clang API Documentation

ParseDecl.cpp
Go to the documentation of this file.
00001 //===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 //  This file implements the Declaration portions of the Parser interfaces.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "clang/Parse/Parser.h"
00015 #include "RAIIObjectsForParser.h"
00016 #include "clang/AST/ASTContext.h"
00017 #include "clang/AST/DeclTemplate.h"
00018 #include "clang/Basic/AddressSpaces.h"
00019 #include "clang/Basic/Attributes.h"
00020 #include "clang/Basic/CharInfo.h"
00021 #include "clang/Basic/TargetInfo.h"
00022 #include "clang/Parse/ParseDiagnostic.h"
00023 #include "clang/Sema/Lookup.h"
00024 #include "clang/Sema/ParsedTemplate.h"
00025 #include "clang/Sema/PrettyDeclStackTrace.h"
00026 #include "clang/Sema/Scope.h"
00027 #include "llvm/ADT/SmallSet.h"
00028 #include "llvm/ADT/SmallString.h"
00029 #include "llvm/ADT/StringSwitch.h"
00030 using namespace clang;
00031 
00032 //===----------------------------------------------------------------------===//
00033 // C99 6.7: Declarations.
00034 //===----------------------------------------------------------------------===//
00035 
00036 /// ParseTypeName
00037 ///       type-name: [C99 6.7.6]
00038 ///         specifier-qualifier-list abstract-declarator[opt]
00039 ///
00040 /// Called type-id in C++.
00041 TypeResult Parser::ParseTypeName(SourceRange *Range,
00042                                  Declarator::TheContext Context,
00043                                  AccessSpecifier AS,
00044                                  Decl **OwnedType,
00045                                  ParsedAttributes *Attrs) {
00046   DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
00047   if (DSC == DSC_normal)
00048     DSC = DSC_type_specifier;
00049 
00050   // Parse the common declaration-specifiers piece.
00051   DeclSpec DS(AttrFactory);
00052   if (Attrs)
00053     DS.addAttributes(Attrs->getList());
00054   ParseSpecifierQualifierList(DS, AS, DSC);
00055   if (OwnedType)
00056     *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
00057 
00058   // Parse the abstract-declarator, if present.
00059   Declarator DeclaratorInfo(DS, Context);
00060   ParseDeclarator(DeclaratorInfo);
00061   if (Range)
00062     *Range = DeclaratorInfo.getSourceRange();
00063 
00064   if (DeclaratorInfo.isInvalidType())
00065     return true;
00066 
00067   return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
00068 }
00069 
00070 
00071 /// isAttributeLateParsed - Return true if the attribute has arguments that
00072 /// require late parsing.
00073 static bool isAttributeLateParsed(const IdentifierInfo &II) {
00074 #define CLANG_ATTR_LATE_PARSED_LIST
00075     return llvm::StringSwitch<bool>(II.getName())
00076 #include "clang/Parse/AttrParserStringSwitches.inc"
00077         .Default(false);
00078 #undef CLANG_ATTR_LATE_PARSED_LIST
00079 }
00080 
00081 /// ParseGNUAttributes - Parse a non-empty attributes list.
00082 ///
00083 /// [GNU] attributes:
00084 ///         attribute
00085 ///         attributes attribute
00086 ///
00087 /// [GNU]  attribute:
00088 ///          '__attribute__' '(' '(' attribute-list ')' ')'
00089 ///
00090 /// [GNU]  attribute-list:
00091 ///          attrib
00092 ///          attribute_list ',' attrib
00093 ///
00094 /// [GNU]  attrib:
00095 ///          empty
00096 ///          attrib-name
00097 ///          attrib-name '(' identifier ')'
00098 ///          attrib-name '(' identifier ',' nonempty-expr-list ')'
00099 ///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
00100 ///
00101 /// [GNU]  attrib-name:
00102 ///          identifier
00103 ///          typespec
00104 ///          typequal
00105 ///          storageclass
00106 ///
00107 /// Whether an attribute takes an 'identifier' is determined by the
00108 /// attrib-name. GCC's behavior here is not worth imitating:
00109 ///
00110 ///  * In C mode, if the attribute argument list starts with an identifier
00111 ///    followed by a ',' or an ')', and the identifier doesn't resolve to
00112 ///    a type, it is parsed as an identifier. If the attribute actually
00113 ///    wanted an expression, it's out of luck (but it turns out that no
00114 ///    attributes work that way, because C constant expressions are very
00115 ///    limited).
