clang API Documentation

ASTContext.h
Go to the documentation of this file.
00001 //===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 ///
00010 /// \file
00011 /// \brief Defines the clang::ASTContext interface.
00012 ///
00013 //===----------------------------------------------------------------------===//
00014 
00015 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
00016 #define LLVM_CLANG_AST_ASTCONTEXT_H
00017 
00018 #include "clang/AST/ASTTypeTraits.h"
00019 #include "clang/AST/CanonicalType.h"
00020 #include "clang/AST/CommentCommandTraits.h"
00021 #include "clang/AST/Decl.h"
00022 #include "clang/AST/ExternalASTSource.h"
00023 #include "clang/AST/NestedNameSpecifier.h"
00024 #include "clang/AST/PrettyPrinter.h"
00025 #include "clang/AST/RawCommentList.h"
00026 #include "clang/AST/TemplateName.h"
00027 #include "clang/AST/Type.h"
00028 #include "clang/Basic/AddressSpaces.h"
00029 #include "clang/Basic/IdentifierTable.h"
00030 #include "clang/Basic/LangOptions.h"
00031 #include "clang/Basic/OperatorKinds.h"
00032 #include "clang/Basic/PartialDiagnostic.h"
00033 #include "clang/Basic/SanitizerBlacklist.h"
00034 #include "clang/Basic/VersionTuple.h"
00035 #include "llvm/ADT/DenseMap.h"
00036 #include "llvm/ADT/FoldingSet.h"
00037 #include "llvm/ADT/IntrusiveRefCntPtr.h"
00038 #include "llvm/ADT/SmallPtrSet.h"
00039 #include "llvm/ADT/TinyPtrVector.h"
00040 #include "llvm/Support/Allocator.h"
00041 #include <memory>
00042 #include <vector>
00043 
00044 namespace llvm {
00045   struct fltSemantics;
00046 }
00047 
00048 namespace clang {
00049   class FileManager;
00050   class AtomicExpr;
00051   class ASTRecordLayout;
00052   class BlockExpr;
00053   class CharUnits;
00054   class DiagnosticsEngine;
00055   class Expr;
00056   class ASTMutationListener;
00057   class IdentifierTable;
00058   class MaterializeTemporaryExpr;
00059   class SelectorTable;
00060   class TargetInfo;
00061   class CXXABI;
00062   class MangleNumberingContext;
00063   // Decls
00064   class MangleContext;
00065   class ObjCIvarDecl;
00066   class ObjCPropertyDecl;
00067   class UnresolvedSetIterator;
00068   class UsingDecl;
00069   class UsingShadowDecl;
00070   class VTableContextBase;
00071 
00072   namespace Builtin { class Context; }
00073 
00074   namespace comments {
00075     class FullComment;
00076   }
00077 
00078   struct TypeInfo {
00079     uint64_t Width;
00080     unsigned Align;
00081     bool AlignIsRequired : 1;
00082     TypeInfo() : Width(0), Align(0), AlignIsRequired(false) {}
00083     TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
00084         : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
00085   };
00086 
00087 /// \brief Holds long-lived AST nodes (such as types and decls) that can be
00088 /// referred to throughout the semantic analysis of a file.
00089 class ASTContext : public RefCountedBase<ASTContext> {
00090   ASTContext &this_() { return *this; }
00091 
00092   mutable SmallVector<Type *, 0> Types;
00093   mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
00094   mutable llvm::FoldingSet<ComplexType> ComplexTypes;
00095   mutable llvm::FoldingSet<PointerType> PointerTypes;
00096   mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
00097   mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
00098   mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
00099   mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
00100   mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
00101   mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
00102   mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
00103   mutable std::vector<VariableArrayType*> VariableArrayTypes;
00104   mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
00105   mutable llvm::FoldingSet<DependentSizedExtVectorType>
00106     DependentSizedExtVectorTypes;
00107   mutable llvm::FoldingSet<VectorType> VectorTypes;
00108   mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
00109   mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
00110     FunctionProtoTypes;
00111   mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
00112   mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
00113   mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
00114   mutable llvm::FoldingSet<SubstTemplateTypeParmType>
00115     SubstTemplateTypeParmTypes;
00116   mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
00117     SubstTemplateTypeParmPackTypes;
00118   mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
00119     TemplateSpecializationTypes;
00120   mutable llvm::FoldingSet<ParenType> ParenTypes;
00121   mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
00122   mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
00123   mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
00124                                      ASTContext&>
00125     DependentTemplateSpecializationTypes;
00126   llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
00127   mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
00128   mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
00129   mutable llvm::FoldingSet<AutoType> AutoTypes;
00130   mutable llvm::FoldingSet<AtomicType> AtomicTypes;
00131   llvm::FoldingSet<AttributedType> AttributedTypes;
00132 
00133   mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
00134   mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
00135   mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage> 
00136     SubstTemplateTemplateParms;
00137   mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
00138                                      ASTContext&> 
00139     SubstTemplateTemplateParmPacks;
00140   
00141   /// \brief The set of nested name specifiers.
00142   ///
00143   /// This set is managed by the NestedNameSpecifier class.
00144   mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
00145   mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
00146   friend class NestedNameSpecifier;
00147 
00148   /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
00149   ///
00150   /// This is lazily created.  This is intentionally not serialized.
00151   mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
00152     ASTRecordLayouts;
00153   mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
00154     ObjCLayouts;
00155 
00156   /// \brief A cache from types to size and alignment information.
00157   typedef llvm::DenseMap<const Type *, struct TypeInfo> TypeInfoMap;
00158   mutable TypeInfoMap MemoizedTypeInfo;
00159 
00160   /// \brief A cache mapping from CXXRecordDecls to key functions.
00161   llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
00162   
00163   /// \brief Mapping from ObjCContainers to their ObjCImplementations.
00164   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
00165   
00166   /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
00167   /// interface.
00168   llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
00169 
00170   /// \brief Mapping from __block VarDecls to their copy initialization expr.
00171   llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
00172     
00173   /// \brief Mapping from class scope functions specialization to their
00174   /// template patterns.
00175   llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
00176     ClassScopeSpecializationPattern;
00177 
00178   /// \brief Mapping from materialized temporaries with static storage duration
00179   /// that appear in constant initializers to their evaluated values.
00180   llvm::DenseMap<const MaterializeTemporaryExpr*, APValue>
00181     MaterializedTemporaryValues;
00182 
00183   /// \brief Representation of a "canonical" template template parameter that
00184   /// is used in canonical template names.
00185   class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
00186     TemplateTemplateParmDecl *Parm;
00187     
00188   public:
00189     CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm) 
00190       : Parm(Parm) { }
00191     
00192     TemplateTemplateParmDecl *getParam() const { return Parm; }
00193     
00194     void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
00195     
00196     static void Profile(llvm::FoldingSetNodeID &ID, 
00197                         TemplateTemplateParmDecl *Parm);
00198   };
00199   mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
00200     CanonTemplateTemplateParms;
00201   
00202   TemplateTemplateParmDecl *
00203     getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
00204 
00205   /// \brief The typedef for the __int128_t type.
00206   mutable TypedefDecl *Int128Decl;
00207 
00208   /// \brief The typedef for the __uint128_t type.
00209   mutable TypedefDecl *UInt128Decl;
00210 
00211   /// \brief The typedef for the __float128 stub type.
00212   mutable TypeDecl *Float128StubDecl;
00213   
00214   /// \brief The typedef for the target specific predefined
00215   /// __builtin_va_list type.
00216   mutable TypedefDecl *BuiltinVaListDecl;
00217 
00218   /// \brief The typedef for the predefined \c id type.
00219   mutable TypedefDecl *ObjCIdDecl;
00220   
00221   /// \brief The typedef for the predefined \c SEL type.
00222   mutable TypedefDecl *ObjCSelDecl;
00223 
00224   /// \brief The typedef for the predefined \c Class type.
00225   mutable TypedefDecl *ObjCClassDecl;
00226 
00227   /// \brief The typedef for the predefined \c Protocol class in Objective-C.
00228   mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
00229   
00230   /// \brief The typedef for the predefined 'BOOL' type.
00231   mutable TypedefDecl *BOOLDecl;
00232 
00233   // Typedefs which may be provided defining the structure of Objective-C
00234   // pseudo-builtins
00235   QualType ObjCIdRedefinitionType;
00236   QualType ObjCClassRedefinitionType;
00237   QualType ObjCSelRedefinitionType;
00238 
00239   QualType ObjCConstantStringType;
00240   mutable RecordDecl *CFConstantStringTypeDecl;
00241   
00242   mutable QualType ObjCSuperType;
00243   
00244   QualType ObjCNSStringType;
00245 
00246   /// \brief The typedef declaration for the Objective-C "instancetype" type.
00247   TypedefDecl *ObjCInstanceTypeDecl;
00248   
00249   /// \brief The type for the C FILE type.
00250   TypeDecl *FILEDecl;
00251 
00252   /// \brief The type for the C jmp_buf type.
00253   TypeDecl *jmp_bufDecl;
00254 
00255   /// \brief The type for the C sigjmp_buf type.
00256   TypeDecl *sigjmp_bufDecl;
00257 
00258   /// \brief The type for the C ucontext_t type.
00259   TypeDecl *ucontext_tDecl;
00260 
00261   /// \brief Type for the Block descriptor for Blocks CodeGen.
00262   ///
00263   /// Since this is only used for generation of debug info, it is not
00264   /// serialized.
00265   mutable RecordDecl *BlockDescriptorType;
00266 
00267   /// \brief Type for the Block descriptor for Blocks CodeGen.
00268   ///
00269   /// Since this is only used for generation of debug info, it is not
00270   /// serialized.
00271   mutable RecordDecl *BlockDescriptorExtendedType;
00272 
00273   /// \brief Declaration for the CUDA cudaConfigureCall function.
00274   FunctionDecl *cudaConfigureCallDecl;
00275 
00276   TypeSourceInfo NullTypeSourceInfo;
00277 
00278   /// \brief Keeps track of all declaration attributes.
00279   ///
00280   /// Since so few decls have attrs, we keep them in a hash map instead of
00281   /// wasting space in the Decl class.
00282   llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
00283 
00284   /// \brief A mapping from non-redeclarable declarations in modules that were
00285   /// merged with other declarations to the canonical declaration that they were
00286   /// merged into.
00287   llvm::DenseMap<Decl*, Decl*> MergedDecls;
00288 
00289 public:
00290   /// \brief A type synonym for the TemplateOrInstantiation mapping.
00291   typedef llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>
00292   TemplateOrSpecializationInfo;
00293 
00294 private:
00295 
00296   /// \brief A mapping to contain the template or declaration that
00297   /// a variable declaration describes or was instantiated from,
00298   /// respectively.
00299   ///
00300   /// For non-templates, this value will be NULL. For variable
00301   /// declarations that describe a variable template, this will be a
00302   /// pointer to a VarTemplateDecl. For static data members
00303   /// of class template specializations, this will be the
00304   /// MemberSpecializationInfo referring to the member variable that was
00305   /// instantiated or specialized. Thus, the mapping will keep track of
00306   /// the static data member templates from which static data members of
00307   /// class template specializations were instantiated.
00308   ///
00309   /// Given the following example:
00310   ///
00311   /// \code
00312   /// template<typename T>
00313   /// struct X {
00314   ///   static T value;
00315   /// };
00316   ///
00317   /// template<typename T>
00318   ///   T X<T>::value = T(17);
00319   ///
00320   /// int *x = &X<int>::value;
00321   /// \endcode
00322   ///
00323   /// This mapping will contain an entry that maps from the VarDecl for
00324   /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
00325   /// class template X) and will be marked TSK_ImplicitInstantiation.
