnyNonCanonArgs = false; 03438 SmallVector<TemplateArgument, 16> CanonArgs(NumArgs); 03439 for (unsigned I = 0; I != NumArgs; ++I) { 03440 CanonArgs[I] = getCanonicalTemplateArgument(Args[I]); 03441 if (!CanonArgs[I].structurallyEquals(Args[I])) 03442 AnyNonCanonArgs = true; 03443 } 03444 03445 QualType Canon; 03446 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) { 03447 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS, 03448 Name, NumArgs, 03449 CanonArgs.data()); 03450 03451 // Find the insert position again. 03452 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 03453 } 03454 03455 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) + 03456 sizeof(TemplateArgument) * NumArgs), 03457 TypeAlignment); 03458 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS, 03459 Name, NumArgs, Args, Canon); 03460 Types.push_back(T); 03461 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos); 03462 return QualType(T, 0); 03463 } 03464 03465 QualType ASTContext::getPackExpansionType(QualType Pattern, 03466 Optional<unsigned> NumExpansions) { 03467 llvm::FoldingSetNodeID ID; 03468 PackExpansionType::Profile(ID, Pattern, NumExpansions); 03469 03470 assert(Pattern->containsUnexpandedParameterPack() && 03471 "Pack expansions must expand one or more parameter packs"); 03472 void *InsertPos = nullptr; 03473 PackExpansionType *T 03474 = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); 03475 if (T) 03476 return QualType(T, 0); 03477 03478 QualType Canon; 03479 if (!Pattern.isCanonical()) { 03480 Canon = getCanonicalType(Pattern); 03481 // The canonical type might not contain an unexpanded parameter pack, if it 03482 // contains an alias template specialization which ignores one of its 03483 // parameters. 03484 if (Canon->containsUnexpandedParameterPack()) { 03485 Canon = getPackExpansionType(Canon, NumExpansions); 03486 03487 // Find the insert position again, in case we inserted an element into 03488 // PackExpansionTypes and invalidated our insert position. 03489 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); 03490 } 03491 } 03492 03493 T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions); 03494 Types.push_back(T); 03495 PackExpansionTypes.InsertNode(T, InsertPos); 03496 return QualType(T, 0); 03497 } 03498 03499 /// CmpProtocolNames - Comparison predicate for sorting protocols 03500 /// alphabetically. 03501 static bool CmpProtocolNames(const ObjCProtocolDecl *LHS, 03502 const ObjCProtocolDecl *RHS) { 03503 return LHS->getDeclName() < RHS->getDeclName(); 03504 } 03505 03506 static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols, 03507 unsigned NumProtocols) { 03508 if (NumProtocols == 0) return true; 03509 03510 if (Protocols[0]->getCanonicalDecl() != Protocols[0]) 03511 return false; 03512 03513 for (unsigned i = 1; i != NumProtocols; ++i) 03514 if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) || 03515 Protocols[i]->getCanonicalDecl() != Protocols[i]) 03516 return false; 03517 return true; 03518 } 03519 03520 static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols, 03521 unsigned &NumProtocols) { 03522 ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols; 03523 03524 // Sort protocols, keyed by name. 03525 std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames); 03526 03527 // Canonicalize. 03528 for (unsigned I = 0, N = NumProtocols; I != N; ++I) 03529 Protocols[I] = Protocols[I]->getCanonicalDecl(); 03530 03531 // Remove duplicates. 03532 ProtocolsEnd = std::unique(Protocols, ProtocolsEnd); 03533 NumProtocols = ProtocolsEnd-Protocols; 03534 } 03535 03536 QualType ASTContext::getObjCObjectType(QualType BaseType, 03537 ObjCProtocolDecl * const *Protocols, 03538 unsigned NumProtocols) const { 03539 // If the base type is an interface and there aren't any protocols 03540 // to add, then the interface type will do just fine. 03541 if (!NumProtocols && isa<ObjCInterfaceType>(BaseType)) 03542 return BaseType; 03543 03544 // Look in the folding set for an existing type. 03545 llvm::FoldingSetNodeID ID; 03546 ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols); 03547 void *InsertPos = nullptr; 03548 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) 03549 return QualType(QT, 0); 03550 03551 // Build the canonical type, which has the canonical base type and 03552 // a sorted-and-uniqued list of protocols. 03553 QualType Canonical; 03554 bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols); 03555 if (!ProtocolsSorted || !BaseType.isCanonical()) { 03556 if (!ProtocolsSorted) { 03557 SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols, 03558 Protocols + NumProtocols); 03559 unsigned UniqueCount = NumProtocols; 03560 03561 SortAndUniqueProtocols(&Sorted[0], UniqueCount); 03562 Canonical = getObjCObjectType(getCanonicalType(BaseType), 03563 &Sorted[0], UniqueCount); 03564 } else { 03565 Canonical = getObjCObjectType(getCanonicalType(BaseType), 03566 Protocols, NumProtocols); 03567 } 03568 03569 // Regenerate InsertPos. 03570 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); 03571 } 03572 03573 unsigned Size = sizeof(ObjCObjectTypeImpl); 03574 Size += NumProtocols * sizeof(ObjCProtocolDecl *); 03575 void *Mem = Allocate(Size, TypeAlignment); 03576 ObjCObjectTypeImpl *T = 03577 new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols); 03578 03579 Types.push_back(T); 03580 ObjCObjectTypes.InsertNode(T, InsertPos); 03581 return QualType(T, 0); 03582 } 03583 03584 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's 03585 /// protocol list adopt all protocols in QT's qualified-id protocol 03586 /// list. 03587 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT, 03588 ObjCInterfaceDecl *IC) { 03589 if (!QT->isObjCQualifiedIdType()) 03590 return false; 03591 03592 if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) { 03593 // If both the right and left sides have qualifiers. 03594 for (auto *Proto : OPT->quals()) { 03595 if (!IC->ClassImplementsProtocol(Proto, false)) 03596 return false; 03597 } 03598 return true; 03599 } 03600 return false; 03601 } 03602 03603 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in 03604 /// QT's qualified-id protocol list adopt all protocols in IDecl's list 03605 /// of protocols. 03606 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT, 03607 ObjCInterfaceDecl *IDecl) { 03608 if (!QT->isObjCQualifiedIdType()) 03609 return false; 03610 const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>(); 03611 if (!OPT) 03612 return false; 03613 if (!IDecl->hasDefinition()) 03614 return false; 03615 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols; 03616 CollectInheritedProtocols(IDecl, InheritedProtocols); 03617 if (InheritedProtocols.empty()) 03618 return false; 03619 // Check that if every protocol in list of id<plist> conforms to a protcol 03620 // of IDecl's, then bridge casting is ok. 03621 bool Conforms = false; 03622 for (auto *Proto : OPT->quals()) { 03623 Conforms = false; 03624 for (auto *PI : InheritedProtocols) { 03625 if (ProtocolCompatibleWithProtocol(Proto, PI)) { 03626 Conforms = true; 03627 break; 03628 } 03629 } 03630 if (!Conforms) 03631 break; 03632 } 03633 if (Conforms) 03634 return true; 03635 03636 for (auto *PI : InheritedProtocols) { 03637 // If both the right and left sides have qualifiers. 03638 bool Adopts = false; 03639 for (auto *Proto : OPT->quals()) { 03640 // return 'true' if 'PI' is in the inheritance hierarchy of Proto 03641 if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto))) 03642 break; 03643 } 03644 if (!Adopts) 03645 return false; 03646 } 03647 return true; 03648 } 03649 03650 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for 03651 /// the given object type. 03652 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { 03653 llvm::FoldingSetNodeID ID; 03654 ObjCObjectPointerType::Profile(ID, ObjectT); 03655 03656 void *InsertPos = nullptr; 03657 if (ObjCObjectPointerType *QT = 03658 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 03659 return QualType(QT, 0); 03660 03661 // Find the canonical object type. 03662 QualType Canonical; 03663 if (!ObjectT.isCanonical()) { 03664 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT)); 03665 03666 // Regenerate InsertPos. 03667 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 03668 } 03669 03670 // No match. 03671 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment); 03672 ObjCObjectPointerType *QType = 03673 new (Mem) ObjCObjectPointerType(Canonical, ObjectT); 03674 03675 Types.push_back(QType); 03676 ObjCObjectPointerTypes.InsertNode(QType, InsertPos); 03677 return QualType(QType, 0); 03678 } 03679 03680 /// getObjCInterfaceType - Return the unique reference to the type for the 03681 /// specified ObjC interface decl. The list of protocols is optional. 03682 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, 03683 ObjCInterfaceDecl *PrevDecl) const { 03684 if (Decl->TypeForDecl) 03685 return QualType(Decl->TypeForDecl, 0); 03686 03687 if (PrevDecl) { 03688 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl"); 03689 Decl->TypeForDecl = PrevDecl->TypeForDecl; 03690 return QualType(PrevDecl->TypeForDecl, 0); 03691 } 03692 03693 // Prefer the definition, if there is one. 03694 if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) 03695 Decl = Def; 03696 03697 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment); 03698 ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl); 03699 Decl->TypeForDecl = T; 03700 Types.push_back(T); 03701 return QualType(T, 0); 03702 } 03703 03704 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique 03705 /// TypeOfExprType AST's (since expression's are never shared). For example, 03706 /// multiple declarations that refer to "typeof(x)" all contain different 03707 /// DeclRefExpr's. This doesn't effect the type checker, since it operates 03708 /// on canonical type's (which are always unique). 03709 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const { 03710 TypeOfExprType *toe; 03711 if (tofExpr->isTypeDependent()) { 03712 llvm::FoldingSetNodeID ID; 03713 DependentTypeOfExprType::Profile(ID, *this, tofExpr); 03714 03715 void *InsertPos = nullptr; 03716 DependentTypeOfExprType *Canon 03717 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); 03718 if (Canon) { 03719 // We already have a "canonical" version of an identical, dependent 03720 // typeof(expr) type. Use that as our canonical type. 03721 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, 03722 QualType((TypeOfExprType*)Canon, 0)); 03723 } else { 03724 // Build a new, canonical typeof(expr) type. 03725 Canon 03726 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr); 03727 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos); 03728 toe = Canon; 03729 } 03730 } else { 03731 QualType Canonical = getCanonicalType(tofExpr->getType()); 03732 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical); 03733 } 03734 Types.push_back(toe); 03735 return QualType(toe, 0); 03736 } 03737 03738 /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique 03739 /// TypeOfType nodes. The only motivation to unique these nodes would be 03740 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be 03741 /// an issue. This doesn't affect the type checker, since it operates 03742 /// on canonical types (which are always unique). 03743 QualType ASTContext::getTypeOfType(QualType tofType) const { 03744 QualType Canonical = getCanonicalType(tofType); 03745 TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical); 03746 Types.push_back(tot); 03747 return QualType(tot, 0); 03748 } 03749 03750 03751 /// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType 03752 /// nodes. This would never be helpful, since each such type has its own 03753 /// expression, and would not give a significant memory saving, since there 03754 /// is an Expr tree under each such type. 03755 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const { 03756 DecltypeType *dt; 03757 03758 // C++11 [temp.type]p2: 03759 // If an expression e involves a template parameter, decltype(e) denotes a 03760 // unique dependent type. Two such decltype-specifiers refer to the same 03761 // type only if their expressions are equivalent (14.5.6.1). 03762 if (e->isInstantiationDependent()) { 03763 llvm::FoldingSetNodeID ID; 03764 DependentDecltypeType::Profile(ID, *this, e); 03765 03766 void *InsertPos = nullptr; 03767 DependentDecltypeType *Canon 03768 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos); 03769 if (!Canon) { 03770 // Build a new, canonical typeof(expr) type. 03771 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e); 03772 DependentDecltypeTypes.InsertNode(Canon, InsertPos); 03773 } 03774 dt = new (*this, TypeAlignment) 03775 DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0)); 03776 } else { 03777 dt = new (*this, TypeAlignment) 03778 DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType)); 03779 } 03780 Types.push_back(dt); 03781 return QualType(dt, 0); 03782 } 03783 03784 /// getUnaryTransformationType - We don't unique these, since the memory 03785 /// savings are minimal and these are rare. 03786 QualType ASTContext::getUnaryTransformType(QualType BaseType, 03787 QualType UnderlyingType, 03788 UnaryTransformType::UTTKind Kind) 03789 const { 03790 UnaryTransformType *Ty = 03791 new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType, 03792 Kind, 03793 UnderlyingType->isDependentType() ? 03794 QualType() : getCanonicalType(UnderlyingType)); 03795 Types.push_back(Ty); 03796 return QualType(Ty, 0); 03797 } 03798 03799 /// getAutoType - Return the uniqued reference to the 'auto' type which has been 03800 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the 03801 /// canonical deduced-but-dependent 'auto' type. 03802 QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto, 03803 bool IsDependent) const { 03804 if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent) 03805 return getAutoDeductType(); 03806 03807 // Look in the folding set for an existing type. 03808 void *InsertPos = nullptr; 03809 llvm::FoldingSetNodeID ID; 03810 AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent); 03811 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos)) 03812 return QualType(AT, 0); 03813 03814 AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType, 03815 IsDecltypeAuto, 03816 IsDependent); 03817 Types.push_back(AT); 03818 if (InsertPos) 03819 AutoTypes.InsertNode(AT, InsertPos); 03820 return QualType(AT, 0); 03821 } 03822 03823 /// getAtomicType - Return the uniqued reference to the atomic type for 03824 /// the given value type. 03825 QualType ASTContext::getAtomicType(QualType T) const { 03826 // Unique pointers, to guarantee there is only one pointer of a particular 03827 // structure. 03828 llvm::FoldingSetNodeID ID; 03829 AtomicType::Profile(ID, T); 03830 03831 void *InsertPos = nullptr; 03832 if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) 03833 return QualType(AT, 0); 03834 03835 // If the atomic value type isn't canonical, this won't be a canonical type 03836 // either, so fill in the canonical type field. 03837 QualType Canonical; 03838 if (!T.isCanonical()) { 03839 Canonical = getAtomicType(getCanonicalType(T)); 03840 03841 // Get the new insert position for the node we care about. 03842 AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); 03843 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 03844 } 03845 AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical); 03846 Types.push_back(New); 03847 AtomicTypes.InsertNode(New, InsertPos); 03848 return QualType(New, 0); 03849 } 03850 03851 /// getAutoDeductType - Get type pattern for deducing against 'auto'. 03852 QualType ASTContext::getAutoDeductType() const { 03853 if (AutoDeductTy.isNull()) 03854 AutoDeductTy = QualType( 03855 new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false, 03856 /*dependent*/false), 03857 0); 03858 return AutoDeductTy; 03859 } 03860 03861 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. 03862 QualType ASTContext::getAutoRRefDeductType() const { 03863 if (AutoRRefDeductTy.isNull()) 03864 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType()); 03865 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern"); 03866 return AutoRRefDeductTy; 03867 } 03868 03869 /// getTagDeclType - Return the unique reference to the type for the 03870 /// specified TagDecl (struct/union/class/enum) decl. 03871 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const { 03872 assert (Decl); 03873 // FIXME: What is the design on getTagDeclType when it requires casting 03874 // away const? mutable? 03875 return getTypeDeclType(const_cast<TagDecl*>(Decl)); 03876 } 03877 03878 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result 03879 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and 03880 /// needs to agree with the definition in <stddef.h>. 03881 CanQualType ASTContext::getSizeType() const { 03882 return getFromTargetType(Target->getSizeType()); 03883 } 03884 03885 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). 03886 CanQualType ASTContext::getIntMaxType() const { 03887 return getFromTargetType(Target->getIntMaxType()); 03888 } 03889 03890 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). 03891 CanQualType ASTContext::getUIntMaxType() const { 03892 return getFromTargetType(Target->getUIntMaxType()); 03893 } 03894 03895 /// getSignedWCharType - Return the type of "signed wchar_t". 03896 /// Used when in C++, as a GCC extension. 03897 QualType ASTContext::getSignedWCharType() const { 03898 // FIXME: derive from "Target" ? 03899 return WCharTy; 03900 } 03901 03902 /// getUnsignedWCharType - Return the type of "unsigned wchar_t". 03903 /// Used when in C++, as a GCC extension. 03904 QualType ASTContext::getUnsignedWCharType() const { 03905 // FIXME: derive from "Target" ? 03906 return UnsignedIntTy; 03907 } 03908 03909 QualType ASTContext::getIntPtrType() const { 03910 return getFromTargetType(Target->getIntPtrType()); 03911 } 03912 03913 QualType ASTContext::getUIntPtrType() const { 03914 return getCorrespondingUnsignedType(getIntPtrType()); 03915 } 03916 03917 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) 03918 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). 03919 QualType ASTContext::getPointerDiffType() const { 03920 return getFromTargetType(Target->getPtrDiffType(0)); 03921 } 03922 03923 /// \brief Return the unique type for "pid_t" defined in 03924 /// <sys/types.h>. We need this to compute the correct type for vfork(). 03925 QualType ASTContext::getProcessIDType() const { 03926 return getFromTargetType(Target->getProcessIDType()); 03927 } 03928 03929 //===----------------------------------------------------------------------===// 03930 // Type Operators 03931 //===----------------------------------------------------------------------===// 03932 03933 CanQualType ASTContext::getCanonicalParamType(QualType T) const { 03934 // Push qualifiers into arrays, and then discard any remaining 03935 // qualifiers. 03936 T = getCanonicalType(T); 03937 T = getVariableArrayDecayedType(T); 03938 const Type *Ty = T.getTypePtr(); 03939 QualType Result; 03940 if (isa<ArrayType>(Ty)) { 03941 Result = getArrayDecayedType(QualType(Ty,0)); 03942 } else if (isa<FunctionType>(Ty)) { 03943 Result = getPointerType(QualType(Ty, 0)); 03944 } else { 03945 Result = QualType(Ty, 0); 03946 } 03947 03948 return CanQualType::CreateUnsafe(Result); 03949 } 03950 03951 QualType ASTContext::getUnqualifiedArrayType(QualType type, 03952 Qualifiers &quals) { 03953 SplitQualType splitType = type.getSplitUnqualifiedType(); 03954 03955 // FIXME: getSplitUnqualifiedType() actually walks all the way to 03956 // the unqualified desugared type and then drops it on the floor. 03957 // We then have to strip that sugar back off with 03958 // getUnqualifiedDesugaredType(), which is silly. 03959 const ArrayType *AT = 03960 dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType()); 03961 03962 // If we don't have an array, just use the results in splitType. 03963 if (!AT) { 03964 quals = splitType.Quals; 03965 return QualType(splitType.Ty, 0); 03966 } 03967 03968 // Otherwise, recurse on the array's element type. 03969 QualType elementType = AT->getElementType(); 03970 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals); 03971 03972 // If that didn't change the element type, AT has no qualifiers, so we 03973 // can just use the results in splitType. 03974 if (elementType == unqualElementType) { 03975 assert(quals.empty()); // from the recursive call 03976 quals = splitType.Quals; 03977 return QualType(splitType.Ty, 0); 03978 } 03979 03980 // Otherwise, add in the qualifiers from the outermost type, then 03981 // build the type back up. 03982 quals.addConsistentQualifiers(splitType.Quals); 03983 03984 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) { 03985 return getConstantArrayType(unqualElementType, CAT->getSize(), 03986 CAT->getSizeModifier(), 0); 03987 } 03988 03989 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 03990 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0); 03991 } 03992 03993 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) { 03994 return getVariableArrayType(unqualElementType, 03995 VAT->getSizeExpr(), 03996 VAT->getSizeModifier(), 03997 VAT->getIndexTypeCVRQualifiers(), 03998 VAT->getBracketsRange()); 03999 } 04000 04001 const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT); 04002 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(), 04003 DSAT->getSizeModifier(), 0, 04004 SourceRange()); 04005 } 04006 04007 /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that 04008 /// may be similar (C++ 4.4), replaces T1 and T2 with the type that 04009 /// they point to and return true. If T1 and T2 aren't pointer types 04010 /// or pointer-to-member types, or if they are not similar at this 04011 /// level, returns false and leaves T1 and T2 unchanged. Top-level 04012 /// qualifiers on T1 and T2 are ignored. This function will typically 04013 /// be called in a loop that successively "unwraps" pointer and 04014 /// pointer-to-member types to compare them at each level. 