00116 ///  * In C++ mode, if the attribute argument list starts with an identifier,
00117 ///    and the attribute *wants* an identifier, it is parsed as an identifier.
00118 ///    At block scope, any additional tokens between the identifier and the
00119 ///    ',' or ')' are ignored, otherwise they produce a parse error.
00120 ///
00121 /// We follow the C++ model, but don't allow junk after the identifier.
00122 void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
00123                                 SourceLocation *endLoc,
00124                                 LateParsedAttrList *LateAttrs,
00125                                 Declarator *D) {
00126   assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
00127 
00128   while (Tok.is(tok::kw___attribute)) {
00129     ConsumeToken();
00130     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
00131                          "attribute")) {
00132       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
00133       return;
00134     }
00135     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
00136       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
00137       return;
00138     }
00139     // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
00140     while (true) {
00141       // Allow empty/non-empty attributes. ((__vector_size__(16),,,,))
00142       if (TryConsumeToken(tok::comma))
00143         continue;
00144 
00145       // Expect an identifier or declaration specifier (const, int, etc.)
00146       if (Tok.isNot(tok::identifier) && !isDeclarationSpecifier())
00147         break;
00148 
00149       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
00150       SourceLocation AttrNameLoc = ConsumeToken();
00151 
00152       if (Tok.isNot(tok::l_paren)) {
00153         attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
00154                      AttributeList::AS_GNU);
00155         continue;
00156       }
00157 
00158       // Handle "parameterized" attributes
00159       if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
00160         ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
00161                               SourceLocation(), AttributeList::AS_GNU, D);
00162         continue;
00163       }
00164 
00165       // Handle attributes with arguments that require late parsing.
00166       LateParsedAttribute *LA =
00167           new LateParsedAttribute(this, *AttrName, AttrNameLoc);
00168       LateAttrs->push_back(LA);
00169 
00170       // Attributes in a class are parsed at the end of the class, along
00171       // with other late-parsed declarations.
00172       if (!ClassStack.empty() && !LateAttrs->parseSoon())
00173         getCurrentClass().LateParsedDeclarations.push_back(LA);
00174 
00175       // consume everything up to and including the matching right parens
00176       ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
00177 
00178       Token Eof;
00179       Eof.startToken();
00180       Eof.setLocation(Tok.getLocation());
00181       LA->Toks.push_back(Eof);
00182     }
00183 
00184     if (ExpectAndConsume(tok::r_paren))
00185       SkipUntil(tok::r_paren, StopAtSemi);
00186     SourceLocation Loc = Tok.getLocation();
00187     if (ExpectAndConsume(tok::r_paren))
00188       SkipUntil(tok::r_paren, StopAtSemi);
00189     if (endLoc)
00190       *endLoc = Loc;
00191   }
00192 }
00193 
00194 /// \brief Normalizes an attribute name by dropping prefixed and suffixed __.
00195 static StringRef normalizeAttrName(StringRef Name) {
00196   if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
00197     Name = Name.drop_front(2).drop_back(2);
00198   return Name;
00199 }
00200 
00201 /// \brief Determine whether the given attribute has an identifier argument.
00202 static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
00203 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
00204   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
00205 #include "clang/Parse/AttrParserStringSwitches.inc"
00206            .Default(false);
00207 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
00208 }
00209 
00210 /// \brief Determine whether the given attribute parses a type argument.
00211 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
00212 #define CLANG_ATTR_TYPE_ARG_LIST
00213   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
00214 #include "clang/Parse/AttrParserStringSwitches.inc"
00215            .Default(false);
00216 #undef CLANG_ATTR_TYPE_ARG_LIST
00217 }
00218 
00219 /// \brief Determine whether the given attribute requires parsing its arguments
00220 /// in an unevaluated context or not.