00326   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
00327   TemplateOrInstantiation;
00328 
00329   /// \brief Keeps track of the declaration from which a UsingDecl was
00330   /// created during instantiation.
00331   ///
00332   /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
00333   /// or an UnresolvedUsingTypenameDecl.
00334   ///
00335   /// For example:
00336   /// \code
00337   /// template<typename T>
00338   /// struct A {
00339   ///   void f();
00340   /// };
00341   ///
00342   /// template<typename T>
00343   /// struct B : A<T> {
00344   ///   using A<T>::f;
00345   /// };
00346   ///
00347   /// template struct B<int>;
00348   /// \endcode
00349   ///
00350   /// This mapping will contain an entry that maps from the UsingDecl in
00351   /// B<int> to the UnresolvedUsingDecl in B<T>.
00352   llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
00353 
00354   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
00355     InstantiatedFromUsingShadowDecl;
00356 
00357   llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
00358 
00359   /// \brief Mapping that stores the methods overridden by a given C++
00360   /// member function.
00361   ///
00362   /// Since most C++ member functions aren't virtual and therefore
00363   /// don't override anything, we store the overridden functions in
00364   /// this map on the side rather than within the CXXMethodDecl structure.
00365   typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
00366   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
00367 
00368   /// \brief Mapping from each declaration context to its corresponding
00369   /// mangling numbering context (used for constructs like lambdas which
00370   /// need to be consistently numbered for the mangler).
00371   llvm::DenseMap<const DeclContext *, MangleNumberingContext *>
00372       MangleNumberingContexts;
00373 
00374   /// \brief Side-table of mangling numbers for declarations which rarely
00375   /// need them (like static local vars).
00376   llvm::DenseMap<const NamedDecl *, unsigned> MangleNumbers;
00377   llvm::DenseMap<const VarDecl *, unsigned> StaticLocalNumbers;
00378 
00379   /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
00380   /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
00381   typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
00382   ParameterIndexTable ParamIndices;  
00383   
00384   ImportDecl *FirstLocalImport;
00385   ImportDecl *LastLocalImport;
00386   
00387   TranslationUnitDecl *TUDecl;
00388 
00389   /// \brief The associated SourceManager object.a
00390   SourceManager &SourceMgr;
00391 
00392   /// \brief The language options used to create the AST associated with
00393   ///  this ASTContext object.
00394   LangOptions &LangOpts;
00395 
00396   /// \brief Blacklist object that is used by sanitizers to decide which
00397   /// entities should not be instrumented.
00398   std::unique_ptr<SanitizerBlacklist> SanitizerBL;
00399 
00400   /// \brief The allocator used to create AST objects.
00401   ///
00402   /// AST objects are never destructed; rather, all memory associated with the
00403   /// AST objects will be released when the ASTContext itself is destroyed.
00404   mutable llvm::BumpPtrAllocator BumpAlloc;
00405 
00406   /// \brief Allocator for partial diagnostics.
00407   PartialDiagnostic::StorageAllocator DiagAllocator;
00408 
00409   /// \brief The current C++ ABI.
00410   std::unique_ptr<CXXABI> ABI;
00411   CXXABI *createCXXABI(const TargetInfo &T);
00412 
00413   /// \brief The logical -> physical address space map.
00414   const LangAS::Map *AddrSpaceMap;
00415 
00416   /// \brief Address space map mangling must be used with language specific 
00417   /// address spaces (e.g. OpenCL/CUDA)
00418   bool AddrSpaceMapMangling;
00419 
00420   friend class ASTDeclReader;
00421   friend class ASTReader;
00422   friend class ASTWriter;
00423   friend class CXXRecordDecl;
00424 
00425   const TargetInfo *Target;
00426   clang::PrintingPolicy PrintingPolicy;
00427   
00428 public:
00429   IdentifierTable &Idents;
00430   SelectorTable &Selectors;
00431   Builtin::Context &BuiltinInfo;
00432   mutable DeclarationNameTable DeclarationNames;
00433   IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
00434   ASTMutationListener *Listener;
00435 
00436   /// \brief Contains parents of a node.
00437   typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 2> ParentVector;
00438 
00439   /// \brief Maps from a node to its parents.
00440   typedef llvm::DenseMap<const void *,
00441                          llvm::PointerUnion<ast_type_traits::DynTypedNode *,
00442                                             ParentVector *>> ParentMap;
00443 
00444   /// \brief Returns the parents of the given node.
00445   ///
00446   /// Note that this will lazily compute the parents of all nodes
00447   /// and store them for later retrieval. Thus, the first call is O(n)
00448   /// in the number of AST nodes.
00449   ///
00450   /// Caveats and FIXMEs:
00451   /// Calculating the parent map over all AST nodes will need to load the
00452   /// full AST. This can be undesirable in the case where the full AST is
00453   /// expensive to create (for example, when using precompiled header
00454   /// preambles). Thus, there are good opportunities for optimization here.
00455   /// One idea is to walk the given node downwards, looking for references
00456   /// to declaration contexts - once a declaration context is found, compute
00457   /// the parent map for the declaration context; if that can satisfy the
00458   /// request, loading the whole AST can be avoided. Note that this is made
00459   /// more complex by statements in templates having multiple parents - those
00460   /// problems can be solved by building closure over the templated parts of
00461   /// the AST, which also avoids touching large parts of the AST.
00462   /// Additionally, we will want to add an interface to already give a hint
00463   /// where to search for the parents, for example when looking at a statement
00464   /// inside a certain function.
00465   ///
00466   /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
00467   /// NestedNameSpecifier or NestedNameSpecifierLoc.
00468   template <typename NodeT>
00469   ArrayRef<ast_type_traits::DynTypedNode> getParents(const NodeT &Node) {
00470     return getParents(ast_type_traits::DynTypedNode::create(Node));
00471   }
00472 
00473   ArrayRef<ast_type_traits::DynTypedNode>
00474   getParents(const ast_type_traits::DynTypedNode &Node);
00475 
00476   const clang::PrintingPolicy &getPrintingPolicy() const {
00477     return PrintingPolicy;
00478   }
00479 
00480   void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
00481     PrintingPolicy = Policy;
00482   }
00483   
00484   SourceManager& getSourceManager() { return SourceMgr; }
00485   const SourceManager& getSourceManager() const { return SourceMgr; }
00486 
00487   llvm::BumpPtrAllocator &getAllocator() const {
00488     return BumpAlloc;
00489   }
00490 
00491   void *Allocate(size_t Size, unsigned Align = 8) const {
00492     return BumpAlloc.Allocate(Size, Align);
00493   }
00494   void Deallocate(void *Ptr) const { }
00495   
00496   /// Return the total amount of physical memory allocated for representing
00497   /// AST nodes and type information.
00498   size_t getASTAllocatedMemory() const {
00499     return BumpAlloc.getTotalMemory();
00500   }
00501   /// Return the total memory used for various side tables.
00502   size_t getSideTableAllocatedMemory() const;
00503   
00504   PartialDiagnostic::StorageAllocator &getDiagAllocator() {
00505     return DiagAllocator;
00506   }
00507 
00508   const TargetInfo &getTargetInfo() const { return *Target; }
00509   
00510   /// getIntTypeForBitwidth -
00511   /// sets integer QualTy according to specified details:
00512   /// bitwidth, signed/unsigned.
00513   /// Returns empty type if there is no appropriate target types.
00514   QualType getIntTypeForBitwidth(unsigned DestWidth,
00515                                  unsigned Signed) const;
00516   /// getRealTypeForBitwidth -
00517   /// sets floating point QualTy according to specified bitwidth.
00518   /// Returns empty type if there is no appropriate target types.
00519   QualType getRealTypeForBitwidth(unsigned DestWidth) const;
00520 
00521   bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
00522   
00523   const LangOptions& getLangOpts() const { return LangOpts; }
00524 
00525   const SanitizerBlacklist &getSanitizerBlacklist() const {
00526     return *SanitizerBL;
00527   }
00528 
00529   DiagnosticsEngine &getDiagnostics() const;
00530 
00531   FullSourceLoc getFullLoc(SourceLocation Loc) const {
00532     return FullSourceLoc(Loc,SourceMgr);
00533   }
00534 
00535   /// \brief All comments in this translation unit.
00536   RawCommentList Comments;
00537 
00538   /// \brief True if comments are already loaded from ExternalASTSource.
00539   mutable bool CommentsLoaded;
00540 
00541   class RawCommentAndCacheFlags {
00542   public:
00543     enum Kind {
00544       /// We searched for a comment attached to the particular declaration, but
00545       /// didn't find any.
00546       ///
00547       /// getRaw() == 0.
00548       NoCommentInDecl = 0,
00549 
00550       /// We have found a comment attached to this particular declaration.
00551       ///
00552       /// getRaw() != 0.
00553       FromDecl,
00554 
00555       /// This declaration does not have an attached comment, and we have
00556       /// searched the redeclaration chain.
00557       ///
00558       /// If getRaw() == 0, the whole redeclaration chain does not have any
00559       /// comments.
00560       ///
00561       /// If getRaw() != 0, it is a comment propagated from other
00562       /// redeclaration.
00563       FromRedecl
00564     };
00565 
00566     Kind getKind() const LLVM_READONLY {
00567       return Data.getInt();
00568     }
00569 
00570     void setKind(Kind K) {
00571       Data.setInt(K);
00572     }
00573 
00574     const RawComment *getRaw() const LLVM_READONLY {
00575       return Data.getPointer();
00576     }
00577 
00578     void setRaw(const RawComment *RC) {
00579       Data.setPointer(RC);
00580     }
00581 
00582     const Decl *getOriginalDecl() const LLVM_READONLY {
00583       return OriginalDecl;
00584     }
00585 
00586     void setOriginalDecl(const Decl *Orig) {
00587       OriginalDecl = Orig;
00588     }
00589 
00590   private:
00591     llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
00592     const Decl *OriginalDecl;
00593   };
00594 
00595   /// \brief Mapping from declarations to comments attached to any
00596   /// redeclaration.
00597   ///
00598   /// Raw comments are owned by Comments list.  This mapping is populated
00599   /// lazily.
00600   mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
00601 
00602   /// \brief Mapping from declarations to parsed comments attached to any
00603   /// redeclaration.
00604   mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
00605 
00606   /// \brief Return the documentation comment attached to a given declaration,
00607   /// without looking into cache.
00608   RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
00609 
00610 public:
00611   RawCommentList &getRawCommentList() {
00612     return Comments;
00613   }
00614 
00615   void addComment(const RawComment &RC) {
00616     assert(LangOpts.RetainCommentsFromSystemHeaders ||
00617            !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
00618     Comments.addComment(RC, BumpAlloc);
00619   }
00620 
00621   /// \brief Return the documentation comment attached to a given declaration.
00622   /// Returns NULL if no comment is attached.
00623   ///
00624   /// \param OriginalDecl if not NULL, is set to declaration AST node that had
00625   /// the comment, if the comment we found comes from a redeclaration.
00626   const RawComment *
00627   getRawCommentForAnyRedecl(const Decl *D,
00628                             const Decl **OriginalDecl = nullptr) const;
00629 
00630   /// Return parsed documentation comment attached to a given declaration.
00631   /// Returns NULL if no comment is attached.
00632   ///
00633   /// \param PP the Preprocessor used with this TU.  Could be NULL if
00634   /// preprocessor is not available.