04015 bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) { 04016 const PointerType *T1PtrType = T1->getAs<PointerType>(), 04017 *T2PtrType = T2->getAs<PointerType>(); 04018 if (T1PtrType && T2PtrType) { 04019 T1 = T1PtrType->getPointeeType(); 04020 T2 = T2PtrType->getPointeeType(); 04021 return true; 04022 } 04023 04024 const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(), 04025 *T2MPType = T2->getAs<MemberPointerType>(); 04026 if (T1MPType && T2MPType && 04027 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0), 04028 QualType(T2MPType->getClass(), 0))) { 04029 T1 = T1MPType->getPointeeType(); 04030 T2 = T2MPType->getPointeeType(); 04031 return true; 04032 } 04033 04034 if (getLangOpts().ObjC1) { 04035 const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(), 04036 *T2OPType = T2->getAs<ObjCObjectPointerType>(); 04037 if (T1OPType && T2OPType) { 04038 T1 = T1OPType->getPointeeType(); 04039 T2 = T2OPType->getPointeeType(); 04040 return true; 04041 } 04042 } 04043 04044 // FIXME: Block pointers, too? 04045 04046 return false; 04047 } 04048 04049 DeclarationNameInfo 04050 ASTContext::getNameForTemplate(TemplateName Name, 04051 SourceLocation NameLoc) const { 04052 switch (Name.getKind()) { 04053 case TemplateName::QualifiedTemplate: 04054 case TemplateName::Template: 04055 // DNInfo work in progress: CHECKME: what about DNLoc? 04056 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), 04057 NameLoc); 04058 04059 case TemplateName::OverloadedTemplate: { 04060 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); 04061 // DNInfo work in progress: CHECKME: what about DNLoc? 04062 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); 04063 } 04064 04065 case TemplateName::DependentTemplate: { 04066 DependentTemplateName *DTN = Name.getAsDependentTemplateName(); 04067 DeclarationName DName; 04068 if (DTN->isIdentifier()) { 04069 DName = DeclarationNames.getIdentifier(DTN->getIdentifier()); 04070 return DeclarationNameInfo(DName, NameLoc); 04071 } else { 04072 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator()); 04073 // DNInfo work in progress: FIXME: source locations? 04074 DeclarationNameLoc DNLoc; 04075 DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding(); 04076 DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding(); 04077 return DeclarationNameInfo(DName, NameLoc, DNLoc); 04078 } 04079 } 04080 04081 case TemplateName::SubstTemplateTemplateParm: { 04082 SubstTemplateTemplateParmStorage *subst 04083 = Name.getAsSubstTemplateTemplateParm(); 04084 return DeclarationNameInfo(subst->getParameter()->getDeclName(), 04085 NameLoc); 04086 } 04087 04088 case TemplateName::SubstTemplateTemplateParmPack: { 04089 SubstTemplateTemplateParmPackStorage *subst 04090 = Name.getAsSubstTemplateTemplateParmPack(); 04091 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), 04092 NameLoc); 04093 } 04094 } 04095 04096 llvm_unreachable("bad template name kind!"); 04097 } 04098 04099 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const { 04100 switch (Name.getKind()) { 04101 case TemplateName::QualifiedTemplate: 04102 case TemplateName::Template: { 04103 TemplateDecl *Template = Name.getAsTemplateDecl(); 04104 if (TemplateTemplateParmDecl *TTP 04105 = dyn_cast<TemplateTemplateParmDecl>(Template)) 04106 Template = getCanonicalTemplateTemplateParmDecl(TTP); 04107 04108 // The canonical template name is the canonical template declaration. 04109 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl())); 04110 } 04111 04112 case TemplateName::OverloadedTemplate: 04113 llvm_unreachable("cannot canonicalize overloaded template"); 04114 04115 case TemplateName::DependentTemplate: { 04116 DependentTemplateName *DTN = Name.getAsDependentTemplateName(); 04117 assert(DTN && "Non-dependent template names must refer to template decls."); 04118 return DTN->CanonicalTemplateName; 04119 } 04120 04121 case TemplateName::SubstTemplateTemplateParm: { 04122 SubstTemplateTemplateParmStorage *subst 04123 = Name.getAsSubstTemplateTemplateParm(); 04124 return getCanonicalTemplateName(subst->getReplacement()); 04125 } 04126 04127 case TemplateName::SubstTemplateTemplateParmPack: { 04128 SubstTemplateTemplateParmPackStorage *subst 04129 = Name.getAsSubstTemplateTemplateParmPack(); 04130 TemplateTemplateParmDecl *canonParameter 04131 = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack()); 04132 TemplateArgument canonArgPack 04133 = getCanonicalTemplateArgument(subst->getArgumentPack()); 04134 return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack); 04135 } 04136 } 04137 04138 llvm_unreachable("bad template name!"); 04139 } 04140 04141 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) { 04142 X = getCanonicalTemplateName(X); 04143 Y = getCanonicalTemplateName(Y); 04144 return X.getAsVoidPointer() == Y.getAsVoidPointer(); 04145 } 04146 04147 TemplateArgument 04148 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { 04149 switch (Arg.getKind()) { 04150 case TemplateArgument::Null: 04151 return Arg; 04152 04153 case TemplateArgument::Expression: 04154 return Arg; 04155 04156 case TemplateArgument::Declaration: { 04157 ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl()); 04158 return TemplateArgument(D, Arg.getParamTypeForDecl()); 04159 } 04160 04161 case TemplateArgument::NullPtr: 04162 return TemplateArgument(getCanonicalType(Arg.getNullPtrType()), 04163 /*isNullPtr*/true); 04164 04165 case TemplateArgument::Template: 04166 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate())); 04167 04168 case TemplateArgument::TemplateExpansion: 04169 return TemplateArgument(getCanonicalTemplateName( 04170 Arg.getAsTemplateOrTemplatePattern()), 04171 Arg.getNumTemplateExpansions()); 04172 04173 case TemplateArgument::Integral: 04174 return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType())); 04175 04176 case TemplateArgument::Type: 04177 return TemplateArgument(getCanonicalType(Arg.getAsType())); 04178 04179 case TemplateArgument::Pack: { 04180 if (Arg.pack_size() == 0) 04181 return Arg; 04182 04183 TemplateArgument *CanonArgs 04184 = new (*this) TemplateArgument[Arg.pack_size()]; 04185 unsigned Idx = 0; 04186 for (TemplateArgument::pack_iterator A = Arg.pack_begin(), 04187 AEnd = Arg.pack_end(); 04188 A != AEnd; (void)++A, ++Idx) 04189 CanonArgs[Idx] = getCanonicalTemplateArgument(*A); 04190 04191 return TemplateArgument(CanonArgs, Arg.pack_size()); 04192 } 04193 } 04194 04195 // Silence GCC warning 04196 llvm_unreachable("Unhandled template argument kind"); 04197 } 04198 04199 NestedNameSpecifier * 04200 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const { 04201 if (!NNS) 04202 return nullptr; 04203 04204 switch (NNS->getKind()) { 04205 case NestedNameSpecifier::Identifier: 04206 // Canonicalize the prefix but keep the identifier the same. 04207 return NestedNameSpecifier::Create(*this, 04208 getCanonicalNestedNameSpecifier(NNS->getPrefix()), 04209 NNS->getAsIdentifier()); 04210 04211 case NestedNameSpecifier::Namespace: 04212 // A namespace is canonical; build a nested-name-specifier with 04213 // this namespace and no prefix. 04214 return NestedNameSpecifier::Create(*this, nullptr, 04215 NNS->getAsNamespace()->getOriginalNamespace()); 04216 04217 case NestedNameSpecifier::NamespaceAlias: 04218 // A namespace is canonical; build a nested-name-specifier with 04219 // this namespace and no prefix. 04220 return NestedNameSpecifier::Create(*this, nullptr, 04221 NNS->getAsNamespaceAlias()->getNamespace() 04222 ->getOriginalNamespace()); 04223 04224 case NestedNameSpecifier::TypeSpec: 04225 case NestedNameSpecifier::TypeSpecWithTemplate: { 04226 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0)); 04227 04228 // If we have some kind of dependent-named type (e.g., "typename T::type"), 04229 // break it apart into its prefix and identifier, then reconsititute those 04230 // as the canonical nested-name-specifier. This is required to canonicalize 04231 // a dependent nested-name-specifier involving typedefs of dependent-name 04232 // types, e.g., 04233 // typedef typename T::type T1; 04234 // typedef typename T1::type T2; 04235 if (const DependentNameType *DNT = T->getAs<DependentNameType>()) 04236 return NestedNameSpecifier::Create(*this, DNT->getQualifier(), 04237 const_cast<IdentifierInfo *>(DNT->getIdentifier())); 04238 04239 // Otherwise, just canonicalize the type, and force it to be a TypeSpec. 04240 // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the 04241 // first place? 04242 return NestedNameSpecifier::Create(*this, nullptr, false, 04243 const_cast<Type *>(T.getTypePtr())); 04244 } 04245 04246 case NestedNameSpecifier::Global: 04247 case NestedNameSpecifier::Super: 04248 // The global specifier and __super specifer are canonical and unique. 04249 return NNS; 04250 } 04251 04252 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 04253 } 04254 04255 04256 const ArrayType *ASTContext::getAsArrayType(QualType T) const { 04257 // Handle the non-qualified case efficiently. 04258 if (!T.hasLocalQualifiers()) { 04259 // Handle the common positive case fast. 04260 if (const ArrayType *AT = dyn_cast<ArrayType>(T)) 04261 return AT; 04262 } 04263 04264 // Handle the common negative case fast. 04265 if (!isa<ArrayType>(T.getCanonicalType())) 04266 return nullptr; 04267 04268 // Apply any qualifiers from the array type to the element type. This 04269 // implements C99 6.7.3p8: "If the specification of an array type includes 04270 // any type qualifiers, the element type is so qualified, not the array type." 04271 04272 // If we get here, we either have type qualifiers on the type, or we have 04273 // sugar such as a typedef in the way. If we have type qualifiers on the type 04274 // we must propagate them down into the element type. 04275 04276 SplitQualType split = T.getSplitDesugaredType(); 04277 Qualifiers qs = split.Quals; 04278 04279 // If we have a simple case, just return now. 04280 const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty); 04281 if (!ATy || qs.empty()) 04282 return ATy; 04283 04284 // Otherwise, we have an array and we have qualifiers on it. Push the 04285 // qualifiers into the array element type and return a new array type. 04286 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs); 04287 04288 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy)) 04289 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(), 04290 CAT->getSizeModifier(), 04291 CAT->getIndexTypeCVRQualifiers())); 04292 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy)) 04293 return cast<ArrayType>(getIncompleteArrayType(NewEltTy, 04294 IAT->getSizeModifier(), 04295 IAT->getIndexTypeCVRQualifiers())); 04296 04297 if (const DependentSizedArrayType *DSAT 04298 = dyn_cast<DependentSizedArrayType>(ATy)) 04299 return cast<ArrayType>( 04300 getDependentSizedArrayType(NewEltTy, 04301 DSAT->getSizeExpr(), 04302 DSAT->getSizeModifier(), 04303 DSAT->getIndexTypeCVRQualifiers(), 04304 DSAT->getBracketsRange())); 04305 04306 const VariableArrayType *VAT = cast<VariableArrayType>(ATy); 04307 return cast<ArrayType>(getVariableArrayType(NewEltTy, 04308 VAT->getSizeExpr(), 04309 VAT->getSizeModifier(), 04310 VAT->getIndexTypeCVRQualifiers(), 04311 VAT->getBracketsRange())); 04312 } 04313 04314 QualType ASTContext::getAdjustedParameterType(QualType T) const { 04315 if (T->isArrayType() || T->isFunctionType()) 04316 return getDecayedType(T); 04317 return T; 04318 } 04319 04320 QualType ASTContext::getSignatureParameterType(QualType T) const { 04321 T = getVariableArrayDecayedType(T); 04322 T = getAdjustedParameterType(T); 04323 return T.getUnqualifiedType(); 04324 } 04325 04326 /// getArrayDecayedType - Return the properly qualified result of decaying the 04327 /// specified array type to a pointer. This operation is non-trivial when 04328 /// handling typedefs etc. The canonical type of "T" must be an array type, 04329 /// this returns a pointer to a properly qualified element of the array. 04330 /// 04331 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. 04332 QualType ASTContext::getArrayDecayedType(QualType Ty) const { 04333 // Get the element type with 'getAsArrayType' so that we don't lose any 04334 // typedefs in the element type of the array. This also handles propagation 04335 // of type qualifiers from the array type into the element type if present 04336 // (C99 6.7.3p8). 04337 const ArrayType *PrettyArrayType = getAsArrayType(Ty); 04338 assert(PrettyArrayType && "Not an array type!"); 04339 04340 QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); 04341 04342 // int x[restrict 4] -> int *restrict 04343 return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers()); 04344 } 04345 04346 QualType ASTContext::getBaseElementType(const ArrayType *array) const { 04347 return getBaseElementType(array->getElementType()); 04348 } 04349 04350 QualType ASTContext::getBaseElementType(QualType type) const { 04351 Qualifiers qs; 04352 while (true) { 04353 SplitQualType split = type.getSplitDesugaredType(); 04354 const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); 04355 if (!array) break; 04356 04357 type = array->getElementType(); 04358 qs.addConsistentQualifiers(split.Quals); 04359 } 04360 04361 return getQualifiedType(type, qs); 04362 } 04363 04364 /// getConstantArrayElementCount - Returns number of constant array elements. 04365 uint64_t 04366 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const { 04367 uint64_t ElementCount = 1; 04368 do { 04369 ElementCount *= CA->getSize().getZExtValue(); 04370 CA = dyn_cast_or_null<ConstantArrayType>( 04371 CA->getElementType()->getAsArrayTypeUnsafe()); 04372 } while (CA); 04373 return ElementCount; 04374 } 04375 04376 /// getFloatingRank - Return a relative rank for floating point types. 04377 /// This routine will assert if passed a built-in type that isn't a float. 04378 static FloatingRank getFloatingRank(QualType T) { 04379 if (const ComplexType *CT = T->getAs<ComplexType>()) 04380 return getFloatingRank(CT->getElementType()); 04381 04382 assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type"); 04383 switch (T->getAs<BuiltinType>()->getKind()) { 04384 default: llvm_unreachable("getFloatingRank(): not a floating type"); 04385 case BuiltinType::Half: return HalfRank; 04386 case BuiltinType::Float: return FloatRank; 04387 case BuiltinType::Double: return DoubleRank; 04388 case BuiltinType::LongDouble: return LongDoubleRank; 04389 } 04390 } 04391 04392 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating 04393 /// point or a complex type (based on typeDomain/typeSize). 04394 /// 'typeDomain' is a real floating point or complex type. 04395 /// 'typeSize' is a real floating point or complex type. 04396 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size, 04397 QualType Domain) const { 04398 FloatingRank EltRank = getFloatingRank(Size); 04399 if (Domain->isComplexType()) { 04400 switch (EltRank) { 04401 case HalfRank: llvm_unreachable("Complex half is not supported"); 04402 case FloatRank: return FloatComplexTy; 04403 case DoubleRank: return DoubleComplexTy; 04404 case LongDoubleRank: return LongDoubleComplexTy; 04405 } 04406 } 04407 04408 assert(Domain->isRealFloatingType() && "Unknown domain!"); 04409 switch (EltRank) { 04410 case HalfRank: return HalfTy; 04411 case FloatRank: return FloatTy; 04412 case DoubleRank: return DoubleTy; 04413 case LongDoubleRank: return LongDoubleTy; 04414 } 04415 llvm_unreachable("getFloatingRank(): illegal value for rank"); 04416 } 04417 04418 /// getFloatingTypeOrder - Compare the rank of the two specified floating 04419 /// point types, ignoring the domain of the type (i.e. 'double' == 04420 /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If 04421 /// LHS < RHS, return -1. 04422 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { 04423 FloatingRank LHSR = getFloatingRank(LHS); 04424 FloatingRank RHSR = getFloatingRank(RHS); 04425 04426 if (LHSR == RHSR) 04427 return 0; 04428 if (LHSR > RHSR) 04429 return 1; 04430 return -1; 04431 } 04432 04433 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This 04434 /// routine will assert if passed a built-in type that isn't an integer or enum, 04435 /// or if it is not canonicalized. 04436 unsigned ASTContext::getIntegerRank(const Type *T) const { 04437 assert(T->isCanonicalUnqualified() && "T should be canonicalized"); 04438 04439 switch (cast<BuiltinType>(T)->getKind()) { 04440 default: llvm_unreachable("getIntegerRank(): not a built-in integer"); 04441 case BuiltinType::Bool: 04442 return 1 + (getIntWidth(BoolTy) << 3); 04443 case BuiltinType::Char_S: 04444 case BuiltinType::Char_U: 04445 case BuiltinType::SChar: 04446 case BuiltinType::UChar: 04447 return 2 + (getIntWidth(CharTy) << 3); 04448 case BuiltinType::Short: 04449 case BuiltinType::UShort: 04450 return 3 + (getIntWidth(ShortTy) << 3); 04451 case BuiltinType::Int: 04452 case BuiltinType::UInt: 04453 return 4 + (getIntWidth(IntTy) << 3); 04454 case BuiltinType::Long: 04455 case BuiltinType::ULong: 04456 return 5 + (getIntWidth(LongTy) << 3); 04457 case BuiltinType::LongLong: 04458 case BuiltinType::ULongLong: 04459 return 6 + (getIntWidth(LongLongTy) << 3); 04460 case BuiltinType::Int128: 04461 case BuiltinType::UInt128: 04462 return 7 + (getIntWidth(Int128Ty) << 3); 04463 } 04464 } 04465 04466 /// \brief Whether this is a promotable bitfield reference according 04467 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). 04468 /// 04469 /// \returns the type this bit-field will promote to, or NULL if no 04470 /// promotion occurs. 04471 QualType ASTContext::isPromotableBitField(Expr *E) const { 04472 if (E->isTypeDependent() || E->isValueDependent()) 04473 return QualType(); 04474 04475 // FIXME: We should not do this unless E->refersToBitField() is true. This 04476 // matters in C where getSourceBitField() will find bit-fields for various 04477 // cases where the source expression is not a bit-field designator. 04478 04479 FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields? 04480 if (!Field) 04481 return QualType(); 04482 04483 QualType FT = Field->getType(); 04484 04485 uint64_t BitWidth = Field->getBitWidthValue(*this); 04486 uint64_t IntSize = getTypeSize(IntTy); 04487 // C++ [conv.prom]p5: 04488 // A prvalue for an integral bit-field can be converted to a prvalue of type 04489 // int if int can represent all the values of the bit-field; otherwise, it 04490 // can be converted to unsigned int if unsigned int can represent all the 04491 // values of the bit-field. If the bit-field is larger yet, no integral 04492 // promotion applies to it. 04493 // C11 6.3.1.1/2: 04494 // [For a bit-field of type _Bool, int, signed int, or unsigned int:] 04495 // If an int can represent all values of the original type (as restricted by 04496 // the width, for a bit-field), the value is converted to an int; otherwise, 04497 // it is converted to an unsigned int. 04498 // 04499 // FIXME: C does not permit promotion of a 'long : 3' bitfield to int. 04500 // We perform that promotion here to match GCC and C++. 04501 if (BitWidth < IntSize) 04502 return IntTy; 04503 04504 if (BitWidth == IntSize) 04505 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; 04506 04507 // Types bigger than int are not subject to promotions, and therefore act 04508 // like the base type. GCC has some weird bugs in this area that we 04509 // deliberately do not follow (GCC follows a pre-standard resolution to 04510 // C's DR315 which treats bit-width as being part of the type, and this leaks 04511 // into their semantics in some cases). 04512 return QualType(); 04513 } 04514 04515 /// getPromotedIntegerType - Returns the type that Promotable will 04516 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable 04517 /// integer type. 04518 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { 04519 assert(!Promotable.isNull()); 04520 assert(Promotable->isPromotableIntegerType()); 04521 if (const EnumType *ET = Promotable->getAs<EnumType>()) 04522 return ET->getDecl()->getPromotionType(); 04523 04524 if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) { 04525 // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t 04526 // (3.9.1) can be converted to a prvalue of the first of the following 04527 // types that can represent all the values of its underlying type: 04528 // int, unsigned int, long int, unsigned long int, long long int, or 04529 // unsigned long long int [...] 04530 // FIXME: Is there some better way to compute this? 04531 if (BT->getKind() == BuiltinType::WChar_S || 04532 BT->getKind() == BuiltinType::WChar_U || 04533 BT->getKind() == BuiltinType::Char16 || 04534 BT->getKind() == BuiltinType::Char32) { 04535 bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; 04536 uint64_t FromSize = getTypeSize(BT); 04537 QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, 04538 LongLongTy, UnsignedLongLongTy }; 04539 for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) { 04540 uint64_t ToSize = getTypeSize(PromoteTypes[Idx]); 04541 if (FromSize < ToSize || 04542 (FromSize == ToSize && 04543 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) 04544 return PromoteTypes[Idx]; 04545 } 04546 llvm_unreachable("char type should fit into long long"); 04547 } 04548 } 04549 04550 // At this point, we should have a signed or unsigned integer type. 04551 if (Promotable->isSignedIntegerType()) 04552 return IntTy; 04553 uint64_t PromotableSize = getIntWidth(Promotable); 04554 uint64_t IntSize = getIntWidth(IntTy); 04555 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize); 04556 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; 04557 } 04558 04559 /// \brief Recurses in pointer/array types until it finds an objc retainable 04560 /// type and returns its ownership. 04561 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { 04562 while (!T.isNull()) { 04563 if (T.getObjCLifetime() != Qualifiers::OCL_None) 04564 return T.getObjCLifetime(); 04565 if (T->isArrayType()) 04566 T = getBaseElementType(T); 04567 else if (const PointerType *PT = T->getAs<PointerType>()) 04568 T = PT->getPointeeType(); 04569 else if (const ReferenceType *RT = T->getAs<ReferenceType>()) 04570 T = RT->getPointeeType(); 04571 else 04572 break; 04573 } 04574 04575 return Qualifiers::OCL_None; 04576 } 04577 04578 static const Type *getIntegerTypeForEnum(const EnumType *ET) { 04579 // Incomplete enum types are not treated as integer types. 04580 // FIXME: In C++, enum types are never integer types. 04581 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) 04582 return ET->getDecl()->getIntegerType().getTypePtr(); 04583 return nullptr; 04584 } 04585 04586 /// getIntegerTypeOrder - Returns the highest ranked integer type: 04587 /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If 04588 /// LHS < RHS, return -1. 04589 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { 04590 const Type *LHSC = getCanonicalType(LHS).getTypePtr(); 04591 const Type *RHSC = getCanonicalType(RHS).getTypePtr(); 04592 04593 // Unwrap enums to their underlying type. 04594 if (const EnumType *ET = dyn_cast<EnumType>(LHSC)) 04595 LHSC = getIntegerTypeForEnum(ET); 04596 if (const EnumType *ET = dyn_cast<EnumType>(RHSC)) 04597 RHSC = getIntegerTypeForEnum(ET); 04598 04599 if (LHSC == RHSC) return 0; 04600 04601 bool LHSUnsigned = LHSC->isUnsignedIntegerType(); 04602 bool RHSUnsigned = RHSC->isUnsignedIntegerType(); 04603 04604 unsigned LHSRank = getIntegerRank(LHSC); 04605 unsigned RHSRank = getIntegerRank(RHSC); 04606 04607 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. 