00221 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
00222 #define CLANG_ATTR_ARG_CONTEXT_LIST
00223   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
00224 #include "clang/Parse/AttrParserStringSwitches.inc"
00225            .Default(false);
00226 #undef CLANG_ATTR_ARG_CONTEXT_LIST
00227 }
00228 
00229 IdentifierLoc *Parser::ParseIdentifierLoc() {
00230   assert(Tok.is(tok::identifier) && "expected an identifier");
00231   IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
00232                                             Tok.getLocation(),
00233                                             Tok.getIdentifierInfo());
00234   ConsumeToken();
00235   return IL;
00236 }
00237 
00238 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
00239                                        SourceLocation AttrNameLoc,
00240                                        ParsedAttributes &Attrs,
00241                                        SourceLocation *EndLoc,
00242                                        IdentifierInfo *ScopeName,
00243                                        SourceLocation ScopeLoc,
00244                                        AttributeList::Syntax Syntax) {
00245   BalancedDelimiterTracker Parens(*this, tok::l_paren);
00246   Parens.consumeOpen();
00247 
00248   TypeResult T;
00249   if (Tok.isNot(tok::r_paren))
00250     T = ParseTypeName();
00251 
00252   if (Parens.consumeClose())
00253     return;
00254 
00255   if (T.isInvalid())
00256     return;
00257 
00258   if (T.isUsable())
00259     Attrs.addNewTypeAttr(&AttrName,
00260                          SourceRange(AttrNameLoc, Parens.getCloseLocation()),
00261                          ScopeName, ScopeLoc, T.get(), Syntax);
00262   else
00263     Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
00264                  ScopeName, ScopeLoc, nullptr, 0, Syntax);
00265 }
00266 
00267 unsigned Parser::ParseAttributeArgsCommon(
00268     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
00269     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
00270     SourceLocation ScopeLoc, AttributeList::Syntax Syntax) {
00271   // Ignore the left paren location for now.
00272   ConsumeParen();
00273 
00274   ArgsVector ArgExprs;
00275   if (Tok.is(tok::identifier)) {
00276     // If this attribute wants an 'identifier' argument, make it so.
00277     bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName);
00278     AttributeList::Kind AttrKind =
00279         AttributeList::getKind(AttrName, ScopeName, Syntax);
00280 
00281     // If we don't know how to parse this attribute, but this is the only
00282     // token in this argument, assume it's meant to be an identifier.
00283     if (AttrKind == AttributeList::UnknownAttribute ||
00284         AttrKind == AttributeList::IgnoredAttribute) {
00285       const Token &Next = NextToken();
00286       IsIdentifierArg = Next.is(tok::r_paren) || Next.is(tok::comma);
00287     }
00288 
00289     if (IsIdentifierArg)
00290       ArgExprs.push_back(ParseIdentifierLoc());
00291   }
00292 
00293   if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
00294     // Eat the comma.
00295     if (!ArgExprs.empty())
00296       ConsumeToken();
00297 
00298     // Parse the non-empty comma-separated list of expressions.
00299     do {
00300       std::unique_ptr<EnterExpressionEvaluationContext> Unevaluated;
00301       if (attributeParsedArgsUnevaluated(*AttrName))
00302         Unevaluated.reset(
00303             new EnterExpressionEvaluationContext(Actions, Sema::Unevaluated));
00304 
00305       ExprResult ArgExpr(ParseAssignmentExpression());
00306       if (ArgExpr.isInvalid()) {
00307         SkipUntil(tok::r_paren, StopAtSemi);
00308         return 0;
00309       }
00310       ArgExprs.push_back(ArgExpr.get());
00311       // Eat the comma, move to the next argument
00312     } while (TryConsumeToken(tok::comma));
00313   }
00314 
00315   SourceLocation RParen = Tok.getLocation();
00316   if (!ExpectAndConsume(tok::r_paren)) {
00317     SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
00318     Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
00319                  ArgExprs.data(), ArgExprs.size(), Syntax);
00320   }
00321 
00322   if (EndLoc)
00323     *EndLoc = RParen;
00324 
00325   return static_cast<unsigned>(ArgExprs.size());
00326 }
00327 
00328 /// Parse the arguments to a parameterized GNU attribute or
00329 /// a C++11 attribute in "gnu" namespace.