00635   comments::FullComment *getCommentForDecl(const Decl *D,
00636                                            const Preprocessor *PP) const;
00637 
00638   /// Return parsed documentation comment attached to a given declaration.
00639   /// Returns NULL if no comment is attached. Does not look at any
00640   /// redeclarations of the declaration.
00641   comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
00642 
00643   comments::FullComment *cloneFullComment(comments::FullComment *FC,
00644                                          const Decl *D) const;
00645 
00646 private:
00647   mutable comments::CommandTraits CommentCommandTraits;
00648 
00649   /// \brief Iterator that visits import declarations.
00650   class import_iterator {
00651     ImportDecl *Import;
00652 
00653   public:
00654     typedef ImportDecl               *value_type;
00655     typedef ImportDecl               *reference;
00656     typedef ImportDecl               *pointer;
00657     typedef int                       difference_type;
00658     typedef std::forward_iterator_tag iterator_category;
00659 
00660     import_iterator() : Import() {}
00661     explicit import_iterator(ImportDecl *Import) : Import(Import) {}
00662 
00663     reference operator*() const { return Import; }
00664     pointer operator->() const { return Import; }
00665 
00666     import_iterator &operator++() {
00667       Import = ASTContext::getNextLocalImport(Import);
00668       return *this;
00669     }
00670 
00671     import_iterator operator++(int) {
00672       import_iterator Other(*this);
00673       ++(*this);
00674       return Other;
00675     }
00676 
00677     friend bool operator==(import_iterator X, import_iterator Y) {
00678       return X.Import == Y.Import;
00679     }
00680 
00681     friend bool operator!=(import_iterator X, import_iterator Y) {
00682       return X.Import != Y.Import;
00683     }
00684   };
00685 
00686 public:
00687   comments::CommandTraits &getCommentCommandTraits() const {
00688     return CommentCommandTraits;
00689   }
00690 
00691   /// \brief Retrieve the attributes for the given declaration.
00692   AttrVec& getDeclAttrs(const Decl *D);
00693 
00694   /// \brief Erase the attributes corresponding to the given declaration.
00695   void eraseDeclAttrs(const Decl *D);
00696 
00697   /// \brief If this variable is an instantiated static data member of a
00698   /// class template specialization, returns the templated static data member
00699   /// from which it was instantiated.
00700   // FIXME: Remove ?
00701   MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
00702                                                            const VarDecl *Var);
00703 
00704   TemplateOrSpecializationInfo
00705   getTemplateOrSpecializationInfo(const VarDecl *Var);
00706 
00707   FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
00708 
00709   void setClassScopeSpecializationPattern(FunctionDecl *FD,
00710                                           FunctionDecl *Pattern);
00711 
00712   /// \brief Note that the static data member \p Inst is an instantiation of
00713   /// the static data member template \p Tmpl of a class template.
00714   void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
00715                                            TemplateSpecializationKind TSK,
00716                         SourceLocation PointOfInstantiation = SourceLocation());
00717 
00718   void setTemplateOrSpecializationInfo(VarDecl *Inst,
00719                                        TemplateOrSpecializationInfo TSI);
00720 
00721   /// \brief If the given using decl \p Inst is an instantiation of a
00722   /// (possibly unresolved) using decl from a template instantiation,
00723   /// return it.
00724   NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
00725 
00726   /// \brief Remember that the using decl \p Inst is an instantiation
00727   /// of the using decl \p Pattern of a class template.
00728   void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
00729 
00730   void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
00731                                           UsingShadowDecl *Pattern);
00732   UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
00733 
00734   FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
00735 
00736   void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
00737   
00738   // Access to the set of methods overridden by the given C++ method.
00739   typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
00740   overridden_cxx_method_iterator
00741   overridden_methods_begin(const CXXMethodDecl *Method) const;
00742 
00743   overridden_cxx_method_iterator
00744   overridden_methods_end(const CXXMethodDecl *Method) const;
00745 
00746   unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
00747 
00748   /// \brief Note that the given C++ \p Method overrides the given \p
00749   /// Overridden method.
00750   void addOverriddenMethod(const CXXMethodDecl *Method, 
00751                            const CXXMethodDecl *Overridden);
00752 
00753   /// \brief Return C++ or ObjC overridden methods for the given \p Method.
00754   ///
00755   /// An ObjC method is considered to override any method in the class's
00756   /// base classes, its protocols, or its categories' protocols, that has
00757   /// the same selector and is of the same kind (class or instance).
00758   /// A method in an implementation is not considered as overriding the same
00759   /// method in the interface or its categories.
00760   void getOverriddenMethods(
00761                         const NamedDecl *Method,
00762                         SmallVectorImpl<const NamedDecl *> &Overridden) const;
00763   
00764   /// \brief Notify the AST context that a new import declaration has been
00765   /// parsed or implicitly created within this translation unit.
00766   void addedLocalImportDecl(ImportDecl *Import);
00767 
00768   static ImportDecl *getNextLocalImport(ImportDecl *Import) {
00769     return Import->NextLocalImport;
00770   }
00771   
00772   typedef llvm::iterator_range<import_iterator> import_range;
00773   import_range local_imports() const {
00774     return import_range(import_iterator(FirstLocalImport), import_iterator());
00775   }
00776 
00777   Decl *getPrimaryMergedDecl(Decl *D) {
00778     Decl *Result = MergedDecls.lookup(D);
00779     return Result ? Result : D;
00780   }
00781   void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
00782     MergedDecls[D] = Primary;
00783   }
00784 
00785   TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
00786 
00787 
00788   // Builtin Types.
00789   CanQualType VoidTy;
00790   CanQualType BoolTy;
00791   CanQualType CharTy;
00792   CanQualType WCharTy;  // [C++ 3.9.1p5].
00793   CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
00794   CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
00795   CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
00796   CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
00797   CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
00798   CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
00799   CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
00800   CanQualType FloatTy, DoubleTy, LongDoubleTy;
00801   CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
00802   CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
00803   CanQualType VoidPtrTy, NullPtrTy;
00804   CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
00805   CanQualType BuiltinFnTy;
00806   CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
00807   CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
00808   CanQualType ObjCBuiltinBoolTy;
00809   CanQualType OCLImage1dTy, OCLImage1dArrayTy, OCLImage1dBufferTy;
00810   CanQualType OCLImage2dTy, OCLImage2dArrayTy;
00811   CanQualType OCLImage3dTy;
00812   CanQualType OCLSamplerTy, OCLEventTy;
00813 
00814   // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
00815   mutable QualType AutoDeductTy;     // Deduction against 'auto'.
00816   mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
00817 
00818   // Type used to help define __builtin_va_list for some targets.
00819   // The type is built when constructing 'BuiltinVaListDecl'.
00820   mutable QualType VaListTagTy;
00821 
00822   ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
00823              SelectorTable &sels, Builtin::Context &builtins);
00824 
00825   ~ASTContext();
00826 
00827   /// \brief Attach an external AST source to the AST context.
00828   ///
00829   /// The external AST source provides the ability to load parts of
00830   /// the abstract syntax tree as needed from some external storage,
00831   /// e.g., a precompiled header.
00832   void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
00833 
00834   /// \brief Retrieve a pointer to the external AST source associated
00835   /// with this AST context, if any.
00836   ExternalASTSource *getExternalSource() const {
00837     return ExternalSource.get();
00838   }
00839 
00840   /// \brief Attach an AST mutation listener to the AST context.
00841   ///
00842   /// The AST mutation listener provides the ability to track modifications to
00843   /// the abstract syntax tree entities committed after they were initially
00844   /// created.
00845   void setASTMutationListener(ASTMutationListener *Listener) {
00846     this->Listener = Listener;
00847   }
00848 
00849   /// \brief Retrieve a pointer to the AST mutation listener associated
00850   /// with this AST context, if any.
00851   ASTMutationListener *getASTMutationListener() const { return Listener; }
00852 
00853   void PrintStats() const;
00854   const SmallVectorImpl<Type *>& getTypes() const { return Types; }
00855 
00856   /// \brief Create a new implicit TU-level CXXRecordDecl or RecordDecl
00857   /// declaration.
00858   RecordDecl *buildImplicitRecord(StringRef Name,
00859                                   RecordDecl::TagKind TK = TTK_Struct) const;
00860 
00861   /// \brief Create a new implicit TU-level typedef declaration.
00862   TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
00863 
00864   /// \brief Retrieve the declaration for the 128-bit signed integer type.
00865   TypedefDecl *getInt128Decl() const;
00866 
00867   /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
00868   TypedefDecl *getUInt128Decl() const;
00869 
00870   /// \brief Retrieve the declaration for a 128-bit float stub type.
00871   TypeDecl *getFloat128StubType() const;
00872 
00873   //===--------------------------------------------------------------------===//
00874   //                           Type Constructors
00875   //===--------------------------------------------------------------------===//
00876 
00877 private:
00878   /// \brief Return a type with extended qualifiers.
00879   QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
00880 
00881   QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
00882 
00883 public:
00884   /// \brief Return the uniqued reference to the type for an address space
00885   /// qualified type with the specified type and address space.
00886   ///
00887   /// The resulting type has a union of the qualifiers from T and the address
00888   /// space. If T already has an address space specifier, it is silently
00889   /// replaced.
00890   QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
00891 
00892   /// \brief Return the uniqued reference to the type for an Objective-C
00893   /// gc-qualified type.
00894   ///
00895   /// The retulting type has a union of the qualifiers from T and the gc
00896   /// attribute.
00897   QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
00898 
00899   /// \brief Return the uniqued reference to the type for a \c restrict
00900   /// qualified type.
00901   ///
00902   /// The resulting type has a union of the qualifiers from \p T and
00903   /// \c restrict.
00904   QualType getRestrictType(QualType T) const {
00905     return T.withFastQualifiers(Qualifiers::Restrict);
00906   }
00907 
00908   /// \brief Return the uniqued reference to the type for a \c volatile
00909   /// qualified type.
00910   ///
00911   /// The resulting type has a union of the qualifiers from \p T and
00912   /// \c volatile.
00913   QualType getVolatileType(QualType T) const {
00914     return T.withFastQualifiers(Qualifiers::Volatile);
00915   }
00916 
00917   /// \brief Return the uniqued reference to the type for a \c const
00918   /// qualified type.
00919   ///
00920   /// The resulting type has a union of the qualifiers from \p T and \c const.
00921   ///
00922   /// It can be reasonably expected that this will always be equivalent to
00923   /// calling T.withConst().
00924   QualType getConstType(QualType T) const { return T.withConst(); }
00925 
00926   /// \brief Change the ExtInfo on a function type.
00927   const FunctionType *adjustFunctionType(const FunctionType *Fn,
00928                                          FunctionType::ExtInfo EInfo);
00929 
00930   /// \brief Change the result type of a function type once it is deduced.
00931   void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
00932 
00933   /// \brief Change the exception specification on a function once it is
00934   /// delay-parsed, instantiated, or computed.
00935   void adjustExceptionSpec(FunctionDecl *FD,
00936                            const FunctionProtoType::ExceptionSpecInfo &ESI,
00937                            bool AsWritten = false);
00938 
00939   /// \brief Return the uniqued reference to the type for a complex
00940   /// number with the specified element type.
00941   QualType getComplexType(QualType T) const;
00942   CanQualType getComplexType(CanQualType T) const {
00943     return CanQualType::CreateUnsafe(getComplexType((QualType) T));
00944   }
00945 
00946   /// \brief Return the uniqued reference to the type for a pointer to
00947   /// the specified type.