04608 if (LHSRank == RHSRank) return 0; 04609 return LHSRank > RHSRank ? 1 : -1; 04610 } 04611 04612 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. 04613 if (LHSUnsigned) { 04614 // If the unsigned [LHS] type is larger, return it. 04615 if (LHSRank >= RHSRank) 04616 return 1; 04617 04618 // If the signed type can represent all values of the unsigned type, it 04619 // wins. Because we are dealing with 2's complement and types that are 04620 // powers of two larger than each other, this is always safe. 04621 return -1; 04622 } 04623 04624 // If the unsigned [RHS] type is larger, return it. 04625 if (RHSRank >= LHSRank) 04626 return -1; 04627 04628 // If the signed type can represent all values of the unsigned type, it 04629 // wins. Because we are dealing with 2's complement and types that are 04630 // powers of two larger than each other, this is always safe. 04631 return 1; 04632 } 04633 04634 // getCFConstantStringType - Return the type used for constant CFStrings. 04635 QualType ASTContext::getCFConstantStringType() const { 04636 if (!CFConstantStringTypeDecl) { 04637 CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString"); 04638 CFConstantStringTypeDecl->startDefinition(); 04639 04640 QualType FieldTypes[4]; 04641 04642 // const int *isa; 04643 FieldTypes[0] = getPointerType(IntTy.withConst()); 04644 // int flags; 04645 FieldTypes[1] = IntTy; 04646 // const char *str; 04647 FieldTypes[2] = getPointerType(CharTy.withConst()); 04648 // long length; 04649 FieldTypes[3] = LongTy; 04650 04651 // Create fields 04652 for (unsigned i = 0; i < 4; ++i) { 04653 FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl, 04654 SourceLocation(), 04655 SourceLocation(), nullptr, 04656 FieldTypes[i], /*TInfo=*/nullptr, 04657 /*BitWidth=*/nullptr, 04658 /*Mutable=*/false, 04659 ICIS_NoInit); 04660 Field->setAccess(AS_public); 04661 CFConstantStringTypeDecl->addDecl(Field); 04662 } 04663 04664 CFConstantStringTypeDecl->completeDefinition(); 04665 } 04666 04667 return getTagDeclType(CFConstantStringTypeDecl); 04668 } 04669 04670 QualType ASTContext::getObjCSuperType() const { 04671 if (ObjCSuperType.isNull()) { 04672 RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super"); 04673 TUDecl->addDecl(ObjCSuperTypeDecl); 04674 ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl); 04675 } 04676 return ObjCSuperType; 04677 } 04678 04679 void ASTContext::setCFConstantStringType(QualType T) { 04680 const RecordType *Rec = T->getAs<RecordType>(); 04681 assert(Rec && "Invalid CFConstantStringType"); 04682 CFConstantStringTypeDecl = Rec->getDecl(); 04683 } 04684 04685 QualType ASTContext::getBlockDescriptorType() const { 04686 if (BlockDescriptorType) 04687 return getTagDeclType(BlockDescriptorType); 04688 04689 RecordDecl *RD; 04690 // FIXME: Needs the FlagAppleBlock bit. 04691 RD = buildImplicitRecord("__block_descriptor"); 04692 RD->startDefinition(); 04693 04694 QualType FieldTypes[] = { 04695 UnsignedLongTy, 04696 UnsignedLongTy, 04697 }; 04698 04699 static const char *const FieldNames[] = { 04700 "reserved", 04701 "Size" 04702 }; 04703 04704 for (size_t i = 0; i < 2; ++i) { 04705 FieldDecl *Field = FieldDecl::Create( 04706 *this, RD, SourceLocation(), SourceLocation(), 04707 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, 04708 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); 04709 Field->setAccess(AS_public); 04710 RD->addDecl(Field); 04711 } 04712 04713 RD->completeDefinition(); 04714 04715 BlockDescriptorType = RD; 04716 04717 return getTagDeclType(BlockDescriptorType); 04718 } 04719 04720 QualType ASTContext::getBlockDescriptorExtendedType() const { 04721 if (BlockDescriptorExtendedType) 04722 return getTagDeclType(BlockDescriptorExtendedType); 04723 04724 RecordDecl *RD; 04725 // FIXME: Needs the FlagAppleBlock bit. 04726 RD = buildImplicitRecord("__block_descriptor_withcopydispose"); 04727 RD->startDefinition(); 04728 04729 QualType FieldTypes[] = { 04730 UnsignedLongTy, 04731 UnsignedLongTy, 04732 getPointerType(VoidPtrTy), 04733 getPointerType(VoidPtrTy) 04734 }; 04735 04736 static const char *const FieldNames[] = { 04737 "reserved", 04738 "Size", 04739 "CopyFuncPtr", 04740 "DestroyFuncPtr" 04741 }; 04742 04743 for (size_t i = 0; i < 4; ++i) { 04744 FieldDecl *Field = FieldDecl::Create( 04745 *this, RD, SourceLocation(), SourceLocation(), 04746 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, 04747 /*BitWidth=*/nullptr, 04748 /*Mutable=*/false, ICIS_NoInit); 04749 Field->setAccess(AS_public); 04750 RD->addDecl(Field); 04751 } 04752 04753 RD->completeDefinition(); 04754 04755 BlockDescriptorExtendedType = RD; 04756 return getTagDeclType(BlockDescriptorExtendedType); 04757 } 04758 04759 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty" 04760 /// requires copy/dispose. Note that this must match the logic 04761 /// in buildByrefHelpers. 04762 bool ASTContext::BlockRequiresCopying(QualType Ty, 04763 const VarDecl *D) { 04764 if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) { 04765 const Expr *copyExpr = getBlockVarCopyInits(D); 04766 if (!copyExpr && record->hasTrivialDestructor()) return false; 04767 04768 return true; 04769 } 04770 04771 if (!Ty->isObjCRetainableType()) return false; 04772 04773 Qualifiers qs = Ty.getQualifiers(); 04774 04775 // If we have lifetime, that dominates. 04776 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { 04777 assert(getLangOpts().ObjCAutoRefCount); 04778 04779 switch (lifetime) { 04780 case Qualifiers::OCL_None: llvm_unreachable("impossible"); 04781 04782 // These are just bits as far as the runtime is concerned. 04783 case Qualifiers::OCL_ExplicitNone: 04784 case Qualifiers::OCL_Autoreleasing: 04785 return false; 04786 04787 // Tell the runtime that this is ARC __weak, called by the 04788 // byref routines. 04789 case Qualifiers::OCL_Weak: 04790 // ARC __strong __block variables need to be retained. 04791 case Qualifiers::OCL_Strong: 04792 return true; 04793 } 04794 llvm_unreachable("fell out of lifetime switch!"); 04795 } 04796 return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) || 04797 Ty->isObjCObjectPointerType()); 04798 } 04799 04800 bool ASTContext::getByrefLifetime(QualType Ty, 04801 Qualifiers::ObjCLifetime &LifeTime, 04802 bool &HasByrefExtendedLayout) const { 04803 04804 if (!getLangOpts().ObjC1 || 04805 getLangOpts().getGC() != LangOptions::NonGC) 04806 return false; 04807 04808 HasByrefExtendedLayout = false; 04809 if (Ty->isRecordType()) { 04810 HasByrefExtendedLayout = true; 04811 LifeTime = Qualifiers::OCL_None; 04812 } 04813 else if (getLangOpts().ObjCAutoRefCount) 04814 LifeTime = Ty.getObjCLifetime(); 04815 // MRR. 04816 else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) 04817 LifeTime = Qualifiers::OCL_ExplicitNone; 04818 else 04819 LifeTime = Qualifiers::OCL_None; 04820 return true; 04821 } 04822 04823 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { 04824 if (!ObjCInstanceTypeDecl) 04825 ObjCInstanceTypeDecl = 04826 buildImplicitTypedef(getObjCIdType(), "instancetype"); 04827 return ObjCInstanceTypeDecl; 04828 } 04829 04830 // This returns true if a type has been typedefed to BOOL: 04831 // typedef <type> BOOL; 04832 static bool isTypeTypedefedAsBOOL(QualType T) { 04833 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 04834 if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) 04835 return II->isStr("BOOL"); 04836 04837 return false; 04838 } 04839 04840 /// getObjCEncodingTypeSize returns size of type for objective-c encoding 04841 /// purpose. 04842 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { 04843 if (!type->isIncompleteArrayType() && type->isIncompleteType()) 04844 return CharUnits::Zero(); 04845 04846 CharUnits sz = getTypeSizeInChars(type); 04847 04848 // Make all integer and enum types at least as large as an int 04849 if (sz.isPositive() && type->isIntegralOrEnumerationType()) 04850 sz = std::max(sz, getTypeSizeInChars(IntTy)); 04851 // Treat arrays as pointers, since that's how they're passed in. 04852 else if (type->isArrayType()) 04853 sz = getTypeSizeInChars(VoidPtrTy); 04854 return sz; 04855 } 04856 04857 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const { 04858 return getLangOpts().MSVCCompat && VD->isStaticDataMember() && 04859 VD->getType()->isIntegralOrEnumerationType() && 04860 !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit(); 04861 } 04862 04863 static inline 04864 std::string charUnitsToString(const CharUnits &CU) { 04865 return llvm::itostr(CU.getQuantity()); 04866 } 04867 04868 /// getObjCEncodingForBlock - Return the encoded type for this block 04869 /// declaration. 04870 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { 04871 std::string S; 04872 04873 const BlockDecl *Decl = Expr->getBlockDecl(); 04874 QualType BlockTy = 04875 Expr->getType()->getAs<BlockPointerType>()->getPointeeType(); 04876 // Encode result type. 04877 if (getLangOpts().EncodeExtendedBlockSig) 04878 getObjCEncodingForMethodParameter( 04879 Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S, 04880 true /*Extended*/); 04881 else 04882 getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S); 04883 // Compute size of all parameters. 04884 // Start with computing size of a pointer in number of bytes. 04885 // FIXME: There might(should) be a better way of doing this computation! 04886 SourceLocation Loc; 04887 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); 04888 CharUnits ParmOffset = PtrSize; 04889 for (auto PI : Decl->params()) { 04890 QualType PType = PI->getType(); 04891 CharUnits sz = getObjCEncodingTypeSize(PType); 04892 if (sz.isZero()) 04893 continue; 04894 assert (sz.isPositive() && "BlockExpr - Incomplete param type"); 04895 ParmOffset += sz; 04896 } 04897 // Size of the argument frame 04898 S += charUnitsToString(ParmOffset); 04899 // Block pointer and offset. 04900 S += "@?0"; 04901 04902 // Argument types. 04903 ParmOffset = PtrSize; 04904 for (auto PVDecl : Decl->params()) { 04905 QualType PType = PVDecl->getOriginalType(); 04906 if (const ArrayType *AT = 04907 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 04908 // Use array's original type only if it has known number of 04909 // elements. 04910 if (!isa<ConstantArrayType>(AT)) 04911 PType = PVDecl->getType(); 04912 } else if (PType->isFunctionType()) 04913 PType = PVDecl->getType(); 04914 if (getLangOpts().EncodeExtendedBlockSig) 04915 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType, 04916 S, true /*Extended*/); 04917 else 04918 getObjCEncodingForType(PType, S); 04919 S += charUnitsToString(ParmOffset); 04920 ParmOffset += getObjCEncodingTypeSize(PType); 04921 } 04922 04923 return S; 04924 } 04925 04926 bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, 04927 std::string& S) { 04928 // Encode result type. 04929 getObjCEncodingForType(Decl->getReturnType(), S); 04930 CharUnits ParmOffset; 04931 // Compute size of all parameters. 04932 for (auto PI : Decl->params()) { 04933 QualType PType = PI->getType(); 04934 CharUnits sz = getObjCEncodingTypeSize(PType); 04935 if (sz.isZero()) 04936 continue; 04937 04938 assert (sz.isPositive() && 04939 "getObjCEncodingForFunctionDecl - Incomplete param type"); 04940 ParmOffset += sz; 04941 } 04942 S += charUnitsToString(ParmOffset); 04943 ParmOffset = CharUnits::Zero(); 04944 04945 // Argument types. 04946 for (auto PVDecl : Decl->params()) { 04947 QualType PType = PVDecl->getOriginalType(); 04948 if (const ArrayType *AT = 04949 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 04950 // Use array's original type only if it has known number of 04951 // elements. 04952 if (!isa<ConstantArrayType>(AT)) 04953 PType = PVDecl->getType(); 04954 } else if (PType->isFunctionType()) 04955 PType = PVDecl->getType(); 04956 getObjCEncodingForType(PType, S); 04957 S += charUnitsToString(ParmOffset); 04958 ParmOffset += getObjCEncodingTypeSize(PType); 04959 } 04960 04961 return false; 04962 } 04963 04964 /// getObjCEncodingForMethodParameter - Return the encoded type for a single 04965 /// method parameter or return type. If Extended, include class names and 04966 /// block object types. 04967 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, 04968 QualType T, std::string& S, 04969 bool Extended) const { 04970 // Encode type qualifer, 'in', 'inout', etc. for the parameter. 04971 getObjCEncodingForTypeQualifier(QT, S); 04972 // Encode parameter type. 04973 getObjCEncodingForTypeImpl(T, S, true, true, nullptr, 04974 true /*OutermostType*/, 04975 false /*EncodingProperty*/, 04976 false /*StructField*/, 04977 Extended /*EncodeBlockParameters*/, 04978 Extended /*EncodeClassNames*/); 04979 } 04980 04981 /// getObjCEncodingForMethodDecl - Return the encoded type for this method 04982 /// declaration. 04983 bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, 04984 std::string& S, 04985 bool Extended) const { 04986 // FIXME: This is not very efficient. 04987 // Encode return type. 04988 getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(), 04989 Decl->getReturnType(), S, Extended); 04990 // Compute size of all parameters. 04991 // Start with computing size of a pointer in number of bytes. 04992 // FIXME: There might(should) be a better way of doing this computation! 04993 SourceLocation Loc; 04994 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); 04995 // The first two arguments (self and _cmd) are pointers; account for 04996 // their size. 04997 CharUnits ParmOffset = 2 * PtrSize; 04998 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), 04999 E = Decl->sel_param_end(); PI != E; ++PI) { 05000 QualType PType = (*PI)->getType(); 05001 CharUnits sz = getObjCEncodingTypeSize(PType); 05002 if (sz.isZero()) 05003 continue; 05004 05005 assert (sz.isPositive() && 05006 "getObjCEncodingForMethodDecl - Incomplete param type"); 05007 ParmOffset += sz; 05008 } 05009 S += charUnitsToString(ParmOffset); 05010 S += "@0:"; 05011 S += charUnitsToString(PtrSize); 05012 05013 // Argument types. 05014 ParmOffset = 2 * PtrSize; 05015 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), 05016 E = Decl->sel_param_end(); PI != E; ++PI) { 05017 const ParmVarDecl *PVDecl = *PI; 05018 QualType PType = PVDecl->getOriginalType(); 05019 if (const ArrayType *AT = 05020 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 05021 // Use array's original type only if it has known number of 05022 // elements. 05023 if (!isa<ConstantArrayType>(AT)) 05024 PType = PVDecl->getType(); 05025 } else if (PType->isFunctionType()) 05026 PType = PVDecl->getType(); 05027 getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(), 05028 PType, S, Extended); 05029 S += charUnitsToString(ParmOffset); 05030 ParmOffset += getObjCEncodingTypeSize(PType); 05031 } 05032 05033 return false; 05034 } 05035 05036 ObjCPropertyImplDecl * 05037 ASTContext::getObjCPropertyImplDeclForPropertyDecl( 05038 const ObjCPropertyDecl *PD, 05039 const Decl *Container) const { 05040 if (!Container) 05041 return nullptr; 05042 if (const ObjCCategoryImplDecl *CID = 05043 dyn_cast<ObjCCategoryImplDecl>(Container)) { 05044 for (auto *PID : CID->property_impls()) 05045 if (PID->getPropertyDecl() == PD) 05046 return PID; 05047 } else { 05048 const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container); 05049 for (auto *PID : OID->property_impls()) 05050 if (PID->getPropertyDecl() == PD) 05051 return PID; 05052 } 05053 return nullptr; 05054 } 05055 05056 /// getObjCEncodingForPropertyDecl - Return the encoded type for this 05057 /// property declaration. If non-NULL, Container must be either an 05058 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be 05059 /// NULL when getting encodings for protocol properties. 05060 /// Property attributes are stored as a comma-delimited C string. The simple 05061 /// attributes readonly and bycopy are encoded as single characters. The 05062 /// parametrized attributes, getter=name, setter=name, and ivar=name, are 05063 /// encoded as single characters, followed by an identifier. Property types 05064 /// are also encoded as a parametrized attribute. The characters used to encode 05065 /// these attributes are defined by the following enumeration: 05066 /// @code 05067 /// enum PropertyAttributes { 05068 /// kPropertyReadOnly = 'R', // property is read-only. 05069 /// kPropertyBycopy = 'C', // property is a copy of the value last assigned 05070 /// kPropertyByref = '&', // property is a reference to the value last assigned 05071 /// kPropertyDynamic = 'D', // property is dynamic 05072 /// kPropertyGetter = 'G', // followed by getter selector name 05073 /// kPropertySetter = 'S', // followed by setter selector name 05074 /// kPropertyInstanceVariable = 'V' // followed by instance variable name 05075 /// kPropertyType = 'T' // followed by old-style type encoding. 05076 /// kPropertyWeak = 'W' // 'weak' property 05077 /// kPropertyStrong = 'P' // property GC'able 05078 /// kPropertyNonAtomic = 'N' // property non-atomic 05079 /// }; 05080 /// @endcode 05081 void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, 05082 const Decl *Container, 05083 std::string& S) const { 05084 // Collect information from the property implementation decl(s). 05085 bool Dynamic = false; 05086 ObjCPropertyImplDecl *SynthesizePID = nullptr; 05087 05088 if (ObjCPropertyImplDecl *PropertyImpDecl = 05089 getObjCPropertyImplDeclForPropertyDecl(PD, Container)) { 05090 if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) 05091 Dynamic = true; 05092 else 05093 SynthesizePID = PropertyImpDecl; 05094 } 05095 05096 // FIXME: This is not very efficient. 05097 S = "T"; 05098 05099 // Encode result type. 05100 // GCC has some special rules regarding encoding of properties which 05101 // closely resembles encoding of ivars. 05102 getObjCEncodingForPropertyType(PD->getType(), S); 05103 05104 if (PD->isReadOnly()) { 05105 S += ",R"; 05106 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy) 05107 S += ",C"; 05108 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain) 05109 S += ",&"; 05110 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak) 05111 S += ",W"; 05112 } else { 05113 switch (PD->getSetterKind()) { 05114 case ObjCPropertyDecl::Assign: break; 05115 case ObjCPropertyDecl::Copy: S += ",C"; break; 05116 case ObjCPropertyDecl::Retain: S += ",&"; break; 05117 case ObjCPropertyDecl::Weak: S += ",W"; break; 05118 } 05119 } 05120 05121 // It really isn't clear at all what this means, since properties 05122 // are "dynamic by default". 05123 if (Dynamic) 05124 S += ",D"; 05125 05126 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic) 05127 S += ",N"; 05128 05129 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) { 05130 S += ",G"; 05131 S += PD->getGetterName().getAsString(); 05132 } 05133 05134 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) { 05135 S += ",S"; 05136 S += PD->getSetterName().getAsString(); 05137 } 05138 05139 if (SynthesizePID) { 05140 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); 05141 S += ",V"; 05142 S += OID->getNameAsString(); 05143 } 05144 05145 // FIXME: OBJCGC: weak & strong 05146 } 05147 05148 /// getLegacyIntegralTypeEncoding - 05149 /// Another legacy compatibility encoding: 32-bit longs are encoded as 05150 /// 'l' or 'L' , but not always. For typedefs, we need to use 05151 /// 'i' or 'I' instead if encoding a struct field, or a pointer! 05152 /// 05153 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { 05154 if (isa<TypedefType>(PointeeTy.getTypePtr())) { 05155 if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) { 05156 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32) 05157 PointeeTy = UnsignedIntTy; 05158 else 05159 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32) 05160 PointeeTy = IntTy; 05161 } 05162 } 05163 } 05164 05165 void ASTContext::getObjCEncodingForType(QualType T, std::string& S, 05166 const FieldDecl *Field, 05167 QualType *NotEncodedT) const { 05168 // We follow the behavior of gcc, expanding structures which are 05169 // directly pointed to, and expanding embedded structures. Note that 05170 // these rules are sufficient to prevent recursive encoding of the 05171 // same type. 05172 getObjCEncodingForTypeImpl(T, S, true, true, Field, 05173 true /* outermost type */, false, false, 05174 false, false, false, NotEncodedT); 05175 } 05176 05177 void ASTContext::getObjCEncodingForPropertyType(QualType T, 05178 std::string& S) const { 05179 // Encode result type. 05180 // GCC has some special rules regarding encoding of properties which 05181 // closely resembles encoding of ivars. 05182 getObjCEncodingForTypeImpl(T, S, true, true, nullptr, 05183 true /* outermost type */, 05184 true /* encoding property */); 05185 } 05186 05187 static char getObjCEncodingForPrimitiveKind(const ASTContext *C, 05188 BuiltinType::Kind kind) { 05189 switch (kind) { 05190 case BuiltinType::Void: return 'v'; 05191 case BuiltinType::Bool: return 'B'; 05192 case BuiltinType::Char_U: 05193 case BuiltinType::UChar: return 'C'; 05194 case BuiltinType::Char16: 05195 case BuiltinType::UShort: return 'S'; 05196 case BuiltinType::Char32: 05197 case BuiltinType::UInt: return 'I'; 05198 case BuiltinType::ULong: 05199 return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q'; 05200 case BuiltinType::UInt128: return 'T'; 05201 case BuiltinType::ULongLong: return 'Q'; 05202 case BuiltinType::Char_S: 05203 case BuiltinType::SChar: return 'c'; 05204 case BuiltinType::Short: return 's'; 05205 case BuiltinType::WChar_S: 05206 case BuiltinType::WChar_U: 05207 case BuiltinType::Int: return 'i'; 05208 case BuiltinType::Long: 05209 return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q'; 05210 case BuiltinType::LongLong: return 'q'; 05211 case BuiltinType::Int128: return 't'; 05212 case BuiltinType::Float: return 'f'; 05213 case BuiltinType::Double: return 'd'; 05214 case BuiltinType::LongDouble: return 'D'; 05215 case BuiltinType::NullPtr: return '*'; // like char* 05216 05217 case BuiltinType::Half: 05218 // FIXME: potentially need @encodes for these! 05219 return ' '; 05220 05221 case BuiltinType::ObjCId: 05222 case BuiltinType::ObjCClass: 05223 case BuiltinType::ObjCSel: 05224 llvm_unreachable("@encoding ObjC primitive type"); 05225 05226 // OpenCL and placeholder types don't need @encodings. 