00330 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
00331                                    SourceLocation AttrNameLoc,
00332                                    ParsedAttributes &Attrs,
00333                                    SourceLocation *EndLoc,
00334                                    IdentifierInfo *ScopeName,
00335                                    SourceLocation ScopeLoc,
00336                                    AttributeList::Syntax Syntax,
00337                                    Declarator *D) {
00338 
00339   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
00340 
00341   AttributeList::Kind AttrKind =
00342       AttributeList::getKind(AttrName, ScopeName, Syntax);
00343 
00344   if (AttrKind == AttributeList::AT_Availability) {
00345     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
00346                                ScopeLoc, Syntax);
00347     return;
00348   } else if (AttrKind == AttributeList::AT_ObjCBridgeRelated) {
00349     ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
00350                                     ScopeName, ScopeLoc, Syntax);
00351     return;
00352   } else if (AttrKind == AttributeList::AT_TypeTagForDatatype) {
00353     ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
00354                                      ScopeName, ScopeLoc, Syntax);
00355     return;
00356   } else if (attributeIsTypeArgAttr(*AttrName)) {
00357     ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
00358                               ScopeLoc, Syntax);
00359     return;
00360   }
00361 
00362   // These may refer to the function arguments, but need to be parsed early to
00363   // participate in determining whether it's a redeclaration.
00364   std::unique_ptr<ParseScope> PrototypeScope;
00365   if (AttrName->isStr("enable_if") && D && D->isFunctionDeclarator()) {
00366     DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
00367     PrototypeScope.reset(new ParseScope(this, Scope::FunctionPrototypeScope |
00368                                         Scope::FunctionDeclarationScope |
00369                                         Scope::DeclScope));
00370     for (unsigned i = 0; i != FTI.NumParams; ++i) {
00371       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
00372       Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
00373     }
00374   }
00375 
00376   ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
00377                            ScopeLoc, Syntax);
00378 }
00379 
00380 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
00381                                         SourceLocation AttrNameLoc,
00382                                         ParsedAttributes &Attrs) {
00383   // If the attribute isn't known, we will not attempt to parse any
00384   // arguments.
00385   if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
00386                     getTargetInfo().getTriple(), getLangOpts())) {
00387     // Eat the left paren, then skip to the ending right paren.
00388     ConsumeParen();
00389     SkipUntil(tok::r_paren);
00390     return false;
00391   }
00392 
00393   SourceLocation OpenParenLoc = Tok.getLocation();
00394 
00395   if (AttrName->getName() == "property") {
00396     // The property declspec is more complex in that it can take one or two
00397     // assignment expressions as a parameter, but the lhs of the assignment
00398     // must be named get or put.
00399 
00400     BalancedDelimiterTracker T(*this, tok::l_paren);
00401     T.expectAndConsume(diag::err_expected_lparen_after,
00402                        AttrName->getNameStart(), tok::r_paren);
00403 
00404     enum AccessorKind {
00405       AK_Invalid = -1,
00406       AK_Put = 0,
00407       AK_Get = 1 // indices into AccessorNames
00408     };
00409     IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
00410     bool HasInvalidAccessor = false;
00411 
00412     // Parse the accessor specifications.
00413     while (true) {
00414       // Stop if this doesn't look like an accessor spec.
00415       if (!Tok.is(tok::identifier)) {
00416         // If the user wrote a completely empty list, use a special diagnostic.
00417         if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
00418             AccessorNames[AK_Put] == nullptr &&
00419             AccessorNames[AK_Get] == nullptr) {
00420           Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
00421           break;
00422         }
00423 
00424         Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
00425         break;
00426       }
00427 
00428       AccessorKind Kind;
00429       SourceLocation KindLoc = Tok.getLocation();
00430       StringRef KindStr = Tok.getIdentifierInfo()->getName();
00431       if (KindStr == "get") {
00432         Kind = AK_Get;
00433       } else if (KindStr == "put") {
00434         Kind = AK_Put;
00435 
00436         // Recover from the common mistake of using 'set' instead of 'put'.