00948   QualType getPointerType(QualType T) const;
00949   CanQualType getPointerType(CanQualType T) const {
00950     return CanQualType::CreateUnsafe(getPointerType((QualType) T));
00951   }
00952 
00953   /// \brief Return the uniqued reference to a type adjusted from the original
00954   /// type to a new type.
00955   QualType getAdjustedType(QualType Orig, QualType New) const;
00956   CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
00957     return CanQualType::CreateUnsafe(
00958         getAdjustedType((QualType)Orig, (QualType)New));
00959   }
00960 
00961   /// \brief Return the uniqued reference to the decayed version of the given
00962   /// type.  Can only be called on array and function types which decay to
00963   /// pointer types.
00964   QualType getDecayedType(QualType T) const;
00965   CanQualType getDecayedType(CanQualType T) const {
00966     return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
00967   }
00968 
00969   /// \brief Return the uniqued reference to the atomic type for the specified
00970   /// type.
00971   QualType getAtomicType(QualType T) const;
00972 
00973   /// \brief Return the uniqued reference to the type for a block of the
00974   /// specified type.
00975   QualType getBlockPointerType(QualType T) const;
00976 
00977   /// Gets the struct used to keep track of the descriptor for pointer to
00978   /// blocks.
00979   QualType getBlockDescriptorType() const;
00980 
00981   /// Gets the struct used to keep track of the extended descriptor for
00982   /// pointer to blocks.
00983   QualType getBlockDescriptorExtendedType() const;
00984 
00985   void setcudaConfigureCallDecl(FunctionDecl *FD) {
00986     cudaConfigureCallDecl = FD;
00987   }
00988   FunctionDecl *getcudaConfigureCallDecl() {
00989     return cudaConfigureCallDecl;
00990   }
00991 
00992   /// Returns true iff we need copy/dispose helpers for the given type.
00993   bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
00994   
00995   
00996   /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
00997   /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
00998   /// has extended lifetime. 
00999   bool getByrefLifetime(QualType Ty,
01000                         Qualifiers::ObjCLifetime &Lifetime,
01001                         bool &HasByrefExtendedLayout) const;
01002   
01003   /// \brief Return the uniqued reference to the type for an lvalue reference
01004   /// to the specified type.
01005   QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
01006     const;
01007 
01008   /// \brief Return the uniqued reference to the type for an rvalue reference
01009   /// to the specified type.
01010   QualType getRValueReferenceType(QualType T) const;
01011 
01012   /// \brief Return the uniqued reference to the type for a member pointer to
01013   /// the specified type in the specified class.
01014   ///
01015   /// The class \p Cls is a \c Type because it could be a dependent name.
01016   QualType getMemberPointerType(QualType T, const Type *Cls) const;
01017 
01018   /// \brief Return a non-unique reference to the type for a variable array of
01019   /// the specified element type.
01020   QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
01021                                 ArrayType::ArraySizeModifier ASM,
01022                                 unsigned IndexTypeQuals,
01023                                 SourceRange Brackets) const;
01024 
01025   /// \brief Return a non-unique reference to the type for a dependently-sized
01026   /// array of the specified element type.
01027   ///
01028   /// FIXME: We will need these to be uniqued, or at least comparable, at some
01029   /// point.
01030   QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
01031                                       ArrayType::ArraySizeModifier ASM,
01032                                       unsigned IndexTypeQuals,
01033                                       SourceRange Brackets) const;
01034 
01035   /// \brief Return a unique reference to the type for an incomplete array of
01036   /// the specified element type.
01037   QualType getIncompleteArrayType(QualType EltTy,
01038                                   ArrayType::ArraySizeModifier ASM,
01039                                   unsigned IndexTypeQuals) const;
01040 
01041   /// \brief Return the unique reference to the type for a constant array of
01042   /// the specified element type.
01043   QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
01044                                 ArrayType::ArraySizeModifier ASM,
01045                                 unsigned IndexTypeQuals) const;
01046   
01047   /// \brief Returns a vla type where known sizes are replaced with [*].
01048   QualType getVariableArrayDecayedType(QualType Ty) const;
01049 
01050   /// \brief Return the unique reference to a vector type of the specified
01051   /// element type and size.
01052   ///
01053   /// \pre \p VectorType must be a built-in type.
01054   QualType getVectorType(QualType VectorType, unsigned NumElts,
01055                          VectorType::VectorKind VecKind) const;
01056 
01057   /// \brief Return the unique reference to an extended vector type
01058   /// of the specified element type and size.
01059   ///
01060   /// \pre \p VectorType must be a built-in type.
01061   QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
01062 
01063   /// \pre Return a non-unique reference to the type for a dependently-sized
01064   /// vector of the specified element type.
01065   ///
01066   /// FIXME: We will need these to be uniqued, or at least comparable, at some
01067   /// point.
01068   QualType getDependentSizedExtVectorType(QualType VectorType,
01069                                           Expr *SizeExpr,
01070                                           SourceLocation AttrLoc) const;
01071 
01072   /// \brief Return a K&R style C function type like 'int()'.
01073   QualType getFunctionNoProtoType(QualType ResultTy,
01074                                   const FunctionType::ExtInfo &Info) const;
01075 
01076   QualType getFunctionNoProtoType(QualType ResultTy) const {
01077     return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
01078   }
01079 
01080   /// \brief Return a normal function type with a typed argument list.
01081   QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
01082                            const FunctionProtoType::ExtProtoInfo &EPI) const;
01083 
01084   /// \brief Return the unique reference to the type for the specified type
01085   /// declaration.
01086   QualType getTypeDeclType(const TypeDecl *Decl,
01087                            const TypeDecl *PrevDecl = nullptr) const {
01088     assert(Decl && "Passed null for Decl param");
01089     if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
01090 
01091     if (PrevDecl) {
01092       assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
01093       Decl->TypeForDecl = PrevDecl->TypeForDecl;
01094       return QualType(PrevDecl->TypeForDecl, 0);
01095     }
01096 
01097     return getTypeDeclTypeSlow(Decl);
01098   }
01099 
01100   /// \brief Return the unique reference to the type for the specified
01101   /// typedef-name decl.
01102   QualType getTypedefType(const TypedefNameDecl *Decl,
01103                           QualType Canon = QualType()) const;
01104 
01105   QualType getRecordType(const RecordDecl *Decl) const;
01106 
01107   QualType getEnumType(const EnumDecl *Decl) const;
01108 
01109   QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
01110 
01111   QualType getAttributedType(AttributedType::Kind attrKind,
01112                              QualType modifiedType,
01113                              QualType equivalentType);
01114 
01115   QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
01116                                         QualType Replacement) const;
01117   QualType getSubstTemplateTypeParmPackType(
01118                                           const TemplateTypeParmType *Replaced,
01119                                             const TemplateArgument &ArgPack);
01120 
01121   QualType
01122   getTemplateTypeParmType(unsigned Depth, unsigned Index,
01123                           bool ParameterPack,
01124                           TemplateTypeParmDecl *ParmDecl = nullptr) const;
01125 
01126   QualType getTemplateSpecializationType(TemplateName T,
01127                                          const TemplateArgument *Args,
01128                                          unsigned NumArgs,
01129                                          QualType Canon = QualType()) const;
01130 
01131   QualType getCanonicalTemplateSpecializationType(TemplateName T,
01132                                                   const TemplateArgument *Args,
01133                                                   unsigned NumArgs) const;
01134 
01135   QualType getTemplateSpecializationType(TemplateName T,
01136                                          const TemplateArgumentListInfo &Args,
01137                                          QualType Canon = QualType()) const;
01138 
01139   TypeSourceInfo *
01140   getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
01141                                     const TemplateArgumentListInfo &Args,
01142                                     QualType Canon = QualType()) const;
01143 
01144   QualType getParenType(QualType NamedType) const;
01145 
01146   QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
01147                              NestedNameSpecifier *NNS,
01148                              QualType NamedType) const;
01149   QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
01150                                 NestedNameSpecifier *NNS,
01151                                 const IdentifierInfo *Name,
01152                                 QualType Canon = QualType()) const;
01153 
01154   QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
01155                                                   NestedNameSpecifier *NNS,
01156                                                   const IdentifierInfo *Name,
01157                                     const TemplateArgumentListInfo &Args) const;
01158   QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
01159                                                   NestedNameSpecifier *NNS,
01160                                                   const IdentifierInfo *Name,
01161                                                   unsigned NumArgs,
01162                                             const TemplateArgument *Args) const;
01163 
01164   QualType getPackExpansionType(QualType Pattern,
01165                                 Optional<unsigned> NumExpansions);
01166 
01167   QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
01168                                 ObjCInterfaceDecl *PrevDecl = nullptr) const;
01169 
01170   QualType getObjCObjectType(QualType Base,
01171                              ObjCProtocolDecl * const *Protocols,
01172                              unsigned NumProtocols) const;
01173   
01174   bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
01175   /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
01176   /// QT's qualified-id protocol list adopt all protocols in IDecl's list
01177   /// of protocols.
01178   bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
01179                                             ObjCInterfaceDecl *IDecl);
01180 
01181   /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
01182   QualType getObjCObjectPointerType(QualType OIT) const;
01183 
01184   /// \brief GCC extension.
01185   QualType getTypeOfExprType(Expr *e) const;
01186   QualType getTypeOfType(QualType t) const;
01187 
01188   /// \brief C++11 decltype.
01189   QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
01190 
01191   /// \brief Unary type transforms
01192   QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
01193                                  UnaryTransformType::UTTKind UKind) const;
01194 
01195   /// \brief C++11 deduced auto type.
01196   QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto,
01197                        bool IsDependent) const;
01198 
01199   /// \brief C++11 deduction pattern for 'auto' type.
01200   QualType getAutoDeductType() const;
01201 
01202   /// \brief C++11 deduction pattern for 'auto &&' type.
01203   QualType getAutoRRefDeductType() const;
01204 
01205   /// \brief Return the unique reference to the type for the specified TagDecl
01206   /// (struct/union/class/enum) decl.
01207   QualType getTagDeclType(const TagDecl *Decl) const;
01208 
01209   /// \brief Return the unique type for "size_t" (C99 7.17), defined in
01210   /// <stddef.h>.
01211   ///
01212   /// The sizeof operator requires this (C99 6.5.3.4p4).
01213   CanQualType getSizeType() const;
01214 
01215   /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
01216   /// <stdint.h>.
01217   CanQualType getIntMaxType() const;
01218 
01219   /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
01220   /// <stdint.h>.
01221   CanQualType getUIntMaxType() const;
01222 
01223   /// \brief Return the unique wchar_t type available in C++ (and available as
01224   /// __wchar_t as a Microsoft extension).
01225   QualType getWCharType() const { return WCharTy; }
01226 
01227   /// \brief Return the type of wide characters. In C++, this returns the
01228   /// unique wchar_t type. In C99, this returns a type compatible with the type
01229   /// defined in <stddef.h> as defined by the target.
01230   QualType getWideCharType() const { return WideCharTy; }
01231 
01232   /// \brief Return the type of "signed wchar_t".
01233   ///
01234   /// Used when in C++, as a GCC extension.
01235   QualType getSignedWCharType() const;
01236 
01237   /// \brief Return the type of "unsigned wchar_t".
01238   ///
01239   /// Used when in C++, as a GCC extension.
01240   QualType getUnsignedWCharType() const;
01241 
01242   /// \brief In C99, this returns a type compatible with the type
01243   /// defined in <stddef.h> as defined by the target.
01244   QualType getWIntType() const { return WIntTy; }
01245 
01246   /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
01247   /// as defined by the target.