05227 case BuiltinType::OCLImage1d: 05228 case BuiltinType::OCLImage1dArray: 05229 case BuiltinType::OCLImage1dBuffer: 05230 case BuiltinType::OCLImage2d: 05231 case BuiltinType::OCLImage2dArray: 05232 case BuiltinType::OCLImage3d: 05233 case BuiltinType::OCLEvent: 05234 case BuiltinType::OCLSampler: 05235 case BuiltinType::Dependent: 05236 #define BUILTIN_TYPE(KIND, ID) 05237 #define PLACEHOLDER_TYPE(KIND, ID) \ 05238 case BuiltinType::KIND: 05239 #include "clang/AST/BuiltinTypes.def" 05240 llvm_unreachable("invalid builtin type for @encode"); 05241 } 05242 llvm_unreachable("invalid BuiltinType::Kind value"); 05243 } 05244 05245 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) { 05246 EnumDecl *Enum = ET->getDecl(); 05247 05248 // The encoding of an non-fixed enum type is always 'i', regardless of size. 05249 if (!Enum->isFixed()) 05250 return 'i'; 05251 05252 // The encoding of a fixed enum type matches its fixed underlying type. 05253 const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>(); 05254 return getObjCEncodingForPrimitiveKind(C, BT->getKind()); 05255 } 05256 05257 static void EncodeBitField(const ASTContext *Ctx, std::string& S, 05258 QualType T, const FieldDecl *FD) { 05259 assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl"); 05260 S += 'b'; 05261 // The NeXT runtime encodes bit fields as b followed by the number of bits. 05262 // The GNU runtime requires more information; bitfields are encoded as b, 05263 // then the offset (in bits) of the first element, then the type of the 05264 // bitfield, then the size in bits. For example, in this structure: 05265 // 05266 // struct 05267 // { 05268 // int integer; 05269 // int flags:2; 05270 // }; 05271 // On a 32-bit system, the encoding for flags would be b2 for the NeXT 05272 // runtime, but b32i2 for the GNU runtime. The reason for this extra 05273 // information is not especially sensible, but we're stuck with it for 05274 // compatibility with GCC, although providing it breaks anything that 05275 // actually uses runtime introspection and wants to work on both runtimes... 05276 if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) { 05277 const RecordDecl *RD = FD->getParent(); 05278 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD); 05279 S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex())); 05280 if (const EnumType *ET = T->getAs<EnumType>()) 05281 S += ObjCEncodingForEnumType(Ctx, ET); 05282 else { 05283 const BuiltinType *BT = T->castAs<BuiltinType>(); 05284 S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind()); 05285 } 05286 } 05287 S += llvm::utostr(FD->getBitWidthValue(*Ctx)); 05288 } 05289 05290 // FIXME: Use SmallString for accumulating string. 05291 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S, 05292 bool ExpandPointedToStructures, 05293 bool ExpandStructures, 05294 const FieldDecl *FD, 05295 bool OutermostType, 05296 bool EncodingProperty, 05297 bool StructField, 05298 bool EncodeBlockParameters, 05299 bool EncodeClassNames, 05300 bool EncodePointerToObjCTypedef, 05301 QualType *NotEncodedT) const { 05302 CanQualType CT = getCanonicalType(T); 05303 switch (CT->getTypeClass()) { 05304 case Type::Builtin: 05305 case Type::Enum: 05306 if (FD && FD->isBitField()) 05307 return EncodeBitField(this, S, T, FD); 05308 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT)) 05309 S += getObjCEncodingForPrimitiveKind(this, BT->getKind()); 05310 else 05311 S += ObjCEncodingForEnumType(this, cast<EnumType>(CT)); 05312 return; 05313 05314 case Type::Complex: { 05315 const ComplexType *CT = T->castAs<ComplexType>(); 05316 S += 'j'; 05317 getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr); 05318 return; 05319 } 05320 05321 case Type::Atomic: { 05322 const AtomicType *AT = T->castAs<AtomicType>(); 05323 S += 'A'; 05324 getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr); 05325 return; 05326 } 05327 05328 // encoding for pointer or reference types. 05329 case Type::Pointer: 05330 case Type::LValueReference: 05331 case Type::RValueReference: { 05332 QualType PointeeTy; 05333 if (isa<PointerType>(CT)) { 05334 const PointerType *PT = T->castAs<PointerType>(); 05335 if (PT->isObjCSelType()) { 05336 S += ':'; 05337 return; 05338 } 05339 PointeeTy = PT->getPointeeType(); 05340 } else { 05341 PointeeTy = T->castAs<ReferenceType>()->getPointeeType(); 05342 } 05343 05344 bool isReadOnly = false; 05345 // For historical/compatibility reasons, the read-only qualifier of the 05346 // pointee gets emitted _before_ the '^'. The read-only qualifier of 05347 // the pointer itself gets ignored, _unless_ we are looking at a typedef! 05348 // Also, do not emit the 'r' for anything but the outermost type! 05349 if (isa<TypedefType>(T.getTypePtr())) { 05350 if (OutermostType && T.isConstQualified()) { 05351 isReadOnly = true; 05352 S += 'r'; 05353 } 05354 } else if (OutermostType) { 05355 QualType P = PointeeTy; 05356 while (P->getAs<PointerType>()) 05357 P = P->getAs<PointerType>()->getPointeeType(); 05358 if (P.isConstQualified()) { 05359 isReadOnly = true; 05360 S += 'r'; 05361 } 05362 } 05363 if (isReadOnly) { 05364 // Another legacy compatibility encoding. Some ObjC qualifier and type 05365 // combinations need to be rearranged. 05366 // Rewrite "in const" from "nr" to "rn" 05367 if (StringRef(S).endswith("nr")) 05368 S.replace(S.end()-2, S.end(), "rn"); 05369 } 05370 05371 if (PointeeTy->isCharType()) { 05372 // char pointer types should be encoded as '*' unless it is a 05373 // type that has been typedef'd to 'BOOL'. 05374 if (!isTypeTypedefedAsBOOL(PointeeTy)) { 05375 S += '*'; 05376 return; 05377 } 05378 } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) { 05379 // GCC binary compat: Need to convert "struct objc_class *" to "#". 05380 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) { 05381 S += '#'; 05382 return; 05383 } 05384 // GCC binary compat: Need to convert "struct objc_object *" to "@". 05385 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) { 05386 S += '@'; 05387 return; 05388 } 05389 // fall through... 05390 } 05391 S += '^'; 05392 getLegacyIntegralTypeEncoding(PointeeTy); 05393 05394 getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures, 05395 nullptr, false, false, false, false, false, false, 05396 NotEncodedT); 05397 return; 05398 } 05399 05400 case Type::ConstantArray: 05401 case Type::IncompleteArray: 05402 case Type::VariableArray: { 05403 const ArrayType *AT = cast<ArrayType>(CT); 05404 05405 if (isa<IncompleteArrayType>(AT) && !StructField) { 05406 // Incomplete arrays are encoded as a pointer to the array element. 05407 S += '^'; 05408 05409 getObjCEncodingForTypeImpl(AT->getElementType(), S, 05410 false, ExpandStructures, FD); 05411 } else { 05412 S += '['; 05413 05414 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 05415 S += llvm::utostr(CAT->getSize().getZExtValue()); 05416 else { 05417 //Variable length arrays are encoded as a regular array with 0 elements. 05418 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && 05419 "Unknown array type!"); 05420 S += '0'; 05421 } 05422 05423 getObjCEncodingForTypeImpl(AT->getElementType(), S, 05424 false, ExpandStructures, FD, 05425 false, false, false, false, false, false, 05426 NotEncodedT); 05427 S += ']'; 05428 } 05429 return; 05430 } 05431 05432 case Type::FunctionNoProto: 05433 case Type::FunctionProto: 05434 S += '?'; 05435 return; 05436 05437 case Type::Record: { 05438 RecordDecl *RDecl = cast<RecordType>(CT)->getDecl(); 05439 S += RDecl->isUnion() ? '(' : '{'; 05440 // Anonymous structures print as '?' 05441 if (const IdentifierInfo *II = RDecl->getIdentifier()) { 05442 S += II->getName(); 05443 if (ClassTemplateSpecializationDecl *Spec 05444 = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) { 05445 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 05446 llvm::raw_string_ostream OS(S); 05447 TemplateSpecializationType::PrintTemplateArgumentList(OS, 05448 TemplateArgs.data(), 05449 TemplateArgs.size(), 05450 (*this).getPrintingPolicy()); 05451 } 05452 } else { 05453 S += '?'; 05454 } 05455 if (ExpandStructures) { 05456 S += '='; 05457 if (!RDecl->isUnion()) { 05458 getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT); 05459 } else { 05460 for (const auto *Field : RDecl->fields()) { 05461 if (FD) { 05462 S += '"'; 05463 S += Field->getNameAsString(); 05464 S += '"'; 05465 } 05466 05467 // Special case bit-fields. 05468 if (Field->isBitField()) { 05469 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, 05470 Field); 05471 } else { 05472 QualType qt = Field->getType(); 05473 getLegacyIntegralTypeEncoding(qt); 05474 getObjCEncodingForTypeImpl(qt, S, false, true, 05475 FD, /*OutermostType*/false, 05476 /*EncodingProperty*/false, 05477 /*StructField*/true, 05478 false, false, false, NotEncodedT); 05479 } 05480 } 05481 } 05482 } 05483 S += RDecl->isUnion() ? ')' : '}'; 05484 return; 05485 } 05486 05487 case Type::BlockPointer: { 05488 const BlockPointerType *BT = T->castAs<BlockPointerType>(); 05489 S += "@?"; // Unlike a pointer-to-function, which is "^?". 05490 if (EncodeBlockParameters) { 05491 const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>(); 05492 05493 S += '<'; 05494 // Block return type 05495 getObjCEncodingForTypeImpl( 05496 FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures, 05497 FD, false /* OutermostType */, EncodingProperty, 05498 false /* StructField */, EncodeBlockParameters, EncodeClassNames, false, 05499 NotEncodedT); 05500 // Block self 05501 S += "@?"; 05502 // Block parameters 05503 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { 05504 for (const auto &I : FPT->param_types()) 05505 getObjCEncodingForTypeImpl( 05506 I, S, ExpandPointedToStructures, ExpandStructures, FD, 05507 false /* OutermostType */, EncodingProperty, 05508 false /* StructField */, EncodeBlockParameters, EncodeClassNames, 05509 false, NotEncodedT); 05510 } 05511 S += '>'; 05512 } 05513 return; 05514 } 05515 05516 case Type::ObjCObject: { 05517 // hack to match legacy encoding of *id and *Class 05518 QualType Ty = getObjCObjectPointerType(CT); 05519 if (Ty->isObjCIdType()) { 05520 S += "{objc_object=}"; 05521 return; 05522 } 05523 else if (Ty->isObjCClassType()) { 05524 S += "{objc_class=}"; 05525 return; 05526 } 05527 } 05528 05529 case Type::ObjCInterface: { 05530 // Ignore protocol qualifiers when mangling at this level. 05531 T = T->castAs<ObjCObjectType>()->getBaseType(); 05532 05533 // The assumption seems to be that this assert will succeed 05534 // because nested levels will have filtered out 'id' and 'Class'. 05535 const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>(); 05536 // @encode(class_name) 05537 ObjCInterfaceDecl *OI = OIT->getDecl(); 05538 S += '{'; 05539 const IdentifierInfo *II = OI->getIdentifier(); 05540 S += II->getName(); 05541 S += '='; 05542 SmallVector<const ObjCIvarDecl*, 32> Ivars; 05543 DeepCollectObjCIvars(OI, true, Ivars); 05544 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { 05545 const FieldDecl *Field = cast<FieldDecl>(Ivars[i]); 05546 if (Field->isBitField()) 05547 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field); 05548 else 05549 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD, 05550 false, false, false, false, false, 05551 EncodePointerToObjCTypedef, 05552 NotEncodedT); 05553 } 05554 S += '}'; 05555 return; 05556 } 05557 05558 case Type::ObjCObjectPointer: { 05559 const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>(); 05560 if (OPT->isObjCIdType()) { 05561 S += '@'; 05562 return; 05563 } 05564 05565 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { 05566 // FIXME: Consider if we need to output qualifiers for 'Class<p>'. 05567 // Since this is a binary compatibility issue, need to consult with runtime 05568 // folks. Fortunately, this is a *very* obsure construct. 05569 S += '#'; 05570 return; 05571 } 05572 05573 if (OPT->isObjCQualifiedIdType()) { 05574 getObjCEncodingForTypeImpl(getObjCIdType(), S, 05575 ExpandPointedToStructures, 05576 ExpandStructures, FD); 05577 if (FD || EncodingProperty || EncodeClassNames) { 05578 // Note that we do extended encoding of protocol qualifer list 05579 // Only when doing ivar or property encoding. 05580 S += '"'; 05581 for (const auto *I : OPT->quals()) { 05582 S += '<'; 05583 S += I->getNameAsString(); 05584 S += '>'; 05585 } 05586 S += '"'; 05587 } 05588 return; 05589 } 05590 05591 QualType PointeeTy = OPT->getPointeeType(); 05592 if (!EncodingProperty && 05593 isa<TypedefType>(PointeeTy.getTypePtr()) && 05594 !EncodePointerToObjCTypedef) { 05595 // Another historical/compatibility reason. 05596 // We encode the underlying type which comes out as 05597 // {...}; 05598 S += '^'; 05599 if (FD && OPT->getInterfaceDecl()) { 05600 // Prevent recursive encoding of fields in some rare cases. 05601 ObjCInterfaceDecl *OI = OPT->getInterfaceDecl(); 05602 SmallVector<const ObjCIvarDecl*, 32> Ivars; 05603 DeepCollectObjCIvars(OI, true, Ivars); 05604 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { 05605 if (cast<FieldDecl>(Ivars[i]) == FD) { 05606 S += '{'; 05607 S += OI->getIdentifier()->getName(); 05608 S += '}'; 05609 return; 05610 } 05611 } 05612 } 05613 getObjCEncodingForTypeImpl(PointeeTy, S, 05614 false, ExpandPointedToStructures, 05615 nullptr, 05616 false, false, false, false, false, 05617 /*EncodePointerToObjCTypedef*/true); 05618 return; 05619 } 05620 05621 S += '@'; 05622 if (OPT->getInterfaceDecl() && 05623 (FD || EncodingProperty || EncodeClassNames)) { 05624 S += '"'; 05625 S += OPT->getInterfaceDecl()->getIdentifier()->getName(); 05626 for (const auto *I : OPT->quals()) { 05627 S += '<'; 05628 S += I->getNameAsString(); 05629 S += '>'; 05630 } 05631 S += '"'; 05632 } 05633 return; 05634 } 05635 05636 // gcc just blithely ignores member pointers. 05637 // FIXME: we shoul do better than that. 'M' is available. 05638 case Type::MemberPointer: 05639 // This matches gcc's encoding, even though technically it is insufficient. 05640 //FIXME. We should do a better job than gcc. 05641 case Type::Vector: 05642 case Type::ExtVector: 05643 // Until we have a coherent encoding of these three types, issue warning. 05644 { if (NotEncodedT) 05645 *NotEncodedT = T; 05646 return; 05647 } 05648 05649 // We could see an undeduced auto type here during error recovery. 05650 // Just ignore it. 05651 case Type::Auto: 05652 return; 05653 05654 05655 #define ABSTRACT_TYPE(KIND, BASE) 05656 #define TYPE(KIND, BASE) 05657 #define DEPENDENT_TYPE(KIND, BASE) \ 05658 case Type::KIND: 05659 #define NON_CANONICAL_TYPE(KIND, BASE) \ 05660 case Type::KIND: 05661 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \ 05662 case Type::KIND: 05663 #include "clang/AST/TypeNodes.def" 05664 llvm_unreachable("@encode for dependent type!"); 05665 } 05666 llvm_unreachable("bad type kind!"); 05667 } 05668 05669 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, 05670 std::string &S, 05671 const FieldDecl *FD, 05672 bool includeVBases, 05673 QualType *NotEncodedT) const { 05674 assert(RDecl && "Expected non-null RecordDecl"); 05675 assert(!RDecl->isUnion() && "Should not be called for unions"); 05676 if (!RDecl->getDefinition()) 05677 return; 05678 05679 CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl); 05680 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; 05681 const ASTRecordLayout &layout = getASTRecordLayout(RDecl); 05682 05683 if (CXXRec) { 05684 for (const auto &BI : CXXRec->bases()) { 05685 if (!BI.isVirtual()) { 05686 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); 05687 if (base->isEmpty()) 05688 continue; 05689 uint64_t offs = toBits(layout.getBaseClassOffset(base)); 05690 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 05691 std::make_pair(offs, base)); 05692 } 05693 } 05694 } 05695 05696 unsigned i = 0; 05697 for (auto *Field : RDecl->fields()) { 05698 uint64_t offs = layout.getFieldOffset(i); 05699 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 05700 std::make_pair(offs, Field)); 05701 ++i; 05702 } 05703 05704 if (CXXRec && includeVBases) { 05705 for (const auto &BI : CXXRec->vbases()) { 05706 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); 05707 if (base->isEmpty()) 05708 continue; 05709 uint64_t offs = toBits(layout.getVBaseClassOffset(base)); 05710 if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) && 05711 FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end()) 05712 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(), 05713 std::make_pair(offs, base)); 05714 } 05715 } 05716 05717 CharUnits size; 05718 if (CXXRec) { 05719 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); 05720 } else { 05721 size = layout.getSize(); 05722 } 05723 05724 #ifndef NDEBUG 05725 uint64_t CurOffs = 0; 05726 #endif 05727 std::multimap<uint64_t, NamedDecl *>::iterator 05728 CurLayObj = FieldOrBaseOffsets.begin(); 05729 05730 if (CXXRec && CXXRec->isDynamicClass() && 05731 (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { 05732 if (FD) { 05733 S += "\"_vptr$"; 05734 std::string recname = CXXRec->getNameAsString(); 05735 if (recname.empty()) recname = "?"; 05736 S += recname; 05737 S += '"'; 05738 } 05739 S += "^^?"; 05740 #ifndef NDEBUG 05741 CurOffs += getTypeSize(VoidPtrTy); 05742 #endif 05743 } 05744 05745 if (!RDecl->hasFlexibleArrayMember()) { 05746 // Mark the end of the structure. 05747 uint64_t offs = toBits(size); 05748 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 05749 std::make_pair(offs, nullptr)); 05750 } 05751 05752 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { 05753 #ifndef NDEBUG 05754 assert(CurOffs <= CurLayObj->first); 05755 if (CurOffs < CurLayObj->first) { 05756 uint64_t padding = CurLayObj->first - CurOffs; 05757 // FIXME: There doesn't seem to be a way to indicate in the encoding that 05758 // packing/alignment of members is different that normal, in which case 05759 // the encoding will be out-of-sync with the real layout. 05760 // If the runtime switches to just consider the size of types without 05761 // taking into account alignment, we could make padding explicit in the 05762 // encoding (e.g. using arrays of chars). The encoding strings would be 05763 // longer then though. 05764 CurOffs += padding; 05765 } 05766 #endif 05767 05768 NamedDecl *dcl = CurLayObj->second; 05769 if (!dcl) 05770 break; // reached end of structure. 05771 05772 if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) { 05773 // We expand the bases without their virtual bases since those are going 05774 // in the initial structure. Note that this differs from gcc which 05775 // expands virtual bases each time one is encountered in the hierarchy, 05776 // making the encoding type bigger than it really is. 05777 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false, 05778 NotEncodedT); 05779 assert(!base->isEmpty()); 05780 #ifndef NDEBUG 05781 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize()); 05782 #endif 05783 } else { 05784 FieldDecl *field = cast<FieldDecl>(dcl); 05785 if (FD) { 05786 S += '"'; 05787 S += field->getNameAsString(); 05788 S += '"'; 05789 } 05790 05791 if (field->isBitField()) { 05792 EncodeBitField(this, S, field->getType(), field); 05793 #ifndef NDEBUG 05794 CurOffs += field->getBitWidthValue(*this); 05795 #endif 05796 } else { 05797 QualType qt = field->getType(); 05798 getLegacyIntegralTypeEncoding(qt); 05799 getObjCEncodingForTypeImpl(qt, S, false, true, FD, 05800 /*OutermostType*/false, 05801 /*EncodingProperty*/false, 05802 /*StructField*/true, 05803 false, false, false, NotEncodedT); 05804 #ifndef NDEBUG 05805 CurOffs += getTypeSize(field->getType()); 05806 #endif 05807 } 05808 } 05809 } 05810 } 05811 05812 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, 05813 std::string& S) const { 05814 if (QT & Decl::OBJC_TQ_In) 05815 S += 'n'; 05816 if (QT & Decl::OBJC_TQ_Inout) 05817 S += 'N'; 05818 if (QT & Decl::OBJC_TQ_Out) 05819 S += 'o'; 05820 if (QT & Decl::OBJC_TQ_Bycopy) 05821 S += 'O'; 05822 if (QT & Decl::OBJC_TQ_Byref) 05823 S += 'R'; 05824 if (QT & Decl::OBJC_TQ_Oneway) 05825 S += 'V'; 05826 } 05827 05828 TypedefDecl *ASTContext::getObjCIdDecl() const { 05829 if (!ObjCIdDecl) { 05830 QualType T = getObjCObjectType(ObjCBuiltinIdTy, nullptr, 0); 05831 T = getObjCObjectPointerType(T); 05832 ObjCIdDecl = buildImplicitTypedef(T, "id"); 05833 } 05834 return ObjCIdDecl; 05835 } 05836 05837 TypedefDecl *ASTContext::getObjCSelDecl() const { 05838 if (!ObjCSelDecl) { 05839 QualType T = getPointerType(ObjCBuiltinSelTy); 05840 ObjCSelDecl = buildImplicitTypedef(T, "SEL"); 05841 } 05842 return ObjCSelDecl; 05843 } 05844 05845 TypedefDecl *ASTContext::getObjCClassDecl() const { 05846 if (!ObjCClassDecl) { 05847 QualType T = getObjCObjectType(ObjCBuiltinClassTy, nullptr, 0); 05848 T = getObjCObjectPointerType(T); 05849 ObjCClassDecl = buildImplicitTypedef(T, "Class"); 05850 } 05851 return ObjCClassDecl; 05852 } 05853 05854 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { 05855 if (!ObjCProtocolClassDecl) { 05856 ObjCProtocolClassDecl 05857 = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(), 05858 SourceLocation(), 05859 &Idents.get("Protocol"), 05860 /*PrevDecl=*/nullptr, 05861 SourceLocation(), true); 05862 } 05863 05864 return ObjCProtocolClassDecl; 05865 } 05866 05867 //===----------------------------------------------------------------------===// 05868 // __builtin_va_list Construction Functions 05869 //===----------------------------------------------------------------------===// 05870 05871 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) { 05872 // typedef char* __builtin_va_list; 05873 QualType T = Context->getPointerType(Context->CharTy); 05874 return Context->buildImplicitTypedef(T, "__builtin_va_list"); 05875 } 05876 05877 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) { 05878 // typedef void* __builtin_va_list; 05879 QualType T = Context->getPointerType(Context->VoidTy); 05880 return Context->buildImplicitTypedef(T, "__builtin_va_list"); 05881 } 05882 05883 static TypedefDecl * 05884 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) { 05885 // struct __va_list 05886 RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list"); 05887 if (Context->getLangOpts().CPlusPlus) { 05888 // namespace std { struct __va_list { 05889 NamespaceDecl *NS; 05890 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), 05891 Context->getTranslationUnitDecl(), 05892 /*Inline*/ false, SourceLocation(), 05893 SourceLocation(), &Context->Idents.get("std"), 05894 /*PrevDecl*/ nullptr); 05895 NS->setImplicit(); 05896 VaListTagDecl->setDeclContext(NS); 05897 } 05898 05899 VaListTagDecl->startDefinition(); 05900 05901 const size_t NumFields = 5; 05902 QualType FieldTypes[NumFields]; 05903 const char *FieldNames[NumFields]; 05904 05905 // void *__stack; 05906 FieldTypes[0] = Context->getPointerType(Context->VoidTy); 05907 FieldNames[0] = "__stack"; 05908 05909 // void *__gr_top; 05910 FieldTypes[1] = Context->getPointerType(Context->VoidTy); 05911 FieldNames[1] = "__gr_top"; 05912 05913 // void *__vr_top; 05914 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 