00437       } else if (KindStr == "set") {
00438         Diag(KindLoc, diag::err_ms_property_has_set_accessor)
00439             << FixItHint::CreateReplacement(KindLoc, "put");
00440         Kind = AK_Put;
00441 
00442         // Handle the mistake of forgetting the accessor kind by skipping
00443         // this accessor.
00444       } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
00445         Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
00446         ConsumeToken();
00447         HasInvalidAccessor = true;
00448         goto next_property_accessor;
00449 
00450         // Otherwise, complain about the unknown accessor kind.
00451       } else {
00452         Diag(KindLoc, diag::err_ms_property_unknown_accessor);
00453         HasInvalidAccessor = true;
00454         Kind = AK_Invalid;
00455 
00456         // Try to keep parsing unless it doesn't look like an accessor spec.
00457         if (!NextToken().is(tok::equal))
00458           break;
00459       }
00460 
00461       // Consume the identifier.
00462       ConsumeToken();
00463 
00464       // Consume the '='.
00465       if (!TryConsumeToken(tok::equal)) {
00466         Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
00467             << KindStr;
00468         break;
00469       }
00470 
00471       // Expect the method name.
00472       if (!Tok.is(tok::identifier)) {
00473         Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
00474         break;
00475       }
00476 
00477       if (Kind == AK_Invalid) {
00478         // Just drop invalid accessors.
00479       } else if (AccessorNames[Kind] != nullptr) {
00480         // Complain about the repeated accessor, ignore it, and keep parsing.
00481         Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
00482       } else {
00483         AccessorNames[Kind] = Tok.getIdentifierInfo();
00484       }
00485       ConsumeToken();
00486 
00487     next_property_accessor:
00488       // Keep processing accessors until we run out.
00489       if (TryConsumeToken(tok::comma))
00490         continue;
00491 
00492       // If we run into the ')', stop without consuming it.
00493       if (Tok.is(tok::r_paren))
00494         break;
00495 
00496       Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
00497       break;
00498     }
00499 
00500     // Only add the property attribute if it was well-formed.
00501     if (!HasInvalidAccessor)
00502       Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
00503                                AccessorNames[AK_Get], AccessorNames[AK_Put],
00504                                AttributeList::AS_Declspec);
00505     T.skipToEnd();
00506     return !HasInvalidAccessor;
00507   }
00508 
00509   unsigned NumArgs =
00510       ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
00511                                SourceLocation(), AttributeList::AS_Declspec);
00512 
00513   // If this attribute's args were parsed, and it was expected to have
00514   // arguments but none were provided, emit a diagnostic.
00515   const AttributeList *Attr = Attrs.getList();
00516   if (Attr && Attr->getMaxArgs() && !NumArgs) {
00517     Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
00518     return false;
00519   }
00520   return true;
00521 }
00522 
00523 /// [MS] decl-specifier:
00524 ///             __declspec ( extended-decl-modifier-seq )
00525 ///
00526 /// [MS] extended-decl-modifier-seq:
00527 ///             extended-decl-modifier[opt]
00528 ///             extended-decl-modifier extended-decl-modifier-seq
00529 void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &Attrs) {
00530   assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
00531 
00532   ConsumeToken();
00533   BalancedDelimiterTracker T(*this, tok::l_paren);
00534   if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
00535                          tok::r_paren))
00536     return;
00537 
00538   // An empty declspec is perfectly legal and should not warn.  Additionally,
00539   // you can specify multiple attributes per declspec.
00540   while (Tok.isNot(tok::r_paren)) {
00541     // Attribute not present.
00542     if (TryConsumeToken(tok::comma))
00543       continue;
00544 
00545     // We expect either a well-known identifier or a generic string.  Anything
00546     // else is a malformed declspec.