01248   QualType getIntPtrType() const;
01249 
01250   /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
01251   /// as defined by the target.
01252   QualType getUIntPtrType() const;
01253 
01254   /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
01255   /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
01256   QualType getPointerDiffType() const;
01257 
01258   /// \brief Return the unique type for "pid_t" defined in
01259   /// <sys/types.h>. We need this to compute the correct type for vfork().
01260   QualType getProcessIDType() const;
01261 
01262   /// \brief Return the C structure type used to represent constant CFStrings.
01263   QualType getCFConstantStringType() const;
01264   
01265   /// \brief Returns the C struct type for objc_super
01266   QualType getObjCSuperType() const;
01267   void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
01268   
01269   /// Get the structure type used to representation CFStrings, or NULL
01270   /// if it hasn't yet been built.
01271   QualType getRawCFConstantStringType() const {
01272     if (CFConstantStringTypeDecl)
01273       return getTagDeclType(CFConstantStringTypeDecl);
01274     return QualType();
01275   }
01276   void setCFConstantStringType(QualType T);
01277 
01278   // This setter/getter represents the ObjC type for an NSConstantString.
01279   void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
01280   QualType getObjCConstantStringInterface() const {
01281     return ObjCConstantStringType;
01282   }
01283 
01284   QualType getObjCNSStringType() const {
01285     return ObjCNSStringType;
01286   }
01287   
01288   void setObjCNSStringType(QualType T) {
01289     ObjCNSStringType = T;
01290   }
01291   
01292   /// \brief Retrieve the type that \c id has been defined to, which may be
01293   /// different from the built-in \c id if \c id has been typedef'd.
01294   QualType getObjCIdRedefinitionType() const {
01295     if (ObjCIdRedefinitionType.isNull())
01296       return getObjCIdType();
01297     return ObjCIdRedefinitionType;
01298   }
01299   
01300   /// \brief Set the user-written type that redefines \c id.
01301   void setObjCIdRedefinitionType(QualType RedefType) {
01302     ObjCIdRedefinitionType = RedefType;
01303   }
01304 
01305   /// \brief Retrieve the type that \c Class has been defined to, which may be
01306   /// different from the built-in \c Class if \c Class has been typedef'd.
01307   QualType getObjCClassRedefinitionType() const {
01308     if (ObjCClassRedefinitionType.isNull())
01309       return getObjCClassType();
01310     return ObjCClassRedefinitionType;
01311   }
01312   
01313   /// \brief Set the user-written type that redefines 'SEL'.
01314   void setObjCClassRedefinitionType(QualType RedefType) {
01315     ObjCClassRedefinitionType = RedefType;
01316   }
01317 
01318   /// \brief Retrieve the type that 'SEL' has been defined to, which may be
01319   /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
01320   QualType getObjCSelRedefinitionType() const {
01321     if (ObjCSelRedefinitionType.isNull())
01322       return getObjCSelType();
01323     return ObjCSelRedefinitionType;
01324   }
01325 
01326   
01327   /// \brief Set the user-written type that redefines 'SEL'.
01328   void setObjCSelRedefinitionType(QualType RedefType) {
01329     ObjCSelRedefinitionType = RedefType;
01330   }
01331 
01332   /// \brief Retrieve the Objective-C "instancetype" type, if already known;
01333   /// otherwise, returns a NULL type;
01334   QualType getObjCInstanceType() {
01335     return getTypeDeclType(getObjCInstanceTypeDecl());
01336   }
01337 
01338   /// \brief Retrieve the typedef declaration corresponding to the Objective-C
01339   /// "instancetype" type.
01340   TypedefDecl *getObjCInstanceTypeDecl();
01341   
01342   /// \brief Set the type for the C FILE type.
01343   void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
01344 
01345   /// \brief Retrieve the C FILE type.
01346   QualType getFILEType() const {
01347     if (FILEDecl)
01348       return getTypeDeclType(FILEDecl);
01349     return QualType();
01350   }
01351 
01352   /// \brief Set the type for the C jmp_buf type.
01353   void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
01354     this->jmp_bufDecl = jmp_bufDecl;
01355   }
01356 
01357   /// \brief Retrieve the C jmp_buf type.
01358   QualType getjmp_bufType() const {
01359     if (jmp_bufDecl)
01360       return getTypeDeclType(jmp_bufDecl);
01361     return QualType();
01362   }
01363 
01364   /// \brief Set the type for the C sigjmp_buf type.
01365   void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
01366     this->sigjmp_bufDecl = sigjmp_bufDecl;
01367   }
01368 
01369   /// \brief Retrieve the C sigjmp_buf type.
01370   QualType getsigjmp_bufType() const {
01371     if (sigjmp_bufDecl)
01372       return getTypeDeclType(sigjmp_bufDecl);
01373     return QualType();
01374   }
01375 
01376   /// \brief Set the type for the C ucontext_t type.
01377   void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
01378     this->ucontext_tDecl = ucontext_tDecl;
01379   }
01380 
01381   /// \brief Retrieve the C ucontext_t type.
01382   QualType getucontext_tType() const {
01383     if (ucontext_tDecl)
01384       return getTypeDeclType(ucontext_tDecl);
01385     return QualType();
01386   }
01387 
01388   /// \brief The result type of logical operations, '<', '>', '!=', etc.
01389   QualType getLogicalOperationType() const {
01390     return getLangOpts().CPlusPlus ? BoolTy : IntTy;
01391   }
01392 
01393   /// \brief Emit the Objective-CC type encoding for the given type \p T into
01394   /// \p S.
01395   ///
01396   /// If \p Field is specified then record field names are also encoded.
01397   void getObjCEncodingForType(QualType T, std::string &S,
01398                               const FieldDecl *Field=nullptr,
01399                               QualType *NotEncodedT=nullptr) const;
01400 
01401   /// \brief Emit the Objective-C property type encoding for the given
01402   /// type \p T into \p S.
01403   void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
01404 
01405   void getLegacyIntegralTypeEncoding(QualType &t) const;
01406 
01407   /// \brief Put the string version of the type qualifiers \p QT into \p S.
01408   void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
01409                                        std::string &S) const;
01410 
01411   /// \brief Emit the encoded type for the function \p Decl into \p S.
01412   ///
01413   /// This is in the same format as Objective-C method encodings.
01414   ///
01415   /// \returns true if an error occurred (e.g., because one of the parameter
01416   /// types is incomplete), false otherwise.
01417   bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
01418 
01419   /// \brief Emit the encoded type for the method declaration \p Decl into
01420   /// \p S.
01421   ///
01422   /// \returns true if an error occurred (e.g., because one of the parameter
01423   /// types is incomplete), false otherwise.
01424   bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
01425                                     bool Extended = false)
01426     const;
01427 
01428   /// \brief Return the encoded type for this block declaration.
01429   std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
01430   
01431   /// getObjCEncodingForPropertyDecl - Return the encoded type for
01432   /// this method declaration. If non-NULL, Container must be either
01433   /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
01434   /// only be NULL when getting encodings for protocol properties.
01435   void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
01436                                       const Decl *Container,
01437                                       std::string &S) const;
01438 
01439   bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
01440                                       ObjCProtocolDecl *rProto) const;
01441   
01442   ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
01443                                                   const ObjCPropertyDecl *PD,
01444                                                   const Decl *Container) const;
01445 
01446   /// \brief Return the size of type \p T for Objective-C encoding purpose,
01447   /// in characters.
01448   CharUnits getObjCEncodingTypeSize(QualType T) const;
01449 
01450   /// \brief Retrieve the typedef corresponding to the predefined \c id type
01451   /// in Objective-C.
01452   TypedefDecl *getObjCIdDecl() const;
01453   
01454   /// \brief Represents the Objective-CC \c id type.
01455   ///
01456   /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
01457   /// pointer type, a pointer to a struct.
01458   QualType getObjCIdType() const {
01459     return getTypeDeclType(getObjCIdDecl());
01460   }
01461 
01462   /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
01463   /// in Objective-C.
01464   TypedefDecl *getObjCSelDecl() const;
01465   
01466   /// \brief Retrieve the type that corresponds to the predefined Objective-C
01467   /// 'SEL' type.
01468   QualType getObjCSelType() const { 
01469     return getTypeDeclType(getObjCSelDecl());
01470   }
01471 
01472   /// \brief Retrieve the typedef declaration corresponding to the predefined
01473   /// Objective-C 'Class' type.
01474   TypedefDecl *getObjCClassDecl() const;
01475   
01476   /// \brief Represents the Objective-C \c Class type.
01477   ///
01478   /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
01479   /// pointer type, a pointer to a struct.
01480   QualType getObjCClassType() const { 
01481     return getTypeDeclType(getObjCClassDecl());
01482   }
01483 
01484   /// \brief Retrieve the Objective-C class declaration corresponding to 
01485   /// the predefined \c Protocol class.
01486   ObjCInterfaceDecl *getObjCProtocolDecl() const;
01487 
01488   /// \brief Retrieve declaration of 'BOOL' typedef
01489   TypedefDecl *getBOOLDecl() const {
01490     return BOOLDecl;
01491   }
01492 
01493   /// \brief Save declaration of 'BOOL' typedef
01494   void setBOOLDecl(TypedefDecl *TD) {
01495     BOOLDecl = TD;
01496   }
01497 
01498   /// \brief type of 'BOOL' type.
01499   QualType getBOOLType() const {
01500     return getTypeDeclType(getBOOLDecl());
01501   }
01502   
01503   /// \brief Retrieve the type of the Objective-C \c Protocol class.
01504   QualType getObjCProtoType() const {
01505     return getObjCInterfaceType(getObjCProtocolDecl());
01506   }
01507   
01508   /// \brief Retrieve the C type declaration corresponding to the predefined
01509   /// \c __builtin_va_list type.
01510   TypedefDecl *getBuiltinVaListDecl() const;
01511 
01512   /// \brief Retrieve the type of the \c __builtin_va_list type.
01513   QualType getBuiltinVaListType() const {
01514     return getTypeDeclType(getBuiltinVaListDecl());
01515   }
01516 
01517   /// \brief Retrieve the C type declaration corresponding to the predefined
01518   /// \c __va_list_tag type used to help define the \c __builtin_va_list type
01519   /// for some targets.
01520   QualType getVaListTagType() const;
01521 
01522   /// \brief Return a type with additional \c const, \c volatile, or
01523   /// \c restrict qualifiers.
01524   QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
01525     return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
01526   }
01527 
01528   /// \brief Un-split a SplitQualType.
01529   QualType getQualifiedType(SplitQualType split) const {
01530     return getQualifiedType(split.Ty, split.Quals);
01531   }
01532 
01533   /// \brief Return a type with additional qualifiers.
01534   QualType getQualifiedType(QualType T, Qualifiers Qs) const {
01535     if (!Qs.hasNonFastQualifiers())
01536       return T.withFastQualifiers(Qs.getFastQualifiers());
01537     QualifierCollector Qc(Qs);
01538     const Type *Ptr = Qc.strip(T);
01539     return getExtQualType(Ptr, Qc);
01540   }
01541 
01542   /// \brief Return a type with additional qualifiers.
01543   QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
01544     if (!Qs.hasNonFastQualifiers())
01545       return QualType(T, Qs.getFastQualifiers());
01546     return getExtQualType(T, Qs);
01547   }
01548 
01549   /// \brief Return a type with the given lifetime qualifier.