05915 FieldNames[2] = "__vr_top"; 05916 05917 // int __gr_offs; 05918 FieldTypes[3] = Context->IntTy; 05919 FieldNames[3] = "__gr_offs"; 05920 05921 // int __vr_offs; 05922 FieldTypes[4] = Context->IntTy; 05923 FieldNames[4] = "__vr_offs"; 05924 05925 // Create fields 05926 for (unsigned i = 0; i < NumFields; ++i) { 05927 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 05928 VaListTagDecl, 05929 SourceLocation(), 05930 SourceLocation(), 05931 &Context->Idents.get(FieldNames[i]), 05932 FieldTypes[i], /*TInfo=*/nullptr, 05933 /*BitWidth=*/nullptr, 05934 /*Mutable=*/false, 05935 ICIS_NoInit); 05936 Field->setAccess(AS_public); 05937 VaListTagDecl->addDecl(Field); 05938 } 05939 VaListTagDecl->completeDefinition(); 05940 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 05941 Context->VaListTagTy = VaListTagType; 05942 05943 // } __builtin_va_list; 05944 return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list"); 05945 } 05946 05947 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) { 05948 // typedef struct __va_list_tag { 05949 RecordDecl *VaListTagDecl; 05950 05951 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 05952 VaListTagDecl->startDefinition(); 05953 05954 const size_t NumFields = 5; 05955 QualType FieldTypes[NumFields]; 05956 const char *FieldNames[NumFields]; 05957 05958 // unsigned char gpr; 05959 FieldTypes[0] = Context->UnsignedCharTy; 05960 FieldNames[0] = "gpr"; 05961 05962 // unsigned char fpr; 05963 FieldTypes[1] = Context->UnsignedCharTy; 05964 FieldNames[1] = "fpr"; 05965 05966 // unsigned short reserved; 05967 FieldTypes[2] = Context->UnsignedShortTy; 05968 FieldNames[2] = "reserved"; 05969 05970 // void* overflow_arg_area; 05971 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 05972 FieldNames[3] = "overflow_arg_area"; 05973 05974 // void* reg_save_area; 05975 FieldTypes[4] = Context->getPointerType(Context->VoidTy); 05976 FieldNames[4] = "reg_save_area"; 05977 05978 // Create fields 05979 for (unsigned i = 0; i < NumFields; ++i) { 05980 FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl, 05981 SourceLocation(), 05982 SourceLocation(), 05983 &Context->Idents.get(FieldNames[i]), 05984 FieldTypes[i], /*TInfo=*/nullptr, 05985 /*BitWidth=*/nullptr, 05986 /*Mutable=*/false, 05987 ICIS_NoInit); 05988 Field->setAccess(AS_public); 05989 VaListTagDecl->addDecl(Field); 05990 } 05991 VaListTagDecl->completeDefinition(); 05992 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 05993 Context->VaListTagTy = VaListTagType; 05994 05995 // } __va_list_tag; 05996 TypedefDecl *VaListTagTypedefDecl = 05997 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); 05998 05999 QualType VaListTagTypedefType = 06000 Context->getTypedefType(VaListTagTypedefDecl); 06001 06002 // typedef __va_list_tag __builtin_va_list[1]; 06003 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 06004 QualType VaListTagArrayType 06005 = Context->getConstantArrayType(VaListTagTypedefType, 06006 Size, ArrayType::Normal, 0); 06007 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 06008 } 06009 06010 static TypedefDecl * 06011 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) { 06012 // typedef struct __va_list_tag { 06013 RecordDecl *VaListTagDecl; 06014 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 06015 VaListTagDecl->startDefinition(); 06016 06017 const size_t NumFields = 4; 06018 QualType FieldTypes[NumFields]; 06019 const char *FieldNames[NumFields]; 06020 06021 // unsigned gp_offset; 06022 FieldTypes[0] = Context->UnsignedIntTy; 06023 FieldNames[0] = "gp_offset"; 06024 06025 // unsigned fp_offset; 06026 FieldTypes[1] = Context->UnsignedIntTy; 06027 FieldNames[1] = "fp_offset"; 06028 06029 // void* overflow_arg_area; 06030 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 06031 FieldNames[2] = "overflow_arg_area"; 06032 06033 // void* reg_save_area; 06034 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 06035 FieldNames[3] = "reg_save_area"; 06036 06037 // Create fields 06038 for (unsigned i = 0; i < NumFields; ++i) { 06039 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 06040 VaListTagDecl, 06041 SourceLocation(), 06042 SourceLocation(), 06043 &Context->Idents.get(FieldNames[i]), 06044 FieldTypes[i], /*TInfo=*/nullptr, 06045 /*BitWidth=*/nullptr, 06046 /*Mutable=*/false, 06047 ICIS_NoInit); 06048 Field->setAccess(AS_public); 06049 VaListTagDecl->addDecl(Field); 06050 } 06051 VaListTagDecl->completeDefinition(); 06052 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 06053 Context->VaListTagTy = VaListTagType; 06054 06055 // } __va_list_tag; 06056 TypedefDecl *VaListTagTypedefDecl = 06057 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); 06058 06059 QualType VaListTagTypedefType = 06060 Context->getTypedefType(VaListTagTypedefDecl); 06061 06062 // typedef __va_list_tag __builtin_va_list[1]; 06063 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 06064 QualType VaListTagArrayType 06065 = Context->getConstantArrayType(VaListTagTypedefType, 06066 Size, ArrayType::Normal,0); 06067 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 06068 } 06069 06070 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) { 06071 // typedef int __builtin_va_list[4]; 06072 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4); 06073 QualType IntArrayType 06074 = Context->getConstantArrayType(Context->IntTy, 06075 Size, ArrayType::Normal, 0); 06076 return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list"); 06077 } 06078 06079 static TypedefDecl * 06080 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) { 06081 // struct __va_list 06082 RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list"); 06083 if (Context->getLangOpts().CPlusPlus) { 06084 // namespace std { struct __va_list { 06085 NamespaceDecl *NS; 06086 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), 06087 Context->getTranslationUnitDecl(), 06088 /*Inline*/false, SourceLocation(), 06089 SourceLocation(), &Context->Idents.get("std"), 06090 /*PrevDecl*/ nullptr); 06091 NS->setImplicit(); 06092 VaListDecl->setDeclContext(NS); 06093 } 06094 06095 VaListDecl->startDefinition(); 06096 06097 // void * __ap; 06098 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 06099 VaListDecl, 06100 SourceLocation(), 06101 SourceLocation(), 06102 &Context->Idents.get("__ap"), 06103 Context->getPointerType(Context->VoidTy), 06104 /*TInfo=*/nullptr, 06105 /*BitWidth=*/nullptr, 06106 /*Mutable=*/false, 06107 ICIS_NoInit); 06108 Field->setAccess(AS_public); 06109 VaListDecl->addDecl(Field); 06110 06111 // }; 06112 VaListDecl->completeDefinition(); 06113 06114 // typedef struct __va_list __builtin_va_list; 06115 QualType T = Context->getRecordType(VaListDecl); 06116 return Context->buildImplicitTypedef(T, "__builtin_va_list"); 06117 } 06118 06119 static TypedefDecl * 06120 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) { 06121 // typedef struct __va_list_tag { 06122 RecordDecl *VaListTagDecl; 06123 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 06124 VaListTagDecl->startDefinition(); 06125 06126 const size_t NumFields = 4; 06127 QualType FieldTypes[NumFields]; 06128 const char *FieldNames[NumFields]; 06129 06130 // long __gpr; 06131 FieldTypes[0] = Context->LongTy; 06132 FieldNames[0] = "__gpr"; 06133 06134 // long __fpr; 06135 FieldTypes[1] = Context->LongTy; 06136 FieldNames[1] = "__fpr"; 06137 06138 // void *__overflow_arg_area; 06139 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 06140 FieldNames[2] = "__overflow_arg_area"; 06141 06142 // void *__reg_save_area; 06143 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 06144 FieldNames[3] = "__reg_save_area"; 06145 06146 // Create fields 06147 for (unsigned i = 0; i < NumFields; ++i) { 06148 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 06149 VaListTagDecl, 06150 SourceLocation(), 06151 SourceLocation(), 06152 &Context->Idents.get(FieldNames[i]), 06153 FieldTypes[i], /*TInfo=*/nullptr, 06154 /*BitWidth=*/nullptr, 06155 /*Mutable=*/false, 06156 ICIS_NoInit); 06157 Field->setAccess(AS_public); 06158 VaListTagDecl->addDecl(Field); 06159 } 06160 VaListTagDecl->completeDefinition(); 06161 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 06162 Context->VaListTagTy = VaListTagType; 06163 06164 // } __va_list_tag; 06165 TypedefDecl *VaListTagTypedefDecl = 06166 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); 06167 QualType VaListTagTypedefType = 06168 Context->getTypedefType(VaListTagTypedefDecl); 06169 06170 // typedef __va_list_tag __builtin_va_list[1]; 06171 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 06172 QualType VaListTagArrayType 06173 = Context->getConstantArrayType(VaListTagTypedefType, 06174 Size, ArrayType::Normal,0); 06175 06176 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 06177 } 06178 06179 static TypedefDecl *CreateVaListDecl(const ASTContext *Context, 06180 TargetInfo::BuiltinVaListKind Kind) { 06181 switch (Kind) { 06182 case TargetInfo::CharPtrBuiltinVaList: 06183 return CreateCharPtrBuiltinVaListDecl(Context); 06184 case TargetInfo::VoidPtrBuiltinVaList: 06185 return CreateVoidPtrBuiltinVaListDecl(Context); 06186 case TargetInfo::AArch64ABIBuiltinVaList: 06187 return CreateAArch64ABIBuiltinVaListDecl(Context); 06188 case TargetInfo::PowerABIBuiltinVaList: 06189 return CreatePowerABIBuiltinVaListDecl(Context); 06190 case TargetInfo::X86_64ABIBuiltinVaList: 06191 return CreateX86_64ABIBuiltinVaListDecl(Context); 06192 case TargetInfo::PNaClABIBuiltinVaList: 06193 return CreatePNaClABIBuiltinVaListDecl(Context); 06194 case TargetInfo::AAPCSABIBuiltinVaList: 06195 return CreateAAPCSABIBuiltinVaListDecl(Context); 06196 case TargetInfo::SystemZBuiltinVaList: 06197 return CreateSystemZBuiltinVaListDecl(Context); 06198 } 06199 06200 llvm_unreachable("Unhandled __builtin_va_list type kind"); 06201 } 06202 06203 TypedefDecl *ASTContext::getBuiltinVaListDecl() const { 06204 if (!BuiltinVaListDecl) { 06205 BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind()); 06206 assert(BuiltinVaListDecl->isImplicit()); 06207 } 06208 06209 return BuiltinVaListDecl; 06210 } 06211 06212 QualType ASTContext::getVaListTagType() const { 06213 // Force the creation of VaListTagTy by building the __builtin_va_list 06214 // declaration. 06215 if (VaListTagTy.isNull()) 06216 (void) getBuiltinVaListDecl(); 06217 06218 return VaListTagTy; 06219 } 06220 06221 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { 06222 assert(ObjCConstantStringType.isNull() && 06223 "'NSConstantString' type already set!"); 06224 06225 ObjCConstantStringType = getObjCInterfaceType(Decl); 06226 } 06227 06228 /// \brief Retrieve the template name that corresponds to a non-empty 06229 /// lookup. 06230 TemplateName 06231 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, 06232 UnresolvedSetIterator End) const { 06233 unsigned size = End - Begin; 06234 assert(size > 1 && "set is not overloaded!"); 06235 06236 void *memory = Allocate(sizeof(OverloadedTemplateStorage) + 06237 size * sizeof(FunctionTemplateDecl*)); 06238 OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size); 06239 06240 NamedDecl **Storage = OT->getStorage(); 06241 for (UnresolvedSetIterator I = Begin; I != End; ++I) { 06242 NamedDecl *D = *I; 06243 assert(isa<FunctionTemplateDecl>(D) || 06244 (isa<UsingShadowDecl>(D) && 06245 isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))); 06246 *Storage++ = D; 06247 } 06248 06249 return TemplateName(OT); 06250 } 06251 06252 /// \brief Retrieve the template name that represents a qualified 06253 /// template name such as \c std::vector. 06254 TemplateName 06255 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, 06256 bool TemplateKeyword, 06257 TemplateDecl *Template) const { 06258 assert(NNS && "Missing nested-name-specifier in qualified template name"); 06259 06260 // FIXME: Canonicalization? 06261 llvm::FoldingSetNodeID ID; 06262 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template); 06263 06264 void *InsertPos = nullptr; 06265 QualifiedTemplateName *QTN = 06266 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 06267 if (!QTN) { 06268 QTN = new (*this, llvm::alignOf<QualifiedTemplateName>()) 06269 QualifiedTemplateName(NNS, TemplateKeyword, Template); 06270 QualifiedTemplateNames.InsertNode(QTN, InsertPos); 06271 } 06272 06273 return TemplateName(QTN); 06274 } 06275 06276 /// \brief Retrieve the template name that represents a dependent 06277 /// template name such as \c MetaFun::template apply. 06278 TemplateName 06279 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, 06280 const IdentifierInfo *Name) const { 06281 assert((!NNS || NNS->isDependent()) && 06282 "Nested name specifier must be dependent"); 06283 06284 llvm::FoldingSetNodeID ID; 06285 DependentTemplateName::Profile(ID, NNS, Name); 06286 06287 void *InsertPos = nullptr; 06288 DependentTemplateName *QTN = 06289 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 06290 06291 if (QTN) 06292 return TemplateName(QTN); 06293 06294 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 06295 if (CanonNNS == NNS) { 06296 QTN = new (*this, llvm::alignOf<DependentTemplateName>()) 06297 DependentTemplateName(NNS, Name); 06298 } else { 06299 TemplateName Canon = getDependentTemplateName(CanonNNS, Name); 06300 QTN = new (*this, llvm::alignOf<DependentTemplateName>()) 06301 DependentTemplateName(NNS, Name, Canon); 06302 DependentTemplateName *CheckQTN = 06303 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 06304 assert(!CheckQTN && "Dependent type name canonicalization broken"); 06305 (void)CheckQTN; 06306 } 06307 06308 DependentTemplateNames.InsertNode(QTN, InsertPos); 06309 return TemplateName(QTN); 06310 } 06311 06312 /// \brief Retrieve the template name that represents a dependent 06313 /// template name such as \c MetaFun::template operator+. 06314 TemplateName 06315 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, 06316 OverloadedOperatorKind Operator) const { 06317 assert((!NNS || NNS->isDependent()) && 06318 "Nested name specifier must be dependent"); 06319 06320 llvm::FoldingSetNodeID ID; 06321 DependentTemplateName::Profile(ID, NNS, Operator); 06322 06323 void *InsertPos = nullptr; 06324 DependentTemplateName *QTN 06325 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 06326 06327 if (QTN) 06328 return TemplateName(QTN); 06329 06330 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 06331 if (CanonNNS == NNS) { 06332 QTN = new (*this, llvm::alignOf<DependentTemplateName>()) 06333 DependentTemplateName(NNS, Operator); 06334 } else { 06335 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator); 06336 QTN = new (*this, llvm::alignOf<DependentTemplateName>()) 06337 DependentTemplateName(NNS, Operator, Canon); 06338 06339 DependentTemplateName *CheckQTN 06340 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 06341 assert(!CheckQTN && "Dependent template name canonicalization broken"); 06342 (void)CheckQTN; 06343 } 06344 06345 DependentTemplateNames.InsertNode(QTN, InsertPos); 06346 return TemplateName(QTN); 06347 } 06348 06349 TemplateName 06350 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param, 06351 TemplateName replacement) const { 06352 llvm::FoldingSetNodeID ID; 06353 SubstTemplateTemplateParmStorage::Profile(ID, param, replacement); 06354 06355 void *insertPos = nullptr; 06356 SubstTemplateTemplateParmStorage *subst 06357 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos); 06358 06359 if (!subst) { 06360 subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement); 06361 SubstTemplateTemplateParms.InsertNode(subst, insertPos); 06362 } 06363 06364 return TemplateName(subst); 06365 } 06366 06367 TemplateName 06368 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param, 06369 const TemplateArgument &ArgPack) const { 06370 ASTContext &Self = const_cast<ASTContext &>(*this); 06371 llvm::FoldingSetNodeID ID; 06372 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack); 06373 06374 void *InsertPos = nullptr; 06375 SubstTemplateTemplateParmPackStorage *Subst 06376 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); 06377 06378 if (!Subst) { 06379 Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param, 06380 ArgPack.pack_size(), 06381 ArgPack.pack_begin()); 06382 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos); 06383 } 06384 06385 return TemplateName(Subst); 06386 } 06387 06388 /// getFromTargetType - Given one of the integer types provided by 06389 /// TargetInfo, produce the corresponding type. The unsigned @p Type 06390 /// is actually a value of type @c TargetInfo::IntType. 06391 CanQualType ASTContext::getFromTargetType(unsigned Type) const { 06392 switch (Type) { 06393 case TargetInfo::NoInt: return CanQualType(); 06394 case TargetInfo::SignedChar: return SignedCharTy; 06395 case TargetInfo::UnsignedChar: return UnsignedCharTy; 06396 case TargetInfo::SignedShort: return ShortTy; 06397 case TargetInfo::UnsignedShort: return UnsignedShortTy; 06398 case TargetInfo::SignedInt: return IntTy; 06399 case TargetInfo::UnsignedInt: return UnsignedIntTy; 06400 case TargetInfo::SignedLong: return LongTy; 06401 case TargetInfo::UnsignedLong: return UnsignedLongTy; 06402 case TargetInfo::SignedLongLong: return LongLongTy; 06403 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; 06404 } 06405 06406 llvm_unreachable("Unhandled TargetInfo::IntType value"); 06407 } 06408 06409 //===----------------------------------------------------------------------===// 06410 // Type Predicates. 06411 //===----------------------------------------------------------------------===// 06412 06413 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's 06414 /// garbage collection attribute. 06415 /// 06416 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { 06417 if (getLangOpts().getGC() == LangOptions::NonGC) 06418 return Qualifiers::GCNone; 06419 06420 assert(getLangOpts().ObjC1); 06421 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); 06422 06423 // Default behaviour under objective-C's gc is for ObjC pointers 06424 // (or pointers to them) be treated as though they were declared 06425 // as __strong. 06426 if (GCAttrs == Qualifiers::GCNone) { 06427 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) 06428 return Qualifiers::Strong; 06429 else if (Ty->isPointerType()) 06430 return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType()); 06431 } else { 06432 // It's not valid to set GC attributes on anything that isn't a 06433 // pointer. 06434 #ifndef NDEBUG 06435 QualType CT = Ty->getCanonicalTypeInternal(); 06436 while (const ArrayType *AT = dyn_cast<ArrayType>(CT)) 06437 CT = AT->getElementType(); 06438 assert(CT->isAnyPointerType() || CT->isBlockPointerType()); 06439 #endif 06440 } 06441 return GCAttrs; 06442 } 06443 06444 //===----------------------------------------------------------------------===// 06445 // Type Compatibility Testing 06446 //===----------------------------------------------------------------------===// 06447 06448 /// areCompatVectorTypes - Return true if the two specified vector types are 06449 /// compatible. 06450 static bool areCompatVectorTypes(const VectorType *LHS, 06451 const VectorType *RHS) { 06452 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); 06453 return LHS->getElementType() == RHS->getElementType() && 06454 LHS->getNumElements() == RHS->getNumElements(); 06455 } 06456 06457 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, 06458 QualType SecondVec) { 06459 assert(FirstVec->isVectorType() && "FirstVec should be a vector type"); 06460 assert(SecondVec->isVectorType() && "SecondVec should be a vector type"); 06461 06462 if (hasSameUnqualifiedType(FirstVec, SecondVec)) 06463 return true; 06464 06465 // Treat Neon vector types and most AltiVec vector types as if they are the 06466 // equivalent GCC vector types. 06467 const VectorType *First = FirstVec->getAs<VectorType>(); 06468 const VectorType *Second = SecondVec->getAs<VectorType>(); 06469 if (First->getNumElements() == Second->getNumElements() && 06470 hasSameType(First->getElementType(), Second->getElementType()) && 06471 First->getVectorKind() != VectorType::AltiVecPixel && 06472 First->getVectorKind() != VectorType::AltiVecBool && 06473 Second->getVectorKind() != VectorType::AltiVecPixel && 06474 Second->getVectorKind() != VectorType::AltiVecBool) 06475 return true; 06476 06477 return false; 06478 } 06479 06480 //===----------------------------------------------------------------------===// 06481 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. 06482 //===----------------------------------------------------------------------===// 06483 06484 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the 06485 /// inheritance hierarchy of 'rProto'. 06486 bool 06487 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, 06488 ObjCProtocolDecl *rProto) const { 06489 if (declaresSameEntity(lProto, rProto)) 06490 return true; 06491 for (auto *PI : rProto->protocols()) 06492 if (ProtocolCompatibleWithProtocol(lProto, PI)) 06493 return true; 06494 return false; 06495 } 06496 06497 /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and 06498 /// Class<pr1, ...>. 06499 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs, 06500 QualType rhs) { 06501 const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>(); 06502 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); 06503 assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible"); 06504 06505 for (auto *lhsProto : lhsQID->quals()) { 06506 bool match = false; 06507 for (auto *rhsProto : rhsOPT->quals()) { 06508 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) { 06509 match = true; 06510 break; 06511 } 06512 } 06513 if (!match) 06514 return false; 06515 } 06516 return true; 06517 } 06518 06519 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an 06520 /// ObjCQualifiedIDType. 06521 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs, 06522 bool compare) { 06523 // Allow id<P..> and an 'id' or void* type in all cases. 06524 if (lhs->isVoidPointerType() || 06525 lhs->isObjCIdType() || lhs->isObjCClassType()) 06526 return true; 06527 else if (rhs->isVoidPointerType() || 06528 rhs->isObjCIdType() || rhs->isObjCClassType()) 06529 return true; 06530 06531 if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) { 06532 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); 06533 06534 if (!rhsOPT) return false; 06535 06536 if (rhsOPT->qual_empty()) { 06537 // If the RHS is a unqualified interface pointer "NSString*", 06538 // make sure we check the class hierarchy. 06539 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) { 06540 for (auto *I : lhsQID->quals()) { 06541 // when comparing an id<P> on lhs with a static type on rhs, 06542 // see if static class implements all of id's protocols, directly or 06543 // through its super class and categories. 