00547     bool IsString = Tok.getKind() == tok::string_literal ? true : false;
00548     if (!IsString && Tok.getKind() != tok::identifier &&
00549         Tok.getKind() != tok::kw_restrict) {
00550       Diag(Tok, diag::err_ms_declspec_type);
00551       T.skipToEnd();
00552       return;
00553     }
00554 
00555     IdentifierInfo *AttrName;
00556     SourceLocation AttrNameLoc;
00557     if (IsString) {
00558       SmallString<8> StrBuffer;
00559       bool Invalid = false;
00560       StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
00561       if (Invalid) {
00562         T.skipToEnd();
00563         return;
00564       }
00565       AttrName = PP.getIdentifierInfo(Str);
00566       AttrNameLoc = ConsumeStringToken();
00567     } else {
00568       AttrName = Tok.getIdentifierInfo();
00569       AttrNameLoc = ConsumeToken();
00570     }
00571 
00572     bool AttrHandled = false;
00573 
00574     // Parse attribute arguments.
00575     if (Tok.is(tok::l_paren))
00576       AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
00577     else if (AttrName->getName() == "property")
00578       // The property attribute must have an argument list.
00579       Diag(Tok.getLocation(), diag::err_expected_lparen_after)
00580           << AttrName->getName();
00581 
00582     if (!AttrHandled)
00583       Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
00584                    AttributeList::AS_Declspec);
00585   }
00586   T.consumeClose();
00587 }
00588 
00589 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
00590   // Treat these like attributes
00591   while (true) {
00592     switch (Tok.getKind()) {
00593     case tok::kw___fastcall:
00594     case tok::kw___stdcall:
00595     case tok::kw___thiscall:
00596     case tok::kw___cdecl:
00597     case tok::kw___vectorcall:
00598     case tok::kw___ptr64:
00599     case tok::kw___w64:
00600     case tok::kw___ptr32:
00601     case tok::kw___unaligned:
00602     case tok::kw___sptr:
00603     case tok::kw___uptr: {
00604       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
00605       SourceLocation AttrNameLoc = ConsumeToken();
00606       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
00607                    AttributeList::AS_Keyword);
00608       break;
00609     }
00610     default:
00611       return;
00612     }
00613   }
00614 }
00615 
00616 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
00617   // Treat these like attributes
00618   while (Tok.is(tok::kw___pascal)) {
00619     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
00620     SourceLocation AttrNameLoc = ConsumeToken();
00621     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
00622                  AttributeList::AS_Keyword);
00623   }
00624 }
00625 
00626 void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
00627   // Treat these like attributes
00628   while (Tok.is(tok::kw___kernel)) {
00629     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
00630     SourceLocation AttrNameLoc = ConsumeToken();
00631     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
00632                  AttributeList::AS_Keyword);
00633   }
00634 }
00635 
00636 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
00637   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
00638   SourceLocation AttrNameLoc = Tok.getLocation();
00639   Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
00640                AttributeList::AS_Keyword);
00641 }
00642 
00643 static bool VersionNumberSeparator(const char Separator) {
00644   return (Separator == '.' || Separator == '_');
00645 }
00646 
00647 /// \brief Parse a version number.
00648 ///
00649 /// version:
00650 ///   simple-integer
00651 ///   simple-integer ',' simple-integer
00652 ///   simple-integer ',' simple-integer ',' simple-integer
00653 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
00654   Range = Tok.getLocation();
00655 
00656   if (!Tok.is(tok::numeric_constant)) {
00657     Diag(Tok, diag::err_expected_version);
00658     SkipUntil(tok::comma, tok::r_paren,
00659               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
00660     return VersionTuple();
00661   }
00662 
00663   // Parse the major (and possibly minor and subminor) versions, which
00664   // are stored in the numeric constant. We utilize a quirk of the
00665   // lexer, which is that it handles something like 1.2.3 as a single
00666   // numeric constant, rather than two separate tokens.
00667   SmallString<512> Buffer;
00668   Buffer.resize(Tok.getLength()+1);
00669   const char *ThisTokBegin = &Buffer[0];
00670 
00671   // Get the spelling of the token, which eliminates trigraphs, etc.
00672   bool Invalid = false;
00673   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
00674   if (Invalid)
00675     return VersionTuple();
00676 
00677   // Parse the major version.