01550   ///
01551   /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
01552   QualType getLifetimeQualifiedType(QualType type,
01553                                     Qualifiers::ObjCLifetime lifetime) {
01554     assert(type.getObjCLifetime() == Qualifiers::OCL_None);
01555     assert(lifetime != Qualifiers::OCL_None);
01556 
01557     Qualifiers qs;
01558     qs.addObjCLifetime(lifetime);
01559     return getQualifiedType(type, qs);
01560   }
01561   
01562   /// getUnqualifiedObjCPointerType - Returns version of
01563   /// Objective-C pointer type with lifetime qualifier removed.
01564   QualType getUnqualifiedObjCPointerType(QualType type) const {
01565     if (!type.getTypePtr()->isObjCObjectPointerType() ||
01566         !type.getQualifiers().hasObjCLifetime())
01567       return type;
01568     Qualifiers Qs = type.getQualifiers();
01569     Qs.removeObjCLifetime();
01570     return getQualifiedType(type.getUnqualifiedType(), Qs);
01571   }
01572   
01573   DeclarationNameInfo getNameForTemplate(TemplateName Name,
01574                                          SourceLocation NameLoc) const;
01575 
01576   TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
01577                                          UnresolvedSetIterator End) const;
01578 
01579   TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
01580                                         bool TemplateKeyword,
01581                                         TemplateDecl *Template) const;
01582 
01583   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
01584                                         const IdentifierInfo *Name) const;
01585   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
01586                                         OverloadedOperatorKind Operator) const;
01587   TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
01588                                             TemplateName replacement) const;
01589   TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
01590                                         const TemplateArgument &ArgPack) const;
01591   
01592   enum GetBuiltinTypeError {
01593     GE_None,              ///< No error
01594     GE_Missing_stdio,     ///< Missing a type from <stdio.h>
01595     GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
01596     GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
01597   };
01598 
01599   /// \brief Return the type for the specified builtin.
01600   ///
01601   /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
01602   /// arguments to the builtin that are required to be integer constant
01603   /// expressions.
01604   QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
01605                           unsigned *IntegerConstantArgs = nullptr) const;
01606 
01607 private:
01608   CanQualType getFromTargetType(unsigned Type) const;
01609   TypeInfo getTypeInfoImpl(const Type *T) const;
01610 
01611   //===--------------------------------------------------------------------===//
01612   //                         Type Predicates.
01613   //===--------------------------------------------------------------------===//
01614 
01615 public:
01616   /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
01617   /// collection attributes.
01618   Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
01619 
01620   /// \brief Return true if the given vector types are of the same unqualified
01621   /// type or if they are equivalent to the same GCC vector type.
01622   ///
01623   /// \note This ignores whether they are target-specific (AltiVec or Neon)
01624   /// types.
01625   bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
01626 
01627   /// \brief Return true if this is an \c NSObject object with its \c NSObject
01628   /// attribute set.
01629   static bool isObjCNSObjectType(QualType Ty) {
01630     return Ty->isObjCNSObjectType();
01631   }
01632 
01633   //===--------------------------------------------------------------------===//
01634   //                         Type Sizing and Analysis
01635   //===--------------------------------------------------------------------===//
01636 
01637   /// \brief Return the APFloat 'semantics' for the specified scalar floating
01638   /// point type.
01639   const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
01640 
01641   /// \brief Get the size and alignment of the specified complete type in bits.
01642   TypeInfo getTypeInfo(const Type *T) const;
01643   TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
01644 
01645   /// \brief Return the size of the specified (complete) type \p T, in bits.
01646   uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
01647   uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
01648 
01649   /// \brief Return the size of the character type, in bits.
01650   uint64_t getCharWidth() const {
01651     return getTypeSize(CharTy);
01652   }
01653   
01654   /// \brief Convert a size in bits to a size in characters.
01655   CharUnits toCharUnitsFromBits(int64_t BitSize) const;
01656 
01657   /// \brief Convert a size in characters to a size in bits.
01658   int64_t toBits(CharUnits CharSize) const;
01659 
01660   /// \brief Return the size of the specified (complete) type \p T, in
01661   /// characters.
01662   CharUnits getTypeSizeInChars(QualType T) const;
01663   CharUnits getTypeSizeInChars(const Type *T) const;
01664 
01665   /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
01666   /// bits.
01667   unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
01668   unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
01669 
01670   /// \brief Return the ABI-specified alignment of a (complete) type \p T, in 
01671   /// characters.
01672   CharUnits getTypeAlignInChars(QualType T) const;
01673   CharUnits getTypeAlignInChars(const Type *T) const;
01674   
01675   // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
01676   // type is a record, its data size is returned.
01677   std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
01678 
01679   std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
01680   std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
01681 
01682   /// \brief Determine if the alignment the type has was required using an
01683   /// alignment attribute.
01684   bool isAlignmentRequired(const Type *T) const;
01685   bool isAlignmentRequired(QualType T) const;
01686 
01687   /// \brief Return the "preferred" alignment of the specified type \p T for
01688   /// the current target, in bits.
01689   ///
01690   /// This can be different than the ABI alignment in cases where it is
01691   /// beneficial for performance to overalign a data type.
01692   unsigned getPreferredTypeAlign(const Type *T) const;
01693 
01694   /// \brief Return the alignment in bits that should be given to a
01695   /// global variable with type \p T.
01696   unsigned getAlignOfGlobalVar(QualType T) const;
01697 
01698   /// \brief Return the alignment in characters that should be given to a
01699   /// global variable with type \p T.
01700   CharUnits getAlignOfGlobalVarInChars(QualType T) const;
01701 
01702   /// \brief Return a conservative estimate of the alignment of the specified
01703   /// decl \p D.
01704   ///
01705   /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
01706   /// alignment.
01707   ///
01708   /// If \p ForAlignof, references are treated like their underlying type
01709   /// and  large arrays don't get any special treatment. If not \p ForAlignof
01710   /// it computes the value expected by CodeGen: references are treated like
01711   /// pointers and large arrays get extra alignment.
01712   CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
01713 
01714   /// \brief Get or compute information about the layout of the specified
01715   /// record (struct/union/class) \p D, which indicates its size and field
01716   /// position information.
01717   const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
01718   const ASTRecordLayout *BuildMicrosoftASTRecordLayout(const RecordDecl *D) const;
01719 
01720   /// \brief Get or compute information about the layout of the specified
01721   /// Objective-C interface.
01722   const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
01723     const;
01724 
01725   void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
01726                         bool Simple = false) const;
01727 
01728   /// \brief Get or compute information about the layout of the specified
01729   /// Objective-C implementation.
01730   ///
01731   /// This may differ from the interface if synthesized ivars are present.
01732   const ASTRecordLayout &
01733   getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
01734 
01735   /// \brief Get our current best idea for the key function of the
01736   /// given record decl, or NULL if there isn't one.
01737   ///
01738   /// The key function is, according to the Itanium C++ ABI section 5.2.3:
01739   ///   ...the first non-pure virtual function that is not inline at the
01740   ///   point of class definition.
01741   ///
01742   /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
01743   /// virtual functions that are defined 'inline', which means that
01744   /// the result of this computation can change.
01745   const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
01746 
01747   /// \brief Observe that the given method cannot be a key function.
01748   /// Checks the key-function cache for the method's class and clears it
01749   /// if matches the given declaration.
01750   ///
01751   /// This is used in ABIs where out-of-line definitions marked
01752   /// inline are not considered to be key functions.
01753   ///
01754   /// \param method should be the declaration from the class definition
01755   void setNonKeyFunction(const CXXMethodDecl *method);
01756 
01757   /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
01758   uint64_t getFieldOffset(const ValueDecl *FD) const;
01759 
01760   bool isNearlyEmpty(const CXXRecordDecl *RD) const;
01761 
01762   VTableContextBase *getVTableContext();
01763 
01764   MangleContext *createMangleContext();
01765   
01766   void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
01767                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
01768   
01769   unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
01770   void CollectInheritedProtocols(const Decl *CDecl,
01771                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
01772 
01773   //===--------------------------------------------------------------------===//
01774   //                            Type Operators
01775   //===--------------------------------------------------------------------===//
01776 
01777   /// \brief Return the canonical (structural) type corresponding to the
01778   /// specified potentially non-canonical type \p T.
01779   ///
01780   /// The non-canonical version of a type may have many "decorated" versions of
01781   /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
01782   /// returned type is guaranteed to be free of any of these, allowing two
01783   /// canonical types to be compared for exact equality with a simple pointer
01784   /// comparison.
01785   CanQualType getCanonicalType(QualType T) const {
01786     return CanQualType::CreateUnsafe(T.getCanonicalType());
01787   }
01788 
01789   const Type *getCanonicalType(const Type *T) const {
01790     return T->getCanonicalTypeInternal().getTypePtr();
01791   }
01792 
01793   /// \brief Return the canonical parameter type corresponding to the specific
01794   /// potentially non-canonical one.
01795   ///
01796   /// Qualifiers are stripped off, functions are turned into function
01797   /// pointers, and arrays decay one level into pointers.
01798   CanQualType getCanonicalParamType(QualType T) const;
01799 
01800   /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
01801   bool hasSameType(QualType T1, QualType T2) const {
01802     return getCanonicalType(T1) == getCanonicalType(T2);
01803   }
01804 
01805   bool hasSameType(const Type *T1, const Type *T2) const {
01806     return getCanonicalType(T1) == getCanonicalType(T2);
01807   }
01808 
01809   /// \brief Return this type as a completely-unqualified array type,
01810   /// capturing the qualifiers in \p Quals.
01811   ///
01812   /// This will remove the minimal amount of sugaring from the types, similar
01813   /// to the behavior of QualType::getUnqualifiedType().
01814   ///
01815   /// \param T is the qualified type, which may be an ArrayType
01816   ///
01817   /// \param Quals will receive the full set of qualifiers that were
01818   /// applied to the array.
01819   ///
01820   /// \returns if this is an array type, the completely unqualified array type
01821   /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
01822   QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
01823 
01824   /// \brief Determine whether the given types are equivalent after
01825   /// cvr-qualifiers have been removed.
01826   bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
01827     return getCanonicalType(T1).getTypePtr() ==
01828            getCanonicalType(T2).getTypePtr();
01829   }
01830 
01831   bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
01832                            const ObjCMethodDecl *MethodImp);
01833   
01834   bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
01835   
01836   /// \brief Retrieves the "canonical" nested name specifier for a
01837   /// given nested name specifier.
01838   ///
01839   /// The canonical nested name specifier is a nested name specifier
01840   /// that uniquely identifies a type or namespace within the type
01841   /// system. For example, given:
01842   ///
01843   /// \code
01844   /// namespace N {
01845   ///   struct S {
01846   ///     template<typename T> struct X { typename T* type; };
01847   ///   };
01848   /// }
01849   ///
01850   /// template<typename T> struct Y {
01851   ///   typename N::S::X<T>::type member;
01852   /// };
01853   /// \endcode
01854   ///
01855   /// Here, the nested-name-specifier for N::S::X<T>:: will be
01856   /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
01857   /// by declarations in the type system and the canonical type for
01858   /// the template type parameter 'T' is template-param-0-0.
01859   NestedNameSpecifier *
01860   getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
01861 
01862   /// \brief Retrieves the default calling convention for the current target.
01863   CallingConv getDefaultCallingConvention(bool isVariadic,
01864                                           bool IsCXXMethod) const;
01865 
01866   /// \brief Retrieves the "canonical" template name that refers to a
01867   /// given template.