06544 if (!rhsID->ClassImplementsProtocol(I, true)) 06545 return false; 06546 } 06547 } 06548 // If there are no qualifiers and no interface, we have an 'id'. 06549 return true; 06550 } 06551 // Both the right and left sides have qualifiers. 06552 for (auto *lhsProto : lhsQID->quals()) { 06553 bool match = false; 06554 06555 // when comparing an id<P> on lhs with a static type on rhs, 06556 // see if static class implements all of id's protocols, directly or 06557 // through its super class and categories. 06558 for (auto *rhsProto : rhsOPT->quals()) { 06559 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 06560 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 06561 match = true; 06562 break; 06563 } 06564 } 06565 // If the RHS is a qualified interface pointer "NSString<P>*", 06566 // make sure we check the class hierarchy. 06567 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) { 06568 for (auto *I : lhsQID->quals()) { 06569 // when comparing an id<P> on lhs with a static type on rhs, 06570 // see if static class implements all of id's protocols, directly or 06571 // through its super class and categories. 06572 if (rhsID->ClassImplementsProtocol(I, true)) { 06573 match = true; 06574 break; 06575 } 06576 } 06577 } 06578 if (!match) 06579 return false; 06580 } 06581 06582 return true; 06583 } 06584 06585 const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType(); 06586 assert(rhsQID && "One of the LHS/RHS should be id<x>"); 06587 06588 if (const ObjCObjectPointerType *lhsOPT = 06589 lhs->getAsObjCInterfacePointerType()) { 06590 // If both the right and left sides have qualifiers. 06591 for (auto *lhsProto : lhsOPT->quals()) { 06592 bool match = false; 06593 06594 // when comparing an id<P> on rhs with a static type on lhs, 06595 // see if static class implements all of id's protocols, directly or 06596 // through its super class and categories. 06597 // First, lhs protocols in the qualifier list must be found, direct 06598 // or indirect in rhs's qualifier list or it is a mismatch. 06599 for (auto *rhsProto : rhsQID->quals()) { 06600 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 06601 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 06602 match = true; 06603 break; 06604 } 06605 } 06606 if (!match) 06607 return false; 06608 } 06609 06610 // Static class's protocols, or its super class or category protocols 06611 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. 06612 if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) { 06613 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; 06614 CollectInheritedProtocols(lhsID, LHSInheritedProtocols); 06615 // This is rather dubious but matches gcc's behavior. If lhs has 06616 // no type qualifier and its class has no static protocol(s) 06617 // assume that it is mismatch. 06618 if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty()) 06619 return false; 06620 for (auto *lhsProto : LHSInheritedProtocols) { 06621 bool match = false; 06622 for (auto *rhsProto : rhsQID->quals()) { 06623 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 06624 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 06625 match = true; 06626 break; 06627 } 06628 } 06629 if (!match) 06630 return false; 06631 } 06632 } 06633 return true; 06634 } 06635 return false; 06636 } 06637 06638 /// canAssignObjCInterfaces - Return true if the two interface types are 06639 /// compatible for assignment from RHS to LHS. This handles validation of any 06640 /// protocol qualifiers on the LHS or RHS. 06641 /// 06642 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, 06643 const ObjCObjectPointerType *RHSOPT) { 06644 const ObjCObjectType* LHS = LHSOPT->getObjectType(); 06645 const ObjCObjectType* RHS = RHSOPT->getObjectType(); 06646 06647 // If either type represents the built-in 'id' or 'Class' types, return true. 06648 if (LHS->isObjCUnqualifiedIdOrClass() || 06649 RHS->isObjCUnqualifiedIdOrClass()) 06650 return true; 06651 06652 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) 06653 return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0), 06654 QualType(RHSOPT,0), 06655 false); 06656 06657 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) 06658 return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0), 06659 QualType(RHSOPT,0)); 06660 06661 // If we have 2 user-defined types, fall into that path. 06662 if (LHS->getInterface() && RHS->getInterface()) 06663 return canAssignObjCInterfaces(LHS, RHS); 06664 06665 return false; 06666 } 06667 06668 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written 06669 /// for providing type-safety for objective-c pointers used to pass/return 06670 /// arguments in block literals. When passed as arguments, passing 'A*' where 06671 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is 06672 /// not OK. For the return type, the opposite is not OK. 06673 bool ASTContext::canAssignObjCInterfacesInBlockPointer( 06674 const ObjCObjectPointerType *LHSOPT, 06675 const ObjCObjectPointerType *RHSOPT, 06676 bool BlockReturnType) { 06677 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) 06678 return true; 06679 06680 if (LHSOPT->isObjCBuiltinType()) { 06681 return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType(); 06682 } 06683 06684 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) 06685 return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0), 06686 QualType(RHSOPT,0), 06687 false); 06688 06689 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); 06690 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); 06691 if (LHS && RHS) { // We have 2 user-defined types. 06692 if (LHS != RHS) { 06693 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl())) 06694 return BlockReturnType; 06695 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl())) 06696 return !BlockReturnType; 06697 } 06698 else 06699 return true; 06700 } 06701 return false; 06702 } 06703 06704 /// getIntersectionOfProtocols - This routine finds the intersection of set 06705 /// of protocols inherited from two distinct objective-c pointer objects. 06706 /// It is used to build composite qualifier list of the composite type of 06707 /// the conditional expression involving two objective-c pointer objects. 06708 static 06709 void getIntersectionOfProtocols(ASTContext &Context, 06710 const ObjCObjectPointerType *LHSOPT, 06711 const ObjCObjectPointerType *RHSOPT, 06712 SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) { 06713 06714 const ObjCObjectType* LHS = LHSOPT->getObjectType(); 06715 const ObjCObjectType* RHS = RHSOPT->getObjectType(); 06716 assert(LHS->getInterface() && "LHS must have an interface base"); 06717 assert(RHS->getInterface() && "RHS must have an interface base"); 06718 06719 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet; 06720 unsigned LHSNumProtocols = LHS->getNumProtocols(); 06721 if (LHSNumProtocols > 0) 06722 InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end()); 06723 else { 06724 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; 06725 Context.CollectInheritedProtocols(LHS->getInterface(), 06726 LHSInheritedProtocols); 06727 InheritedProtocolSet.insert(LHSInheritedProtocols.begin(), 06728 LHSInheritedProtocols.end()); 06729 } 06730 06731 unsigned RHSNumProtocols = RHS->getNumProtocols(); 06732 if (RHSNumProtocols > 0) { 06733 ObjCProtocolDecl **RHSProtocols = 06734 const_cast<ObjCProtocolDecl **>(RHS->qual_begin()); 06735 for (unsigned i = 0; i < RHSNumProtocols; ++i) 06736 if (InheritedProtocolSet.count(RHSProtocols[i])) 06737 IntersectionOfProtocols.push_back(RHSProtocols[i]); 06738 } else { 06739 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols; 06740 Context.CollectInheritedProtocols(RHS->getInterface(), 06741 RHSInheritedProtocols); 06742 for (ObjCProtocolDecl *ProtDecl : RHSInheritedProtocols) 06743 if (InheritedProtocolSet.count(ProtDecl)) 06744 IntersectionOfProtocols.push_back(ProtDecl); 06745 } 06746 } 06747 06748 /// areCommonBaseCompatible - Returns common base class of the two classes if 06749 /// one found. Note that this is O'2 algorithm. But it will be called as the 06750 /// last type comparison in a ?-exp of ObjC pointer types before a 06751 /// warning is issued. So, its invokation is extremely rare. 06752 QualType ASTContext::areCommonBaseCompatible( 06753 const ObjCObjectPointerType *Lptr, 06754 const ObjCObjectPointerType *Rptr) { 06755 const ObjCObjectType *LHS = Lptr->getObjectType(); 06756 const ObjCObjectType *RHS = Rptr->getObjectType(); 06757 const ObjCInterfaceDecl* LDecl = LHS->getInterface(); 06758 const ObjCInterfaceDecl* RDecl = RHS->getInterface(); 06759 if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl))) 06760 return QualType(); 06761 06762 do { 06763 LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl)); 06764 if (canAssignObjCInterfaces(LHS, RHS)) { 06765 SmallVector<ObjCProtocolDecl *, 8> Protocols; 06766 getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols); 06767 06768 QualType Result = QualType(LHS, 0); 06769 if (!Protocols.empty()) 06770 Result = getObjCObjectType(Result, Protocols.data(), Protocols.size()); 06771 Result = getObjCObjectPointerType(Result); 06772 return Result; 06773 } 06774 } while ((LDecl = LDecl->getSuperClass())); 06775 06776 return QualType(); 06777 } 06778 06779 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, 06780 const ObjCObjectType *RHS) { 06781 assert(LHS->getInterface() && "LHS is not an interface type"); 06782 assert(RHS->getInterface() && "RHS is not an interface type"); 06783 06784 // Verify that the base decls are compatible: the RHS must be a subclass of 06785 // the LHS. 06786 if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface())) 06787 return false; 06788 06789 // RHS must have a superset of the protocols in the LHS. If the LHS is not 06790 // protocol qualified at all, then we are good. 06791 if (LHS->getNumProtocols() == 0) 06792 return true; 06793 06794 // Okay, we know the LHS has protocol qualifiers. But RHS may or may not. 06795 // More detailed analysis is required. 06796 // OK, if LHS is same or a superclass of RHS *and* 06797 // this LHS, or as RHS's super class is assignment compatible with LHS. 06798 bool IsSuperClass = 06799 LHS->getInterface()->isSuperClassOf(RHS->getInterface()); 06800 if (IsSuperClass) { 06801 // OK if conversion of LHS to SuperClass results in narrowing of types 06802 // ; i.e., SuperClass may implement at least one of the protocols 06803 // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. 06804 // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. 06805 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; 06806 CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols); 06807 // Also, if RHS has explicit quelifiers, include them for comparing with LHS's 06808 // qualifiers. 06809 for (auto *RHSPI : RHS->quals()) 06810 SuperClassInheritedProtocols.insert(RHSPI->getCanonicalDecl()); 06811 // If there is no protocols associated with RHS, it is not a match. 06812 if (SuperClassInheritedProtocols.empty()) 06813 return false; 06814 06815 for (const auto *LHSProto : LHS->quals()) { 06816 bool SuperImplementsProtocol = false; 06817 for (auto *SuperClassProto : SuperClassInheritedProtocols) 06818 if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) { 06819 SuperImplementsProtocol = true; 06820 break; 06821 } 06822 if (!SuperImplementsProtocol) 06823 return false; 06824 } 06825 return true; 06826 } 06827 return false; 06828 } 06829 06830 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { 06831 // get the "pointed to" types 06832 const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); 06833 const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); 06834 06835 if (!LHSOPT || !RHSOPT) 06836 return false; 06837 06838 return canAssignObjCInterfaces(LHSOPT, RHSOPT) || 06839 canAssignObjCInterfaces(RHSOPT, LHSOPT); 06840 } 06841 06842 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { 06843 return canAssignObjCInterfaces( 06844 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(), 06845 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>()); 06846 } 06847 06848 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, 06849 /// both shall have the identically qualified version of a compatible type. 06850 /// C99 6.2.7p1: Two types have compatible types if their types are the 06851 /// same. See 6.7.[2,3,5] for additional rules. 06852 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, 06853 bool CompareUnqualified) { 06854 if (getLangOpts().CPlusPlus) 06855 return hasSameType(LHS, RHS); 06856 06857 return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull(); 06858 } 06859 06860 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { 06861 return typesAreCompatible(LHS, RHS); 06862 } 06863 06864 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { 06865 return !mergeTypes(LHS, RHS, true).isNull(); 06866 } 06867 06868 /// mergeTransparentUnionType - if T is a transparent union type and a member 06869 /// of T is compatible with SubType, return the merged type, else return 06870 /// QualType() 06871 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, 06872 bool OfBlockPointer, 06873 bool Unqualified) { 06874 if (const RecordType *UT = T->getAsUnionType()) { 06875 RecordDecl *UD = UT->getDecl(); 06876 if (UD->hasAttr<TransparentUnionAttr>()) { 06877 for (const auto *I : UD->fields()) { 06878 QualType ET = I->getType().getUnqualifiedType(); 06879 QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); 06880 if (!MT.isNull()) 06881 return MT; 06882 } 06883 } 06884 } 06885 06886 return QualType(); 06887 } 06888 06889 /// mergeFunctionParameterTypes - merge two types which appear as function 06890 /// parameter types 06891 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs, 06892 bool OfBlockPointer, 06893 bool Unqualified) { 06894 // GNU extension: two types are compatible if they appear as a function 06895 // argument, one of the types is a transparent union type and the other 06896 // type is compatible with a union member 06897 QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer, 06898 Unqualified); 06899 if (!lmerge.isNull()) 06900 return lmerge; 06901 06902 QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer, 06903 Unqualified); 06904 if (!rmerge.isNull()) 06905 return rmerge; 06906 06907 return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); 06908 } 06909 06910 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, 06911 bool OfBlockPointer, 06912 bool Unqualified) { 06913 const FunctionType *lbase = lhs->getAs<FunctionType>(); 06914 const FunctionType *rbase = rhs->getAs<FunctionType>(); 06915 const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase); 06916 const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase); 06917 bool allLTypes = true; 06918 bool allRTypes = true; 06919 06920 // Check return type 06921 QualType retType; 06922 if (OfBlockPointer) { 06923 QualType RHS = rbase->getReturnType(); 06924 QualType LHS = lbase->getReturnType(); 06925 bool UnqualifiedResult = Unqualified; 06926 if (!UnqualifiedResult) 06927 UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); 06928 retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true); 06929 } 06930 else 06931 retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false, 06932 Unqualified); 06933 if (retType.isNull()) return QualType(); 06934 06935 if (Unqualified) 06936 retType = retType.getUnqualifiedType(); 06937 06938 CanQualType LRetType = getCanonicalType(lbase->getReturnType()); 06939 CanQualType RRetType = getCanonicalType(rbase->getReturnType()); 06940 if (Unqualified) { 06941 LRetType = LRetType.getUnqualifiedType(); 06942 RRetType = RRetType.getUnqualifiedType(); 06943 } 06944 06945 if (getCanonicalType(retType) != LRetType) 06946 allLTypes = false; 06947 if (getCanonicalType(retType) != RRetType) 06948 allRTypes = false; 06949 06950 // FIXME: double check this 06951 // FIXME: should we error if lbase->getRegParmAttr() != 0 && 06952 // rbase->getRegParmAttr() != 0 && 06953 // lbase->getRegParmAttr() != rbase->getRegParmAttr()? 06954 FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); 06955 FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); 06956 06957 // Compatible functions must have compatible calling conventions 06958 if (lbaseInfo.getCC() != rbaseInfo.getCC()) 06959 return QualType(); 06960 06961 // Regparm is part of the calling convention. 06962 if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) 06963 return QualType(); 06964 if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) 06965 return QualType(); 06966 06967 if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) 06968 return QualType(); 06969 06970 // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'. 06971 bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); 06972 06973 if (lbaseInfo.getNoReturn() != NoReturn) 06974 allLTypes = false; 06975 if (rbaseInfo.getNoReturn() != NoReturn) 06976 allRTypes = false; 06977 06978 FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn); 06979 06980 if (lproto && rproto) { // two C99 style function prototypes 06981 assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() && 06982 "C++ shouldn't be here"); 06983 // Compatible functions must have the same number of parameters 06984 if (lproto->getNumParams() != rproto->getNumParams()) 06985 return QualType(); 06986 06987 // Variadic and non-variadic functions aren't compatible 06988 if (lproto->isVariadic() != rproto->isVariadic()) 06989 return QualType(); 06990 06991 if (lproto->getTypeQuals() != rproto->getTypeQuals()) 06992 return QualType(); 06993 06994 if (LangOpts.ObjCAutoRefCount && 06995 !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto)) 06996 return QualType(); 06997 06998 // Check parameter type compatibility 06999 SmallVector<QualType, 10> types; 07000 for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) { 07001 QualType lParamType = lproto->getParamType(i).getUnqualifiedType(); 07002 QualType rParamType = rproto->getParamType(i).getUnqualifiedType(); 07003 QualType paramType = mergeFunctionParameterTypes( 07004 lParamType, rParamType, OfBlockPointer, Unqualified); 07005 if (paramType.isNull()) 07006 return QualType(); 07007 07008 if (Unqualified) 07009 paramType = paramType.getUnqualifiedType(); 07010 07011 types.push_back(paramType); 07012 if (Unqualified) { 07013 lParamType = lParamType.getUnqualifiedType(); 07014 rParamType = rParamType.getUnqualifiedType(); 07015 } 07016 07017 if (getCanonicalType(paramType) != getCanonicalType(lParamType)) 07018 allLTypes = false; 07019 if (getCanonicalType(paramType) != getCanonicalType(rParamType)) 07020 allRTypes = false; 07021 } 07022 07023 if (allLTypes) return lhs; 07024 if (allRTypes) return rhs; 07025 07026 FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); 07027 EPI.ExtInfo = einfo; 07028 return getFunctionType(retType, types, EPI); 07029 } 07030 07031 if (lproto) allRTypes = false; 07032 if (rproto) allLTypes = false; 07033 07034 const FunctionProtoType *proto = lproto ? lproto : rproto; 07035 if (proto) { 07036 assert(!proto->hasExceptionSpec() && "C++ shouldn't be here"); 07037 if (proto->isVariadic()) return QualType(); 07038 // Check that the types are compatible with the types that 07039 // would result from default argument promotions (C99 6.7.5.3p15). 07040 // The only types actually affected are promotable integer 07041 // types and floats, which would be passed as a different 07042 // type depending on whether the prototype is visible. 07043 for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) { 07044 QualType paramTy = proto->getParamType(i); 07045 07046 // Look at the converted type of enum types, since that is the type used 07047 // to pass enum values. 07048 if (const EnumType *Enum = paramTy->getAs<EnumType>()) { 07049 paramTy = Enum->getDecl()->getIntegerType(); 07050 if (paramTy.isNull()) 07051 return QualType(); 07052 } 07053 07054 if (paramTy->isPromotableIntegerType() || 07055 getCanonicalType(paramTy).getUnqualifiedType() == FloatTy) 07056 return QualType(); 07057 } 07058 07059 if (allLTypes) return lhs; 07060 if (allRTypes) return rhs; 07061 07062 FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); 07063 EPI.ExtInfo = einfo; 07064 return getFunctionType(retType, proto->getParamTypes(), EPI); 07065 } 07066 07067 if (allLTypes) return lhs; 07068 if (allRTypes) return rhs; 07069 return getFunctionNoProtoType(retType, einfo); 07070 } 07071 07072 /// Given that we have an enum type and a non-enum type, try to merge them. 07073 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET, 07074 QualType other, bool isBlockReturnType) { 07075 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, 07076 // a signed integer type, or an unsigned integer type. 07077 // Compatibility is based on the underlying type, not the promotion 07078 // type. 07079 QualType underlyingType = ET->getDecl()->getIntegerType(); 07080 if (underlyingType.isNull()) return QualType(); 07081 if (Context.hasSameType(underlyingType, other)) 07082 return other; 07083 07084 // In block return types, we're more permissive and accept any 07085 // integral type of the same size. 07086 if (isBlockReturnType && other->isIntegerType() && 07087 Context.getTypeSize(underlyingType) == Context.getTypeSize(other)) 07088 return other; 07089 07090 return QualType(); 07091 } 07092 07093 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, 07094 bool OfBlockPointer, 07095 bool Unqualified, bool BlockReturnType) { 07096 // C++ [expr]: If an expression initially has the type "reference to T", the 07097 // type is adjusted to "T" prior to any further analysis, the expression 07098 // designates the object or function denoted by the reference, and the 07099 // expression is an lvalue unless the reference is an rvalue reference and 07100 // the expression is a function call (possibly inside parentheses). 07101 assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?"); 07102 assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?"); 07103 07104 if (Unqualified) { 07105 LHS = LHS.getUnqualifiedType(); 07106 RHS = RHS.getUnqualifiedType(); 07107 } 07108 07109 QualType LHSCan = getCanonicalType(LHS), 07110 RHSCan = getCanonicalType(RHS); 07111 07112 // If two types are identical, they are compatible. 07113 if (LHSCan == RHSCan) 07114 return LHS; 07115 07116 // If the qualifiers are different, the types aren't compatible... mostly. 07117 Qualifiers LQuals = LHSCan.getLocalQualifiers(); 07118 Qualifiers RQuals = RHSCan.getLocalQualifiers(); 07119 if (LQuals != RQuals) { 07120 // If any of these qualifiers are different, we have a type 07121 // mismatch. 