00678   unsigned AfterMajor = 0;
00679   unsigned Major = 0;
00680   while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
00681     Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
00682     ++AfterMajor;
00683   }
00684 
00685   if (AfterMajor == 0) {
00686     Diag(Tok, diag::err_expected_version);
00687     SkipUntil(tok::comma, tok::r_paren,
00688               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
00689     return VersionTuple();
00690   }
00691 
00692   if (AfterMajor == ActualLength) {
00693     ConsumeToken();
00694 
00695     // We only had a single version component.
00696     if (Major == 0) {
00697       Diag(Tok, diag::err_zero_version);
00698       return VersionTuple();
00699     }
00700 
00701     return VersionTuple(Major);
00702   }
00703 
00704   const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
00705   if (!VersionNumberSeparator(AfterMajorSeparator)
00706       || (AfterMajor + 1 == ActualLength)) {
00707     Diag(Tok, diag::err_expected_version);
00708     SkipUntil(tok::comma, tok::r_paren,
00709               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
00710     return VersionTuple();
00711   }
00712 
00713   // Parse the minor version.
00714   unsigned AfterMinor = AfterMajor + 1;
00715   unsigned Minor = 0;
00716   while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
00717     Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
00718     ++AfterMinor;
00719   }
00720 
00721   if (AfterMinor == ActualLength) {
00722     ConsumeToken();
00723 
00724     // We had major.minor.
00725     if (Major == 0 && Minor == 0) {
00726       Diag(Tok, diag::err_zero_version);
00727       return VersionTuple();
00728     }
00729 
00730     return VersionTuple(Major, Minor, (AfterMajorSeparator == '_'));
00731   }
00732 
00733   const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
00734   // If what follows is not a '.' or '_', we have a problem.
00735   if (!VersionNumberSeparator(AfterMinorSeparator)) {
00736     Diag(Tok, diag::err_expected_version);
00737     SkipUntil(tok::comma, tok::r_paren,
00738               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
00739     return VersionTuple();
00740   }
00741   
00742   // Warn if separators, be it '.' or '_', do not match.
00743   if (AfterMajorSeparator != AfterMinorSeparator)
00744     Diag(Tok, diag::warn_expected_consistent_version_separator);
00745 
00746   // Parse the subminor version.
00747   unsigned AfterSubminor = AfterMinor + 1;
00748   unsigned Subminor = 0;
00749   while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
00750     Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
00751     ++AfterSubminor;
00752   }
00753 
00754   if (AfterSubminor != ActualLength) {
00755     Diag(Tok, diag::err_expected_version);
00756     SkipUntil(tok::comma, tok::r_paren,
00757               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
00758     return VersionTuple();
00759   }
00760   ConsumeToken();
00761   return VersionTuple(Major, Minor, Subminor, (AfterMajorSeparator == '_'));
00762 }
00763 
00764 /// \brief Parse the contents of the "availability" attribute.
00765 ///
00766 /// availability-attribute:
00767 ///   'availability' '(' platform ',' version-arg-list, opt-message')'
00768 ///
00769 /// platform:
00770 ///   identifier
00771 ///
00772 /// version-arg-list:
00773 ///   version-arg
00774 ///   version-arg ',' version-arg-list
00775 ///
00776 /// version-arg:
00777 ///   'introduced' '=' version
00778 ///   'deprecated' '=' version
00779 ///   'obsoleted' = version
00780 ///   'unavailable'
00781 /// opt-message:
00782 ///   'message' '=' <string>
00783 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
00784                                         SourceLocation AvailabilityLoc,
00785                                         ParsedAttributes &attrs,
00786                                         SourceLocation *endLoc,
00787                                         IdentifierInfo *ScopeName,
00788                                         SourceLocation ScopeLoc,
00789                                         AttributeList::Syntax Syntax) {
00790   enum { Introduced, Deprecated, Obsoleted, Unknown };
00791   AvailabilityChange Changes[Unknown];
00792   ExprResult MessageExpr;
00793 
00794   // Opening '('.