01868   ///
01869   /// The canonical template name is the simplest expression that can
01870   /// be used to refer to a given template. For most templates, this
01871   /// expression is just the template declaration itself. For example,
01872   /// the template std::vector can be referred to via a variety of
01873   /// names---std::vector, \::std::vector, vector (if vector is in
01874   /// scope), etc.---but all of these names map down to the same
01875   /// TemplateDecl, which is used to form the canonical template name.
01876   ///
01877   /// Dependent template names are more interesting. Here, the
01878   /// template name could be something like T::template apply or
01879   /// std::allocator<T>::template rebind, where the nested name
01880   /// specifier itself is dependent. In this case, the canonical
01881   /// template name uses the shortest form of the dependent
01882   /// nested-name-specifier, which itself contains all canonical
01883   /// types, values, and templates.
01884   TemplateName getCanonicalTemplateName(TemplateName Name) const;
01885 
01886   /// \brief Determine whether the given template names refer to the same
01887   /// template.
01888   bool hasSameTemplateName(TemplateName X, TemplateName Y);
01889   
01890   /// \brief Retrieve the "canonical" template argument.
01891   ///
01892   /// The canonical template argument is the simplest template argument
01893   /// (which may be a type, value, expression, or declaration) that
01894   /// expresses the value of the argument.
01895   TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
01896     const;
01897 
01898   /// Type Query functions.  If the type is an instance of the specified class,
01899   /// return the Type pointer for the underlying maximally pretty type.  This
01900   /// is a member of ASTContext because this may need to do some amount of
01901   /// canonicalization, e.g. to move type qualifiers into the element type.
01902   const ArrayType *getAsArrayType(QualType T) const;
01903   const ConstantArrayType *getAsConstantArrayType(QualType T) const {
01904     return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
01905   }
01906   const VariableArrayType *getAsVariableArrayType(QualType T) const {
01907     return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
01908   }
01909   const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
01910     return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
01911   }
01912   const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
01913     const {
01914     return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
01915   }
01916   
01917   /// \brief Return the innermost element type of an array type.
01918   ///
01919   /// For example, will return "int" for int[m][n]
01920   QualType getBaseElementType(const ArrayType *VAT) const;
01921 
01922   /// \brief Return the innermost element type of a type (which needn't
01923   /// actually be an array type).
01924   QualType getBaseElementType(QualType QT) const;
01925 
01926   /// \brief Return number of constant array elements.
01927   uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
01928 
01929   /// \brief Perform adjustment on the parameter type of a function.
01930   ///
01931   /// This routine adjusts the given parameter type @p T to the actual
01932   /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
01933   /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
01934   QualType getAdjustedParameterType(QualType T) const;
01935   
01936   /// \brief Retrieve the parameter type as adjusted for use in the signature
01937   /// of a function, decaying array and function types and removing top-level
01938   /// cv-qualifiers.
01939   QualType getSignatureParameterType(QualType T) const;
01940   
01941   /// \brief Return the properly qualified result of decaying the specified
01942   /// array type to a pointer.
01943   ///
01944   /// This operation is non-trivial when handling typedefs etc.  The canonical
01945   /// type of \p T must be an array type, this returns a pointer to a properly
01946   /// qualified element of the array.
01947   ///
01948   /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
01949   QualType getArrayDecayedType(QualType T) const;
01950 
01951   /// \brief Return the type that \p PromotableType will promote to: C99
01952   /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
01953   QualType getPromotedIntegerType(QualType PromotableType) const;
01954 
01955   /// \brief Recurses in pointer/array types until it finds an Objective-C
01956   /// retainable type and returns its ownership.
01957   Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
01958 
01959   /// \brief Whether this is a promotable bitfield reference according
01960   /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
01961   ///
01962   /// \returns the type this bit-field will promote to, or NULL if no
01963   /// promotion occurs.
01964   QualType isPromotableBitField(Expr *E) const;
01965 
01966   /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1. 
01967   ///
01968   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
01969   /// \p LHS < \p RHS, return -1.
01970   int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
01971 
01972   /// \brief Compare the rank of the two specified floating point types,
01973   /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
01974   ///
01975   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
01976   /// \p LHS < \p RHS, return -1.
01977   int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
01978 
01979   /// \brief Return a real floating point or a complex type (based on
01980   /// \p typeDomain/\p typeSize).
01981   ///
01982   /// \param typeDomain a real floating point or complex type.
01983   /// \param typeSize a real floating point or complex type.
01984   QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
01985                                              QualType typeDomain) const;
01986 
01987   unsigned getTargetAddressSpace(QualType T) const {
01988     return getTargetAddressSpace(T.getQualifiers());
01989   }
01990 
01991   unsigned getTargetAddressSpace(Qualifiers Q) const {
01992     return getTargetAddressSpace(Q.getAddressSpace());
01993   }
01994 
01995   unsigned getTargetAddressSpace(unsigned AS) const {
01996     if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
01997       return AS;
01998     else
01999       return (*AddrSpaceMap)[AS - LangAS::Offset];
02000   }
02001 
02002   bool addressSpaceMapManglingFor(unsigned AS) const {
02003     return AddrSpaceMapMangling || 
02004            AS < LangAS::Offset || 
02005            AS >= LangAS::Offset + LangAS::Count;
02006   }
02007 
02008 private:
02009   // Helper for integer ordering
02010   unsigned getIntegerRank(const Type *T) const;
02011 
02012 public:
02013 
02014   //===--------------------------------------------------------------------===//
02015   //                    Type Compatibility Predicates
02016   //===--------------------------------------------------------------------===//
02017 
02018   /// Compatibility predicates used to check assignment expressions.
02019   bool typesAreCompatible(QualType T1, QualType T2, 
02020                           bool CompareUnqualified = false); // C99 6.2.7p1
02021 
02022   bool propertyTypesAreCompatible(QualType, QualType); 
02023   bool typesAreBlockPointerCompatible(QualType, QualType); 
02024 
02025   bool isObjCIdType(QualType T) const {
02026     return T == getObjCIdType();
02027   }
02028   bool isObjCClassType(QualType T) const {
02029     return T == getObjCClassType();
02030   }
02031   bool isObjCSelType(QualType T) const {
02032     return T == getObjCSelType();
02033   }
02034   bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
02035                                          bool ForCompare);
02036 
02037   bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
02038   
02039   // Check the safety of assignment from LHS to RHS
02040   bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
02041                                const ObjCObjectPointerType *RHSOPT);
02042   bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
02043                                const ObjCObjectType *RHS);
02044   bool canAssignObjCInterfacesInBlockPointer(
02045                                           const ObjCObjectPointerType *LHSOPT,
02046                                           const ObjCObjectPointerType *RHSOPT,
02047                                           bool BlockReturnType);
02048   bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
02049   QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
02050                                    const ObjCObjectPointerType *RHSOPT);
02051   bool canBindObjCObjectType(QualType To, QualType From);
02052 
02053   // Functions for calculating composite types
02054   QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
02055                       bool Unqualified = false, bool BlockReturnType = false);
02056   QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
02057                               bool Unqualified = false);
02058   QualType mergeFunctionParameterTypes(QualType, QualType,
02059                                        bool OfBlockPointer = false,
02060                                        bool Unqualified = false);
02061   QualType mergeTransparentUnionType(QualType, QualType,
02062                                      bool OfBlockPointer=false,
02063                                      bool Unqualified = false);
02064   
02065   QualType mergeObjCGCQualifiers(QualType, QualType);
02066     
02067   bool FunctionTypesMatchOnNSConsumedAttrs(
02068          const FunctionProtoType *FromFunctionType,
02069          const FunctionProtoType *ToFunctionType);
02070 
02071   void ResetObjCLayout(const ObjCContainerDecl *CD) {
02072     ObjCLayouts[CD] = nullptr;
02073   }
02074 
02075   //===--------------------------------------------------------------------===//
02076   //                    Integer Predicates
02077   //===--------------------------------------------------------------------===//
02078 
02079   // The width of an integer, as defined in C99 6.2.6.2. This is the number
02080   // of bits in an integer type excluding any padding bits.
02081   unsigned getIntWidth(QualType T) const;
02082 
02083   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
02084   // unsigned integer type.  This method takes a signed type, and returns the
02085   // corresponding unsigned integer type.
02086   QualType getCorrespondingUnsignedType(QualType T) const;
02087 
02088   //===--------------------------------------------------------------------===//
02089   //                    Type Iterators.
02090   //===--------------------------------------------------------------------===//
02091   typedef llvm::iterator_range<SmallVectorImpl<Type *>::const_iterator>
02092     type_const_range;
02093 
02094   type_const_range types() const {
02095     return type_const_range(Types.begin(), Types.end());
02096   }
02097 
02098   //===--------------------------------------------------------------------===//
02099   //                    Integer Values
02100   //===--------------------------------------------------------------------===//
02101 
02102   /// \brief Make an APSInt of the appropriate width and signedness for the
02103   /// given \p Value and integer \p Type.
02104   llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
02105     llvm::APSInt Res(getIntWidth(Type), 
02106                      !Type->isSignedIntegerOrEnumerationType());
02107     Res = Value;
02108     return Res;
02109   }
02110 
02111   bool isSentinelNullExpr(const Expr *E);
02112 
02113   /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
02114   /// none exists.
02115   ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
02116   /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
02117   /// none exists.
02118   ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
02119 
02120   /// \brief Return true if there is at least one \@implementation in the TU.
02121   bool AnyObjCImplementation() {
02122     return !ObjCImpls.empty();
02123   }
02124 
02125   /// \brief Set the implementation of ObjCInterfaceDecl.
02126   void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
02127                              ObjCImplementationDecl *ImplD);
02128   /// \brief Set the implementation of ObjCCategoryDecl.
02129   void setObjCImplementation(ObjCCategoryDecl *CatD,
02130                              ObjCCategoryImplDecl *ImplD);
02131 
02132   /// \brief Get the duplicate declaration of a ObjCMethod in the same
02133   /// interface, or null if none exists.
02134   const ObjCMethodDecl *getObjCMethodRedeclaration(
02135                                                const ObjCMethodDecl *MD) const {
02136     return ObjCMethodRedecls.lookup(MD);
02137   }
02138 
02139   void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
02140                                   const ObjCMethodDecl *Redecl) {
02141     assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
02142     ObjCMethodRedecls[MD] = Redecl;
02143   }
02144 
02145   /// \brief Returns the Objective-C interface that \p ND belongs to if it is
02146   /// an Objective-C method/property/ivar etc. that is part of an interface,
02147   /// otherwise returns null.
02148   const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
02149   
02150   /// \brief Set the copy inialization expression of a block var decl.
02151   void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
02152   /// \brief Get the copy initialization expression of the VarDecl \p VD, or
02153   /// NULL if none exists.
02154   Expr *getBlockVarCopyInits(const VarDecl* VD);
02155 
02156   /// \brief Allocate an uninitialized TypeSourceInfo.
02157   ///
02158   /// The caller should initialize the memory held by TypeSourceInfo using
02159   /// the TypeLoc wrappers.
02160   ///
02161   /// \param T the type that will be the basis for type source info. This type
02162   /// should refer to how the declarator was written in source code, not to
02163   /// what type semantic analysis resolved the declarator to.
02164   ///
02165   /// \param Size the size of the type info to create, or 0 if the size
02166   /// should be calculated based on the type.
02167   TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
02168 
02169   /// \brief Allocate a TypeSourceInfo where all locations have been
02170   /// initialized to a given location, which defaults to the empty
02171   /// location.
02172   TypeSourceInfo *
02173   getTrivialTypeSourceInfo(QualType T, 
02174                            SourceLocation Loc = SourceLocation()) const;
02175 
02176   TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
02177 
02178   /// \brief Add a deallocation callback that will be invoked when the 
02179   /// ASTContext is destroyed.