07122 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || 07123 LQuals.getAddressSpace() != RQuals.getAddressSpace() || 07124 LQuals.getObjCLifetime() != RQuals.getObjCLifetime()) 07125 return QualType(); 07126 07127 // Exactly one GC qualifier difference is allowed: __strong is 07128 // okay if the other type has no GC qualifier but is an Objective 07129 // C object pointer (i.e. implicitly strong by default). We fix 07130 // this by pretending that the unqualified type was actually 07131 // qualified __strong. 07132 Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); 07133 Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); 07134 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); 07135 07136 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) 07137 return QualType(); 07138 07139 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { 07140 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong)); 07141 } 07142 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { 07143 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS); 07144 } 07145 return QualType(); 07146 } 07147 07148 // Okay, qualifiers are equal. 07149 07150 Type::TypeClass LHSClass = LHSCan->getTypeClass(); 07151 Type::TypeClass RHSClass = RHSCan->getTypeClass(); 07152 07153 // We want to consider the two function types to be the same for these 07154 // comparisons, just force one to the other. 07155 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; 07156 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; 07157 07158 // Same as above for arrays 07159 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) 07160 LHSClass = Type::ConstantArray; 07161 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) 07162 RHSClass = Type::ConstantArray; 07163 07164 // ObjCInterfaces are just specialized ObjCObjects. 07165 if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; 07166 if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; 07167 07168 // Canonicalize ExtVector -> Vector. 07169 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; 07170 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; 07171 07172 // If the canonical type classes don't match. 07173 if (LHSClass != RHSClass) { 07174 // Note that we only have special rules for turning block enum 07175 // returns into block int returns, not vice-versa. 07176 if (const EnumType* ETy = LHS->getAs<EnumType>()) { 07177 return mergeEnumWithInteger(*this, ETy, RHS, false); 07178 } 07179 if (const EnumType* ETy = RHS->getAs<EnumType>()) { 07180 return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType); 07181 } 07182 // allow block pointer type to match an 'id' type. 07183 if (OfBlockPointer && !BlockReturnType) { 07184 if (LHS->isObjCIdType() && RHS->isBlockPointerType()) 07185 return LHS; 07186 if (RHS->isObjCIdType() && LHS->isBlockPointerType()) 07187 return RHS; 07188 } 07189 07190 return QualType(); 07191 } 07192 07193 // The canonical type classes match. 07194 switch (LHSClass) { 07195 #define TYPE(Class, Base) 07196 #define ABSTRACT_TYPE(Class, Base) 07197 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 07198 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 07199 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 07200 #include "clang/AST/TypeNodes.def" 07201 llvm_unreachable("Non-canonical and dependent types shouldn't get here"); 07202 07203 case Type::Auto: 07204 case Type::LValueReference: 07205 case Type::RValueReference: 07206 case Type::MemberPointer: 07207 llvm_unreachable("C++ should never be in mergeTypes"); 07208 07209 case Type::ObjCInterface: 07210 case Type::IncompleteArray: 07211 case Type::VariableArray: 07212 case Type::FunctionProto: 07213 case Type::ExtVector: 07214 llvm_unreachable("Types are eliminated above"); 07215 07216 case Type::Pointer: 07217 { 07218 // Merge two pointer types, while trying to preserve typedef info 07219 QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType(); 07220 QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType(); 07221 if (Unqualified) { 07222 LHSPointee = LHSPointee.getUnqualifiedType(); 07223 RHSPointee = RHSPointee.getUnqualifiedType(); 07224 } 07225 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false, 07226 Unqualified); 07227 if (ResultType.isNull()) return QualType(); 07228 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) 07229 return LHS; 07230 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) 07231 return RHS; 07232 return getPointerType(ResultType); 07233 } 07234 case Type::BlockPointer: 07235 { 07236 // Merge two block pointer types, while trying to preserve typedef info 07237 QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType(); 07238 QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType(); 07239 if (Unqualified) { 07240 LHSPointee = LHSPointee.getUnqualifiedType(); 07241 RHSPointee = RHSPointee.getUnqualifiedType(); 07242 } 07243 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer, 07244 Unqualified); 07245 if (ResultType.isNull()) return QualType(); 07246 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) 07247 return LHS; 07248 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) 07249 return RHS; 07250 return getBlockPointerType(ResultType); 07251 } 07252 case Type::Atomic: 07253 { 07254 // Merge two pointer types, while trying to preserve typedef info 07255 QualType LHSValue = LHS->getAs<AtomicType>()->getValueType(); 07256 QualType RHSValue = RHS->getAs<AtomicType>()->getValueType(); 07257 if (Unqualified) { 07258 LHSValue = LHSValue.getUnqualifiedType(); 07259 RHSValue = RHSValue.getUnqualifiedType(); 07260 } 07261 QualType ResultType = mergeTypes(LHSValue, RHSValue, false, 07262 Unqualified); 07263 if (ResultType.isNull()) return QualType(); 07264 if (getCanonicalType(LHSValue) == getCanonicalType(ResultType)) 07265 return LHS; 07266 if (getCanonicalType(RHSValue) == getCanonicalType(ResultType)) 07267 return RHS; 07268 return getAtomicType(ResultType); 07269 } 07270 case Type::ConstantArray: 07271 { 07272 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); 07273 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); 07274 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) 07275 return QualType(); 07276 07277 QualType LHSElem = getAsArrayType(LHS)->getElementType(); 07278 QualType RHSElem = getAsArrayType(RHS)->getElementType(); 07279 if (Unqualified) { 07280 LHSElem = LHSElem.getUnqualifiedType(); 07281 RHSElem = RHSElem.getUnqualifiedType(); 07282 } 07283 07284 QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified); 07285 if (ResultType.isNull()) return QualType(); 07286 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) 07287 return LHS; 07288 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) 07289 return RHS; 07290 if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(), 07291 ArrayType::ArraySizeModifier(), 0); 07292 if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(), 07293 ArrayType::ArraySizeModifier(), 0); 07294 const VariableArrayType* LVAT = getAsVariableArrayType(LHS); 07295 const VariableArrayType* RVAT = getAsVariableArrayType(RHS); 07296 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) 07297 return LHS; 07298 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) 07299 return RHS; 07300 if (LVAT) { 07301 // FIXME: This isn't correct! But tricky to implement because 07302 // the array's size has to be the size of LHS, but the type 07303 // has to be different. 07304 return LHS; 07305 } 07306 if (RVAT) { 07307 // FIXME: This isn't correct! But tricky to implement because 07308 // the array's size has to be the size of RHS, but the type 07309 // has to be different. 07310 return RHS; 07311 } 07312 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; 07313 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; 07314 return getIncompleteArrayType(ResultType, 07315 ArrayType::ArraySizeModifier(), 0); 07316 } 07317 case Type::FunctionNoProto: 07318 return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified); 07319 case Type::Record: 07320 case Type::Enum: 07321 return QualType(); 07322 case Type::Builtin: 07323 // Only exactly equal builtin types are compatible, which is tested above. 07324 return QualType(); 07325 case Type::Complex: 07326 // Distinct complex types are incompatible. 07327 return QualType(); 07328 case Type::Vector: 07329 // FIXME: The merged type should be an ExtVector! 07330 if (areCompatVectorTypes(LHSCan->getAs<VectorType>(), 07331 RHSCan->getAs<VectorType>())) 07332 return LHS; 07333 return QualType(); 07334 case Type::ObjCObject: { 07335 // Check if the types are assignment compatible. 07336 // FIXME: This should be type compatibility, e.g. whether 07337 // "LHS x; RHS x;" at global scope is legal. 07338 const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>(); 07339 const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>(); 07340 if (canAssignObjCInterfaces(LHSIface, RHSIface)) 07341 return LHS; 07342 07343 return QualType(); 07344 } 07345 case Type::ObjCObjectPointer: { 07346 if (OfBlockPointer) { 07347 if (canAssignObjCInterfacesInBlockPointer( 07348 LHS->getAs<ObjCObjectPointerType>(), 07349 RHS->getAs<ObjCObjectPointerType>(), 07350 BlockReturnType)) 07351 return LHS; 07352 return QualType(); 07353 } 07354 if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(), 07355 RHS->getAs<ObjCObjectPointerType>())) 07356 return LHS; 07357 07358 return QualType(); 07359 } 07360 } 07361 07362 llvm_unreachable("Invalid Type::Class!"); 07363 } 07364 07365 bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs( 07366 const FunctionProtoType *FromFunctionType, 07367 const FunctionProtoType *ToFunctionType) { 07368 if (FromFunctionType->hasAnyConsumedParams() != 07369 ToFunctionType->hasAnyConsumedParams()) 07370 return false; 07371 FunctionProtoType::ExtProtoInfo FromEPI = 07372 FromFunctionType->getExtProtoInfo(); 07373 FunctionProtoType::ExtProtoInfo ToEPI = 07374 ToFunctionType->getExtProtoInfo(); 07375 if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters) 07376 for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) { 07377 if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i]) 07378 return false; 07379 } 07380 return true; 07381 } 07382 07383 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and 07384 /// 'RHS' attributes and returns the merged version; including for function 07385 /// return types. 07386 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { 07387 QualType LHSCan = getCanonicalType(LHS), 07388 RHSCan = getCanonicalType(RHS); 07389 // If two types are identical, they are compatible. 07390 if (LHSCan == RHSCan) 07391 return LHS; 07392 if (RHSCan->isFunctionType()) { 07393 if (!LHSCan->isFunctionType()) 07394 return QualType(); 07395 QualType OldReturnType = 07396 cast<FunctionType>(RHSCan.getTypePtr())->getReturnType(); 07397 QualType NewReturnType = 07398 cast<FunctionType>(LHSCan.getTypePtr())->getReturnType(); 07399 QualType ResReturnType = 07400 mergeObjCGCQualifiers(NewReturnType, OldReturnType); 07401 if (ResReturnType.isNull()) 07402 return QualType(); 07403 if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { 07404 // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); 07405 // In either case, use OldReturnType to build the new function type. 07406 const FunctionType *F = LHS->getAs<FunctionType>(); 07407 if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) { 07408 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 07409 EPI.ExtInfo = getFunctionExtInfo(LHS); 07410 QualType ResultType = 07411 getFunctionType(OldReturnType, FPT->getParamTypes(), EPI); 07412 return ResultType; 07413 } 07414 } 07415 return QualType(); 07416 } 07417 07418 // If the qualifiers are different, the types can still be merged. 07419 Qualifiers LQuals = LHSCan.getLocalQualifiers(); 07420 Qualifiers RQuals = RHSCan.getLocalQualifiers(); 07421 if (LQuals != RQuals) { 07422 // If any of these qualifiers are different, we have a type mismatch. 07423 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || 07424 LQuals.getAddressSpace() != RQuals.getAddressSpace()) 07425 return QualType(); 07426 07427 // Exactly one GC qualifier difference is allowed: __strong is 07428 // okay if the other type has no GC qualifier but is an Objective 07429 // C object pointer (i.e. implicitly strong by default). We fix 07430 // this by pretending that the unqualified type was actually 07431 // qualified __strong. 07432 Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); 07433 Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); 07434 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); 07435 07436 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) 07437 return QualType(); 07438 07439 if (GC_L == Qualifiers::Strong) 07440 return LHS; 07441 if (GC_R == Qualifiers::Strong) 07442 return RHS; 07443 return QualType(); 07444 } 07445 07446 if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { 07447 QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType(); 07448 QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType(); 07449 QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT); 07450 if (ResQT == LHSBaseQT) 07451 return LHS; 07452 if (ResQT == RHSBaseQT) 07453 return RHS; 07454 } 07455 return QualType(); 07456 } 07457 07458 //===----------------------------------------------------------------------===// 07459 // Integer Predicates 07460 //===----------------------------------------------------------------------===// 07461 07462 unsigned ASTContext::getIntWidth(QualType T) const { 07463 if (const EnumType *ET = T->getAs<EnumType>()) 07464 T = ET->getDecl()->getIntegerType(); 07465 if (T->isBooleanType()) 07466 return 1; 07467 // For builtin types, just use the standard type sizing method 07468 return (unsigned)getTypeSize(T); 07469 } 07470 07471 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const { 07472 assert(T->hasSignedIntegerRepresentation() && "Unexpected type"); 07473 07474 // Turn <4 x signed int> -> <4 x unsigned int> 07475 if (const VectorType *VTy = T->getAs<VectorType>()) 07476 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()), 07477 VTy->getNumElements(), VTy->getVectorKind()); 07478 07479 // For enums, we return the unsigned version of the base type. 07480 if (const EnumType *ETy = T->getAs<EnumType>()) 07481 T = ETy->getDecl()->getIntegerType(); 07482 07483 const BuiltinType *BTy = T->getAs<BuiltinType>(); 07484 assert(BTy && "Unexpected signed integer type"); 07485 switch (BTy->getKind()) { 07486 case BuiltinType::Char_S: 07487 case BuiltinType::SChar: 07488 return UnsignedCharTy; 07489 case BuiltinType::Short: 07490 return UnsignedShortTy; 07491 case BuiltinType::Int: 07492 return UnsignedIntTy; 07493 case BuiltinType::Long: 07494 return UnsignedLongTy; 07495 case BuiltinType::LongLong: 07496 return UnsignedLongLongTy; 07497 case BuiltinType::Int128: 07498 return UnsignedInt128Ty; 07499 default: 07500 llvm_unreachable("Unexpected signed integer type"); 07501 } 07502 } 07503 07504 ASTMutationListener::~ASTMutationListener() { } 07505 07506 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD, 07507 QualType ReturnType) {} 07508 07509 //===----------------------------------------------------------------------===// 07510 // Builtin Type Computation 07511 //===----------------------------------------------------------------------===// 07512 07513 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the 07514 /// pointer over the consumed characters. This returns the resultant type. If 07515 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic 07516 /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of 07517 /// a vector of "i*". 07518 /// 07519 /// RequiresICE is filled in on return to indicate whether the value is required 07520 /// to be an Integer Constant Expression. 07521 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, 07522 ASTContext::GetBuiltinTypeError &Error, 07523 bool &RequiresICE, 07524 bool AllowTypeModifiers) { 07525 // Modifiers. 07526 int HowLong = 0; 07527 bool Signed = false, Unsigned = false; 07528 RequiresICE = false; 07529 07530 // Read the prefixed modifiers first. 07531 bool Done = false; 07532 while (!Done) { 07533 switch (*Str++) { 07534 default: Done = true; --Str; break; 07535 case 'I': 07536 RequiresICE = true; 07537 break; 07538 case 'S': 07539 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!"); 07540 assert(!Signed && "Can't use 'S' modifier multiple times!"); 07541 Signed = true; 07542 break; 07543 case 'U': 07544 assert(!Signed && "Can't use both 'S' and 'U' modifiers!"); 07545 assert(!Unsigned && "Can't use 'S' modifier multiple times!"); 07546 Unsigned = true; 07547 break; 07548 case 'L': 07549 assert(HowLong <= 2 && "Can't have LLLL modifier"); 07550 ++HowLong; 07551 break; 07552 case 'W': 07553 // This modifier represents int64 type. 07554 assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!"); 07555 switch (Context.getTargetInfo().getInt64Type()) { 07556 default: 07557 llvm_unreachable("Unexpected integer type"); 07558 case TargetInfo::SignedLong: 07559 HowLong = 1; 07560 break; 07561 case TargetInfo::SignedLongLong: 07562 HowLong = 2; 07563 break; 07564 } 07565 } 07566 } 07567 07568 QualType Type; 07569 07570 // Read the base type. 07571 switch (*Str++) { 07572 default: llvm_unreachable("Unknown builtin type letter!"); 07573 case 'v': 07574 assert(HowLong == 0 && !Signed && !Unsigned && 07575 "Bad modifiers used with 'v'!"); 07576 Type = Context.VoidTy; 07577 break; 07578 case 'h': 07579 assert(HowLong == 0 && !Signed && !Unsigned && 07580 "Bad modifiers used with 'f'!"); 07581 Type = Context.HalfTy; 07582 break; 07583 case 'f': 07584 assert(HowLong == 0 && !Signed && !Unsigned && 07585 "Bad modifiers used with 'f'!"); 07586 Type = Context.FloatTy; 07587 break; 07588 case 'd': 07589 assert(HowLong < 2 && !Signed && !Unsigned && 07590 "Bad modifiers used with 'd'!"); 07591 if (HowLong) 07592 Type = Context.LongDoubleTy; 07593 else 07594 Type = Context.DoubleTy; 07595 break; 07596 case 's': 07597 assert(HowLong == 0 && "Bad modifiers used with 's'!"); 07598 if (Unsigned) 07599 Type = Context.UnsignedShortTy; 07600 else 07601 Type = Context.ShortTy; 07602 break; 07603 case 'i': 07604 if (HowLong == 3) 07605 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; 07606 else if (HowLong == 2) 07607 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; 07608 else if (HowLong == 1) 07609 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; 07610 else 07611 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; 07612 break; 07613 case 'c': 07614 assert(HowLong == 0 && "Bad modifiers used with 'c'!"); 07615 if (Signed) 07616 Type = Context.SignedCharTy; 07617 else if (Unsigned) 07618 Type = Context.UnsignedCharTy; 07619 else 07620 Type = Context.CharTy; 07621 break; 07622 case 'b': // boolean 07623 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!"); 07624 Type = Context.BoolTy; 07625 break; 07626 case 'z': // size_t. 07627 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!"); 07628 Type = Context.getSizeType(); 07629 break; 07630 case 'F': 07631 Type = Context.getCFConstantStringType(); 07632 break; 07633 case 'G': 07634 Type = Context.getObjCIdType(); 07635 break; 07636 case 'H': 07637 Type = Context.getObjCSelType(); 07638 break; 07639 case 'M': 07640 Type = Context.getObjCSuperType(); 07641 break; 07642 case 'a': 07643 Type = Context.getBuiltinVaListType(); 07644 assert(!Type.isNull() && "builtin va list type not initialized!"); 07645 break; 07646 case 'A': 07647 // This is a "reference" to a va_list; however, what exactly 07648 // this means depends on how va_list is defined. There are two 07649 // different kinds of va_list: ones passed by value, and ones 07650 // passed by reference. An example of a by-value va_list is 07651 // x86, where va_list is a char*. An example of by-ref va_list 07652 // is x86-64, where va_list is a __va_list_tag[1]. For x86, 07653 // we want this argument to be a char*&; for x86-64, we want 07654 // it to be a __va_list_tag*. 07655 Type = Context.getBuiltinVaListType(); 07656 assert(!Type.isNull() && "builtin va list type not initialized!"); 07657 if (Type->isArrayType()) 07658 Type = Context.getArrayDecayedType(Type); 07659 else 07660 Type = Context.getLValueReferenceType(Type); 07661 break; 07662 case 'V': { 07663 char *End; 07664 unsigned NumElements = strtoul(Str, &End, 10); 07665 assert(End != Str && "Missing vector size"); 07666 Str = End; 07667 07668 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, 07669 RequiresICE, false); 07670 assert(!RequiresICE && "Can't require vector ICE"); 07671 07672 // TODO: No way to make AltiVec vectors in builtins yet. 07673 Type = Context.getVectorType(ElementType, NumElements, 07674 VectorType::GenericVector); 07675 break; 07676 } 07677 case 'E': { 07678 char *End; 07679 07680 unsigned NumElements = strtoul(Str, &End, 10); 07681 assert(End != Str && "Missing vector size"); 07682 07683 Str = End; 07684 07685 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, 07686 false); 07687 Type = Context.getExtVectorType(ElementType, NumElements); 07688 break; 07689 } 07690 case 'X': { 07691 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, 07692 false); 07693 assert(!RequiresICE && "Can't require complex ICE"); 07694 Type = Context.getComplexType(ElementType); 07695 break; 07696 } 07697 case 'Y' : { 07698 Type = Context.getPointerDiffType(); 07699 break; 07700 } 07701 case 'P': 07702 Type = Context.getFILEType(); 07703 if (Type.isNull()) { 07704 Error = ASTContext::GE_Missing_stdio; 07705 return QualType(); 07706 } 07707 break; 07708 case 'J': 07709 if (Signed) 07710 Type = Context.getsigjmp_bufType(); 07711 else 07712 Type = Context.getjmp_bufType(); 07713 07714 if (Type.isNull()) { 07715 Error = ASTContext::GE_Missing_setjmp; 07716 return QualType(); 07717 } 07718 break; 07719 case 'K': 07720 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!"); 07721 Type = Context.getucontext_tType(); 07722 07723 if (Type.isNull()) { 07724 Error = ASTContext::GE_Missing_ucontext; 07725 return QualType(); 07726 } 07727 break; 07728 case 'p': 07729 Type = Context.getProcessIDType(); 07730 break; 07731 } 07732 07733 // If there are modifiers and if we're allowed to parse them, go for it. 07734 Done = !AllowTypeModifiers; 07735 while (!Done) { 07736 switch (char c = *Str++) { 07737 default: Done = true; --Str; break; 07738 case '*': 07739 case '&': { 07740 // Both pointers and references can have their pointee types 07741 // qualified with an address space. 