02180   ///
02181   /// \param Callback A callback function that will be invoked on destruction.
02182   ///
02183   /// \param Data Pointer data that will be provided to the callback function
02184   /// when it is called.
02185   void AddDeallocation(void (*Callback)(void*), void *Data);
02186 
02187   GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
02188   GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
02189 
02190   /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
02191   /// lazily, only when used; this is only relevant for function or file scoped
02192   /// var definitions.
02193   ///
02194   /// \returns true if the function/var must be CodeGen'ed/deserialized even if
02195   /// it is not used.
02196   bool DeclMustBeEmitted(const Decl *D);
02197 
02198   void setManglingNumber(const NamedDecl *ND, unsigned Number);
02199   unsigned getManglingNumber(const NamedDecl *ND) const;
02200 
02201   void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
02202   unsigned getStaticLocalNumber(const VarDecl *VD) const;
02203 
02204   /// \brief Retrieve the context for computing mangling numbers in the given
02205   /// DeclContext.
02206   MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
02207 
02208   MangleNumberingContext *createMangleNumberingContext() const;
02209 
02210   /// \brief Used by ParmVarDecl to store on the side the
02211   /// index of the parameter when it exceeds the size of the normal bitfield.
02212   void setParameterIndex(const ParmVarDecl *D, unsigned index);
02213 
02214   /// \brief Used by ParmVarDecl to retrieve on the side the
02215   /// index of the parameter when it exceeds the size of the normal bitfield.
02216   unsigned getParameterIndex(const ParmVarDecl *D) const;
02217 
02218   /// \brief Get the storage for the constant value of a materialized temporary
02219   /// of static storage duration.
02220   APValue *getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
02221                                          bool MayCreate);
02222 
02223   //===--------------------------------------------------------------------===//
02224   //                    Statistics
02225   //===--------------------------------------------------------------------===//
02226 
02227   /// \brief The number of implicitly-declared default constructors.
02228   static unsigned NumImplicitDefaultConstructors;
02229   
02230   /// \brief The number of implicitly-declared default constructors for 
02231   /// which declarations were built.
02232   static unsigned NumImplicitDefaultConstructorsDeclared;
02233 
02234   /// \brief The number of implicitly-declared copy constructors.
02235   static unsigned NumImplicitCopyConstructors;
02236   
02237   /// \brief The number of implicitly-declared copy constructors for 
02238   /// which declarations were built.
02239   static unsigned NumImplicitCopyConstructorsDeclared;
02240 
02241   /// \brief The number of implicitly-declared move constructors.
02242   static unsigned NumImplicitMoveConstructors;
02243 
02244   /// \brief The number of implicitly-declared move constructors for
02245   /// which declarations were built.
02246   static unsigned NumImplicitMoveConstructorsDeclared;
02247 
02248   /// \brief The number of implicitly-declared copy assignment operators.
02249   static unsigned NumImplicitCopyAssignmentOperators;
02250   
02251   /// \brief The number of implicitly-declared copy assignment operators for 
02252   /// which declarations were built.
02253   static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
02254 
02255   /// \brief The number of implicitly-declared move assignment operators.
02256   static unsigned NumImplicitMoveAssignmentOperators;
02257   
02258   /// \brief The number of implicitly-declared move assignment operators for 
02259   /// which declarations were built.
02260   static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
02261 
02262   /// \brief The number of implicitly-declared destructors.
02263   static unsigned NumImplicitDestructors;
02264   
02265   /// \brief The number of implicitly-declared destructors for which 
02266   /// declarations were built.
02267   static unsigned NumImplicitDestructorsDeclared;
02268   
02269 private:
02270   ASTContext(const ASTContext &) LLVM_DELETED_FUNCTION;
02271   void operator=(const ASTContext &) LLVM_DELETED_FUNCTION;
02272 
02273 public:
02274   /// \brief Initialize built-in types.
02275   ///
02276   /// This routine may only be invoked once for a given ASTContext object.
02277   /// It is normally invoked after ASTContext construction.
02278   ///
02279   /// \param Target The target 
02280   void InitBuiltinTypes(const TargetInfo &Target);
02281   
02282 private:
02283   void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
02284 
02285   // Return the Objective-C type encoding for a given type.
02286   void getObjCEncodingForTypeImpl(QualType t, std::string &S,
02287                                   bool ExpandPointedToStructures,
02288                                   bool ExpandStructures,
02289                                   const FieldDecl *Field,
02290                                   bool OutermostType = false,
02291                                   bool EncodingProperty = false,
02292                                   bool StructField = false,
02293                                   bool EncodeBlockParameters = false,
02294                                   bool EncodeClassNames = false,
02295                                   bool EncodePointerToObjCTypedef = false,
02296                                   QualType *NotEncodedT=nullptr) const;
02297 
02298   // Adds the encoding of the structure's members.
02299   void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
02300                                        const FieldDecl *Field,
02301                                        bool includeVBases = true,
02302                                        QualType *NotEncodedT=nullptr) const;
02303 public:
02304   // Adds the encoding of a method parameter or return type.
02305   void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
02306                                          QualType T, std::string& S,
02307                                          bool Extended) const;
02308 
02309   /// \brief Returns true if this is an inline-initialized static data member
02310   /// which is treated as a definition for MSVC compatibility.
02311   bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
02312   
02313 private:
02314   const ASTRecordLayout &
02315   getObjCLayout(const ObjCInterfaceDecl *D,
02316                 const ObjCImplementationDecl *Impl) const;
02317 
02318   /// \brief A set of deallocations that should be performed when the
02319   /// ASTContext is destroyed.
02320   typedef llvm::SmallDenseMap<void(*)(void*), llvm::SmallVector<void*, 16> >
02321     DeallocationMap;
02322   DeallocationMap Deallocations;
02323 
02324   // FIXME: This currently contains the set of StoredDeclMaps used
02325   // by DeclContext objects.  This probably should not be in ASTContext,
02326   // but we include it here so that ASTContext can quickly deallocate them.
02327   llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
02328 
02329   friend class DeclContext;
02330   friend class DeclarationNameTable;
02331   void ReleaseDeclContextMaps();
02332   void ReleaseParentMapEntries();
02333 
02334   std::unique_ptr<ParentMap> AllParents;
02335 
02336   std::unique_ptr<VTableContextBase> VTContext;
02337 
02338 public:
02339   enum PragmaSectionFlag : unsigned {
02340     PSF_None = 0,
02341     PSF_Read = 0x1,
02342     PSF_Write = 0x2,
02343     PSF_Execute = 0x4,
02344     PSF_Implicit = 0x8,
02345     PSF_Invalid = 0x80000000U,
02346   };
02347 
02348   struct SectionInfo {
02349     DeclaratorDecl *Decl;
02350     SourceLocation PragmaSectionLocation;
02351     int SectionFlags;
02352     SectionInfo() {}
02353     SectionInfo(DeclaratorDecl *Decl,
02354                 SourceLocation PragmaSectionLocation,
02355                 int SectionFlags)
02356       : Decl(Decl),
02357         PragmaSectionLocation(PragmaSectionLocation),
02358         SectionFlags(SectionFlags) {}
02359   };
02360 
02361   llvm::StringMap<SectionInfo> SectionInfos;
02362 };
02363 
02364 /// \brief Utility function for constructing a nullary selector.
02365 static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
02366   IdentifierInfo* II = &Ctx.Idents.get(name);
02367   return Ctx.Selectors.getSelector(0, &II);
02368 }
02369 
02370 /// \brief Utility function for constructing an unary selector.
02371 static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
02372   IdentifierInfo* II = &Ctx.Idents.get(name);
02373   return Ctx.Selectors.getSelector(1, &II);
02374 }
02375 
02376 }  // end namespace clang
02377 
02378 // operator new and delete aren't allowed inside namespaces.
02379 
02380 /// @brief Placement new for using the ASTContext's allocator.
02381 ///
02382 /// This placement form of operator new uses the ASTContext's allocator for
02383 /// obtaining memory.
02384 ///
02385 /// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
02386 /// here need to also be made there.
02387 ///
02388 /// We intentionally avoid using a nothrow specification here so that the calls
02389 /// to this operator will not perform a null check on the result -- the
02390 /// underlying allocator never returns null pointers.
02391 ///
02392 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
02393 /// @code
02394 /// // Default alignment (8)
02395 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
02396 /// // Specific alignment
02397 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
02398 /// @endcode
02399 /// Memory allocated through this placement new operator does not need to be
02400 /// explicitly freed, as ASTContext will free all of this memory when it gets
02401 /// destroyed. Please note that you cannot use delete on the pointer.
02402 ///
02403 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
02404 /// @param C The ASTContext that provides the allocator.
02405 /// @param Alignment The alignment of the allocated memory (if the underlying
02406 ///                  allocator supports it).
02407 /// @return The allocated memory. Could be NULL.
02408 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
02409                           size_t Alignment) {
02410   return C.Allocate(Bytes, Alignment);
02411 }
02412 /// @brief Placement delete companion to the new above.
02413 ///
02414 /// This operator is just a companion to the new above. There is no way of
02415 /// invoking it directly; see the new operator for more details. This operator
02416 /// is called implicitly by the compiler if a placement new expression using
02417 /// the ASTContext throws in the object constructor.
02418 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
02419   C.Deallocate(Ptr);
02420 }
02421 
02422 /// This placement form of operator new[] uses the ASTContext's allocator for
02423 /// obtaining memory.
02424 ///
02425 /// We intentionally avoid using a nothrow specification here so that the calls
02426 /// to this operator will not perform a null check on the result -- the
02427 /// underlying allocator never returns null pointers.
02428 ///
02429 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
02430 /// @code
02431 /// // Default alignment (8)
02432 /// char *data = new (Context) char[10];
02433 /// // Specific alignment
02434 /// char *data = new (Context, 4) char[10];
02435 /// @endcode
02436 /// Memory allocated through this placement new[] operator does not need to be
02437 /// explicitly freed, as ASTContext will free all of this memory when it gets
02438 /// destroyed. Please note that you cannot use delete on the pointer.
02439 ///
02440 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
02441 /// @param C The ASTContext that provides the allocator.
02442 /// @param Alignment The alignment of the allocated memory (if the underlying
02443 ///                  allocator supports it).
02444 /// @return The allocated memory. Could be NULL.
02445 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
02446                             size_t Alignment = 8) {
02447   return C.Allocate(Bytes, Alignment);
02448 }
02449 
02450 /// @brief Placement delete[] companion to the new[] above.
02451 ///
02452 /// This operator is just a companion to the new[] above. There is no way of
02453 /// invoking it directly; see the new[] operator for more details. This operator
02454 /// is called implicitly by the compiler if a placement new[] expression using
02455 /// the ASTContext throws in the object constructor.
02456 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
02457   C.Deallocate(Ptr);
02458 }
02459 
02460 /// \brief Create the representation of a LazyGenerationalUpdatePtr.
02461 template <typename Owner, typename T,
02462           void (clang::ExternalASTSource::*Update)(Owner)>
02463 typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
02464     clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
02465         const clang::ASTContext &Ctx, T Value) {
02466   // Note, this is implemented here so that ExternalASTSource.h doesn't need to
02467   // include ASTContext.h. We explicitly instantiate it for all relevant types
02468   // in ASTContext.cpp.
02469   if (auto *Source = Ctx.getExternalSource())
02470     return new (Ctx) LazyData(Source, Value);
02471   return Value;
02472 }
02473 
02474 #endif