07742 char *End; 07743 unsigned AddrSpace = strtoul(Str, &End, 10); 07744 if (End != Str && AddrSpace != 0) { 07745 Type = Context.getAddrSpaceQualType(Type, AddrSpace); 07746 Str = End; 07747 } 07748 if (c == '*') 07749 Type = Context.getPointerType(Type); 07750 else 07751 Type = Context.getLValueReferenceType(Type); 07752 break; 07753 } 07754 // FIXME: There's no way to have a built-in with an rvalue ref arg. 07755 case 'C': 07756 Type = Type.withConst(); 07757 break; 07758 case 'D': 07759 Type = Context.getVolatileType(Type); 07760 break; 07761 case 'R': 07762 Type = Type.withRestrict(); 07763 break; 07764 } 07765 } 07766 07767 assert((!RequiresICE || Type->isIntegralOrEnumerationType()) && 07768 "Integer constant 'I' type must be an integer"); 07769 07770 return Type; 07771 } 07772 07773 /// GetBuiltinType - Return the type for the specified builtin. 07774 QualType ASTContext::GetBuiltinType(unsigned Id, 07775 GetBuiltinTypeError &Error, 07776 unsigned *IntegerConstantArgs) const { 07777 const char *TypeStr = BuiltinInfo.GetTypeString(Id); 07778 07779 SmallVector<QualType, 8> ArgTypes; 07780 07781 bool RequiresICE = false; 07782 Error = GE_None; 07783 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error, 07784 RequiresICE, true); 07785 if (Error != GE_None) 07786 return QualType(); 07787 07788 assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE"); 07789 07790 while (TypeStr[0] && TypeStr[0] != '.') { 07791 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true); 07792 if (Error != GE_None) 07793 return QualType(); 07794 07795 // If this argument is required to be an IntegerConstantExpression and the 07796 // caller cares, fill in the bitmask we return. 07797 if (RequiresICE && IntegerConstantArgs) 07798 *IntegerConstantArgs |= 1 << ArgTypes.size(); 07799 07800 // Do array -> pointer decay. The builtin should use the decayed type. 07801 if (Ty->isArrayType()) 07802 Ty = getArrayDecayedType(Ty); 07803 07804 ArgTypes.push_back(Ty); 07805 } 07806 07807 assert((TypeStr[0] != '.' || TypeStr[1] == 0) && 07808 "'.' should only occur at end of builtin type list!"); 07809 07810 FunctionType::ExtInfo EI(CC_C); 07811 if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true); 07812 07813 bool Variadic = (TypeStr[0] == '.'); 07814 07815 // We really shouldn't be making a no-proto type here, especially in C++. 07816 if (ArgTypes.empty() && Variadic) 07817 return getFunctionNoProtoType(ResType, EI); 07818 07819 FunctionProtoType::ExtProtoInfo EPI; 07820 EPI.ExtInfo = EI; 07821 EPI.Variadic = Variadic; 07822 07823 return getFunctionType(ResType, ArgTypes, EPI); 07824 } 07825 07826 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context, 07827 const FunctionDecl *FD) { 07828 if (!FD->isExternallyVisible()) 07829 return GVA_Internal; 07830 07831 GVALinkage External = GVA_StrongExternal; 07832 switch (FD->getTemplateSpecializationKind()) { 07833 case TSK_Undeclared: 07834 case TSK_ExplicitSpecialization: 07835 External = GVA_StrongExternal; 07836 break; 07837 07838 case TSK_ExplicitInstantiationDefinition: 07839 return GVA_StrongODR; 07840 07841 // C++11 [temp.explicit]p10: 07842 // [ Note: The intent is that an inline function that is the subject of 07843 // an explicit instantiation declaration will still be implicitly 07844 // instantiated when used so that the body can be considered for 07845 // inlining, but that no out-of-line copy of the inline function would be 07846 // generated in the translation unit. -- end note ] 07847 case TSK_ExplicitInstantiationDeclaration: 07848 return GVA_AvailableExternally; 07849 07850 case TSK_ImplicitInstantiation: 07851 External = GVA_DiscardableODR; 07852 break; 07853 } 07854 07855 if (!FD->isInlined()) 07856 return External; 07857 07858 if ((!Context.getLangOpts().CPlusPlus && !Context.getLangOpts().MSVCCompat && 07859 !FD->hasAttr<DLLExportAttr>()) || 07860 FD->hasAttr<GNUInlineAttr>()) { 07861 // FIXME: This doesn't match gcc's behavior for dllexport inline functions. 07862 07863 // GNU or C99 inline semantics. Determine whether this symbol should be 07864 // externally visible. 07865 if (FD->isInlineDefinitionExternallyVisible()) 07866 return External; 07867 07868 // C99 inline semantics, where the symbol is not externally visible. 07869 return GVA_AvailableExternally; 07870 } 07871 07872 // Functions specified with extern and inline in -fms-compatibility mode 07873 // forcibly get emitted. While the body of the function cannot be later 07874 // replaced, the function definition cannot be discarded. 07875 if (FD->getMostRecentDecl()->isMSExternInline()) 07876 return GVA_StrongODR; 07877 07878 return GVA_DiscardableODR; 07879 } 07880 07881 static GVALinkage adjustGVALinkageForDLLAttribute(GVALinkage L, const Decl *D) { 07882 // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx 07883 // dllexport/dllimport on inline functions. 07884 if (D->hasAttr<DLLImportAttr>()) { 07885 if (L == GVA_DiscardableODR || L == GVA_StrongODR) 07886 return GVA_AvailableExternally; 07887 } else if (D->hasAttr<DLLExportAttr>()) { 07888 if (L == GVA_DiscardableODR) 07889 return GVA_StrongODR; 07890 } 07891 return L; 07892 } 07893 07894 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const { 07895 return adjustGVALinkageForDLLAttribute(basicGVALinkageForFunction(*this, FD), 07896 FD); 07897 } 07898 07899 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context, 07900 const VarDecl *VD) { 07901 if (!VD->isExternallyVisible()) 07902 return GVA_Internal; 07903 07904 if (VD->isStaticLocal()) { 07905 GVALinkage StaticLocalLinkage = GVA_DiscardableODR; 07906 const DeclContext *LexicalContext = VD->getParentFunctionOrMethod(); 07907 while (LexicalContext && !isa<FunctionDecl>(LexicalContext)) 07908 LexicalContext = LexicalContext->getLexicalParent(); 07909 07910 // Let the static local variable inherit it's linkage from the nearest 07911 // enclosing function. 07912 if (LexicalContext) 07913 StaticLocalLinkage = 07914 Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext)); 07915 07916 // GVA_StrongODR function linkage is stronger than what we need, 07917 // downgrade to GVA_DiscardableODR. 07918 // This allows us to discard the variable if we never end up needing it. 07919 return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR 07920 : StaticLocalLinkage; 07921 } 07922 07923 // MSVC treats in-class initialized static data members as definitions. 07924 // By giving them non-strong linkage, out-of-line definitions won't 07925 // cause link errors. 07926 if (Context.isMSStaticDataMemberInlineDefinition(VD)) 07927 return GVA_DiscardableODR; 07928 07929 switch (VD->getTemplateSpecializationKind()) { 07930 case TSK_Undeclared: 07931 case TSK_ExplicitSpecialization: 07932 return GVA_StrongExternal; 07933 07934 case TSK_ExplicitInstantiationDefinition: 07935 return GVA_StrongODR; 07936 07937 case TSK_ExplicitInstantiationDeclaration: 07938 return GVA_AvailableExternally; 07939 07940 case TSK_ImplicitInstantiation: 07941 return GVA_DiscardableODR; 07942 } 07943 07944 llvm_unreachable("Invalid Linkage!"); 07945 } 07946 07947 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) { 07948 return adjustGVALinkageForDLLAttribute(basicGVALinkageForVariable(*this, VD), 07949 VD); 07950 } 07951 07952 bool ASTContext::DeclMustBeEmitted(const Decl *D) { 07953 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 07954 if (!VD->isFileVarDecl()) 07955 return false; 07956 // Global named register variables (GNU extension) are never emitted. 07957 if (VD->getStorageClass() == SC_Register) 07958 return false; 07959 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 07960 // We never need to emit an uninstantiated function template. 07961 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 07962 return false; 07963 } else if (isa<OMPThreadPrivateDecl>(D)) 07964 return true; 07965 else 07966 return false; 07967 07968 // If this is a member of a class template, we do not need to emit it. 07969 if (D->getDeclContext()->isDependentContext()) 07970 return false; 07971 07972 // Weak references don't produce any output by themselves. 07973 if (D->hasAttr<WeakRefAttr>()) 07974 return false; 07975 07976 // Aliases and used decls are required. 07977 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) 07978 return true; 07979 07980 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 07981 // Forward declarations aren't required. 07982 if (!FD->doesThisDeclarationHaveABody()) 07983 return FD->doesDeclarationForceExternallyVisibleDefinition(); 07984 07985 // Constructors and destructors are required. 07986 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 07987 return true; 07988 07989 // The key function for a class is required. This rule only comes 07990 // into play when inline functions can be key functions, though. 07991 if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { 07992 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 07993 const CXXRecordDecl *RD = MD->getParent(); 07994 if (MD->isOutOfLine() && RD->isDynamicClass()) { 07995 const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD); 07996 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) 07997 return true; 07998 } 07999 } 08000 } 08001 08002 GVALinkage Linkage = GetGVALinkageForFunction(FD); 08003 08004 // static, static inline, always_inline, and extern inline functions can 08005 // always be deferred. Normal inline functions can be deferred in C99/C++. 08006 // Implicit template instantiations can also be deferred in C++. 08007 if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally || 08008 Linkage == GVA_DiscardableODR) 08009 return false; 08010 return true; 08011 } 08012 08013 const VarDecl *VD = cast<VarDecl>(D); 08014 assert(VD->isFileVarDecl() && "Expected file scoped var"); 08015 08016 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly && 08017 !isMSStaticDataMemberInlineDefinition(VD)) 08018 return false; 08019 08020 // Variables that can be needed in other TUs are required. 08021 GVALinkage L = GetGVALinkageForVariable(VD); 08022 if (L != GVA_Internal && L != GVA_AvailableExternally && 08023 L != GVA_DiscardableODR) 08024 return true; 08025 08026 // Variables that have destruction with side-effects are required. 08027 if (VD->getType().isDestructedType()) 08028 return true; 08029 08030 // Variables that have initialization with side-effects are required. 08031 if (VD->getInit() && VD->getInit()->HasSideEffects(*this)) 08032 return true; 08033 08034 return false; 08035 } 08036 08037 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic, 08038 bool IsCXXMethod) const { 08039 // Pass through to the C++ ABI object 08040 if (IsCXXMethod) 08041 return ABI->getDefaultMethodCallConv(IsVariadic); 08042 08043 return (LangOpts.MRTD && !IsVariadic) ? CC_X86StdCall : CC_C; 08044 } 08045 08046 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { 08047 // Pass through to the C++ ABI object 08048 return ABI->isNearlyEmpty(RD); 08049 } 08050 08051 VTableContextBase *ASTContext::getVTableContext() { 08052 if (!VTContext.get()) { 08053 if (Target->getCXXABI().isMicrosoft()) 08054 VTContext.reset(new MicrosoftVTableContext(*this)); 08055 else 08056 VTContext.reset(new ItaniumVTableContext(*this)); 08057 } 08058 return VTContext.get(); 08059 } 08060 08061 MangleContext *ASTContext::createMangleContext() { 08062 switch (Target->getCXXABI().getKind()) { 08063 case TargetCXXABI::GenericAArch64: 08064 case TargetCXXABI::GenericItanium: 08065 case TargetCXXABI::GenericARM: 08066 case TargetCXXABI::iOS: 08067 case TargetCXXABI::iOS64: 08068 return ItaniumMangleContext::create(*this, getDiagnostics()); 08069 case TargetCXXABI::Microsoft: 08070 return MicrosoftMangleContext::create(*this, getDiagnostics()); 08071 } 08072 llvm_unreachable("Unsupported ABI"); 08073 } 08074 08075 CXXABI::~CXXABI() {} 08076 08077 size_t ASTContext::getSideTableAllocatedMemory() const { 08078 return ASTRecordLayouts.getMemorySize() + 08079 llvm::capacity_in_bytes(ObjCLayouts) + 08080 llvm::capacity_in_bytes(KeyFunctions) + 08081 llvm::capacity_in_bytes(ObjCImpls) + 08082 llvm::capacity_in_bytes(BlockVarCopyInits) + 08083 llvm::capacity_in_bytes(DeclAttrs) + 08084 llvm::capacity_in_bytes(TemplateOrInstantiation) + 08085 llvm::capacity_in_bytes(InstantiatedFromUsingDecl) + 08086 llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) + 08087 llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) + 08088 llvm::capacity_in_bytes(OverriddenMethods) + 08089 llvm::capacity_in_bytes(Types) + 08090 llvm::capacity_in_bytes(VariableArrayTypes) + 08091 llvm::capacity_in_bytes(ClassScopeSpecializationPattern); 08092 } 08093 08094 /// getIntTypeForBitwidth - 08095 /// sets integer QualTy according to specified details: 08096 /// bitwidth, signed/unsigned. 08097 /// Returns empty type if there is no appropriate target types. 08098 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth, 08099 unsigned Signed) const { 08100 TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed); 08101 CanQualType QualTy = getFromTargetType(Ty); 08102 if (!QualTy && DestWidth == 128) 08103 return Signed ? Int128Ty : UnsignedInt128Ty; 08104 return QualTy; 08105 } 08106 08107 /// getRealTypeForBitwidth - 08108 /// sets floating point QualTy according to specified bitwidth. 08109 /// Returns empty type if there is no appropriate target types. 08110 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const { 08111 TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth); 08112 switch (Ty) { 08113 case TargetInfo::Float: 08114 return FloatTy; 08115 case TargetInfo::Double: 08116 return DoubleTy; 08117 case TargetInfo::LongDouble: 08118 return LongDoubleTy; 08119 case TargetInfo::NoFloat: 08120 return QualType(); 08121 } 08122 08123 llvm_unreachable("Unhandled TargetInfo::RealType value"); 08124 } 08125 08126 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) { 08127 if (Number > 1) 08128 MangleNumbers[ND] = Number; 08129 } 08130 08131 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const { 08132 llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I = 08133 MangleNumbers.find(ND); 08134 return I != MangleNumbers.end() ? I->second : 1; 08135 } 08136 08137 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) { 08138 if (Number > 1) 08139 StaticLocalNumbers[VD] = Number; 08140 } 08141 08142 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const { 08143 llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = 08144 StaticLocalNumbers.find(VD); 08145 return I != StaticLocalNumbers.end() ? I->second : 1; 08146 } 08147 08148 MangleNumberingContext & 08149 ASTContext::getManglingNumberContext(const DeclContext *DC) { 08150 assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. 08151 MangleNumberingContext *&MCtx = MangleNumberingContexts[DC]; 08152 if (!MCtx) 08153 MCtx = createMangleNumberingContext(); 08154 return *MCtx; 08155 } 08156 08157 MangleNumberingContext *ASTContext::createMangleNumberingContext() const { 08158 return ABI->createMangleNumberingContext(); 08159 } 08160 08161 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { 08162 ParamIndices[D] = index; 08163 } 08164 08165 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { 08166 ParameterIndexTable::const_iterator I = ParamIndices.find(D); 08167 assert(I != ParamIndices.end() && 08168 "ParmIndices lacks entry set by ParmVarDecl"); 08169 return I->second; 08170 } 08171 08172 APValue * 08173 ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E, 08174 bool MayCreate) { 08175 assert(E && E->getStorageDuration() == SD_Static && 08176 "don't need to cache the computed value for this temporary"); 08177 if (MayCreate) 08178 return &MaterializedTemporaryValues[E]; 08179 08180 llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I = 08181 MaterializedTemporaryValues.find(E); 08182 return I == MaterializedTemporaryValues.end() ? nullptr : &I->second; 08183 } 08184 08185 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const { 08186 const llvm::Triple &T = getTargetInfo().getTriple(); 08187 if (!T.isOSDarwin()) 08188 return false; 08189 08190 if (!(T.isiOS() && T.isOSVersionLT(7)) && 08191 !(T.isMacOSX() && T.isOSVersionLT(10, 9))) 08192 return false; 08193 08194 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 08195 CharUnits sizeChars = getTypeSizeInChars(AtomicTy); 08196 uint64_t Size = sizeChars.getQuantity(); 08197 CharUnits alignChars = getTypeAlignInChars(AtomicTy); 08198 unsigned Align = alignChars.getQuantity(); 08199 unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth(); 08200 return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits); 08201 } 08202 08203 namespace { 08204 08205 /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their 08206 /// parents as defined by the \c RecursiveASTVisitor. 08207 /// 08208 /// Note that the relationship described here is purely in terms of AST 08209 /// traversal - there are other relationships (for example declaration context) 08210 /// in the AST that are better modeled by special matchers. 08211 /// 08212 /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes. 08213 class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> { 08214 08215 public: 08216 /// \brief Builds and returns the translation unit's parent map. 08217 /// 08218 /// The caller takes ownership of the returned \c ParentMap. 08219 static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) { 08220 ParentMapASTVisitor Visitor(new ASTContext::ParentMap); 08221 Visitor.TraverseDecl(&TU); 08222 return Visitor.Parents; 08223 } 08224 08225 private: 08226 typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase; 08227 08228 ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) { 08229 } 08230 08231 bool shouldVisitTemplateInstantiations() const { 08232 return true; 08233 } 08234 bool shouldVisitImplicitCode() const { 08235 return true; 08236 } 08237 // Disables data recursion. We intercept Traverse* methods in the RAV, which 08238 // are not triggered during data recursion. 08239 bool shouldUseDataRecursionFor(clang::Stmt *S) const { 08240 return false; 08241 } 08242 08243 template <typename T> 08244 bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) { 08245 if (!Node) 08246 return true; 08247 if (ParentStack.size() > 0) { 08248 // FIXME: Currently we add the same parent multiple times, but only 08249 // when no memoization data is available for the type. 08250 // For example when we visit all subexpressions of template 08251 // instantiations; this is suboptimal, but benign: the only way to 08252 // visit those is with hasAncestor / hasParent, and those do not create 08253 // new matches. 08254 // The plan is to enable DynTypedNode to be storable in a map or hash 08255 // map. The main problem there is to implement hash functions / 08256 // comparison operators for all types that DynTypedNode supports that 08257 // do not have pointer identity. 08258 auto &NodeOrVector = (*Parents)[Node]; 08259 if (NodeOrVector.isNull()) { 08260 NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back()); 08261 } else { 08262 if (NodeOrVector.template is<ast_type_traits::DynTypedNode *>()) { 08263 auto *Node = 08264 NodeOrVector.template get<ast_type_traits::DynTypedNode *>(); 08265 auto *Vector = new ASTContext::ParentVector(1, *Node); 08266 NodeOrVector = Vector; 08267 delete Node; 08268 } 08269 assert(NodeOrVector.template is<ASTContext::ParentVector *>()); 08270 08271 auto *Vector = 08272 NodeOrVector.template get<ASTContext::ParentVector *>(); 08273 // Skip duplicates for types that have memoization data. 08274 // We must check that the type has memoization data before calling 08275 // std::find() because DynTypedNode::operator== can't compare all 08276 // types. 08277 bool Found = ParentStack.back().getMemoizationData() && 08278 std::find(Vector->begin(), Vector->end(), 08279 ParentStack.back()) != Vector->end(); 08280 if (!Found) 08281 Vector->push_back(ParentStack.back()); 08282 } 08283 } 08284 ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node)); 08285 bool Result = (this ->* traverse) (Node); 08286 ParentStack.pop_back(); 08287 return Result; 08288 } 08289 08290 bool TraverseDecl(Decl *DeclNode) { 08291 return TraverseNode(DeclNode, &VisitorBase::TraverseDecl); 08292 } 08293 08294 bool TraverseStmt(Stmt *StmtNode) { 08295 return TraverseNode(StmtNode, &VisitorBase::TraverseStmt); 08296 } 08297 08298 ASTContext::ParentMap *Parents; 08299 llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack; 08300 08301 friend class RecursiveASTVisitor<ParentMapASTVisitor>; 08302 }; 08303 08304 } // end namespace 08305 08306 ArrayRef<ast_type_traits::DynTypedNode> 08307 ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) { 08308 assert(Node.getMemoizationData() && 08309 "Invariant broken: only nodes that support memoization may be " 08310 "used in the parent map."); 08311 if (!AllParents) { 08312 // We always need to run over the whole translation unit, as 08313 // hasAncestor can escape any subtree. 08314 AllParents.reset( 08315 ParentMapASTVisitor::buildMap(*getTranslationUnitDecl())); 08316 } 08317 ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData()); 08318 if (I == AllParents->end()) { 08319 return None; 08320 } 08321 if (auto *N = I->second.dyn_cast<ast_type_traits::DynTypedNode *>()) { 08322 return llvm::makeArrayRef(N, 1); 08323 } 08324 return *I->second.get<ParentVector *>(); 08325 } 08326 08327 bool 08328 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl, 08329 const ObjCMethodDecl *MethodImpl) { 08330 // No point trying to match an unavailable/deprecated mothod. 08331 if (MethodDecl->hasAttr<UnavailableAttr>() 08332 || MethodDecl->hasAttr<DeprecatedAttr>()) 08333 return false; 08334 if (MethodDecl->getObjCDeclQualifier() != 08335 MethodImpl->getObjCDeclQualifier()) 08336 return false; 08337 if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType())) 08338 return false; 08339 08340 if (MethodDecl->param_size() != MethodImpl->param_size()) 08341 return false; 08342 08343 for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(), 08344 IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(), 08345 EF = MethodDecl->param_end(); 08346 IM != EM && IF != EF; ++IM, ++IF) { 08347 const ParmVarDecl *DeclVar = (*IF); 08348 const ParmVarDecl *ImplVar = (*IM); 08349 if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier()) 08350 return false; 08351 if (!hasSameType(DeclVar->getType(), ImplVar->getType())) 08352 return false; 08353 } 08354 return (MethodDecl->isVariadic() == MethodImpl->isVariadic()); 08355 08356 } 08357 08358 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that 08359 // doesn't include ASTContext.h 08360 template 08361 clang::LazyGenerationalUpdatePtr< 08362 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType 08363 clang::LazyGenerationalUpdatePtr< 08364 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue( 08365 const clang::ASTContext &Ctx, Decl *Value);