00795   BalancedDelimiterTracker T(*this, tok::l_paren);
00796   if (T.consumeOpen()) {
00797     Diag(Tok, diag::err_expected) << tok::l_paren;
00798     return;
00799   }
00800 
00801   // Parse the platform name,
00802   if (Tok.isNot(tok::identifier)) {
00803     Diag(Tok, diag::err_availability_expected_platform);
00804     SkipUntil(tok::r_paren, StopAtSemi);
00805     return;
00806   }
00807   IdentifierLoc *Platform = ParseIdentifierLoc();
00808 
00809   // Parse the ',' following the platform name.
00810   if (ExpectAndConsume(tok::comma)) {
00811     SkipUntil(tok::r_paren, StopAtSemi);
00812     return;
00813   }
00814 
00815   // If we haven't grabbed the pointers for the identifiers
00816   // "introduced", "deprecated", and "obsoleted", do so now.
00817   if (!Ident_introduced) {
00818     Ident_introduced = PP.getIdentifierInfo("introduced");
00819     Ident_deprecated = PP.getIdentifierInfo("deprecated");
00820     Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
00821     Ident_unavailable = PP.getIdentifierInfo("unavailable");
00822     Ident_message = PP.getIdentifierInfo("message");
00823   }
00824 
00825   // Parse the set of introductions/deprecations/removals.
00826   SourceLocation UnavailableLoc;
00827   do {
00828     if (Tok.isNot(tok::identifier)) {
00829       Diag(Tok, diag::err_availability_expected_change);
00830       SkipUntil(tok::r_paren, StopAtSemi);
00831       return;
00832     }
00833     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
00834     SourceLocation KeywordLoc = ConsumeToken();
00835 
00836     if (Keyword == Ident_unavailable) {
00837       if (UnavailableLoc.isValid()) {
00838         Diag(KeywordLoc, diag::err_availability_redundant)
00839           << Keyword << SourceRange(UnavailableLoc);
00840       }
00841       UnavailableLoc = KeywordLoc;
00842       continue;
00843     }
00844 
00845     if (Tok.isNot(tok::equal)) {
00846       Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
00847       SkipUntil(tok::r_paren, StopAtSemi);
00848       return;
00849     }
00850     ConsumeToken();
00851     if (Keyword == Ident_message) {
00852       if (Tok.isNot(tok::string_literal)) {
00853         Diag(Tok, diag::err_expected_string_literal)
00854           << /*Source='availability attribute'*/2;
00855         SkipUntil(tok::r_paren, StopAtSemi);
00856         return;
00857       }
00858       MessageExpr = ParseStringLiteralExpression();
00859       // Also reject wide string literals.
00860       if (StringLiteral *MessageStringLiteral =
00861               cast_or_null<StringLiteral>(MessageExpr.get())) {
00862         if (MessageStringLiteral->getCharByteWidth() != 1) {
00863           Diag(MessageStringLiteral->getSourceRange().getBegin(),
00864                diag::err_expected_string_literal)
00865             << /*Source='availability attribute'*/ 2;
00866           SkipUntil(tok::r_paren, StopAtSemi);
00867           return;
00868         }
00869       }
00870       break;
00871     }
00872 
00873     // Special handling of 'NA' only when applied to introduced or
00874     // deprecated.
00875     if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
00876         Tok.is(tok::identifier)) {
00877       IdentifierInfo *NA = Tok.getIdentifierInfo();
00878       if (NA->getName() == "NA") {
00879         ConsumeToken();
00880         if (Keyword == Ident_introduced)
00881           UnavailableLoc = KeywordLoc;
00882         continue;
00883       }
00884     }
00885     
00886     SourceRange VersionRange;
00887     VersionTuple Version = ParseVersionTuple(VersionRange);
00888 
00889     if (Version.empty()) {
00890       SkipUntil(tok::r_paren, StopAtSemi);
00891       return;
00892     }
00893 
00894     unsigned Index;
00895     if (Keyword == Ident_introduced)
00896       Index = Introduced;
00897     else if (Keyword == Ident_deprecated)
00898       Index = Deprecated;
00899     else if (Keyword == Ident_obsoleted)
00900       Index = Obsoleted;
00901     else
00902       Index = Unknown;
00903 
00904     if (Index < Unknown) {
00905       if (!Changes[Index].KeywordLoc.isInvalid()) {
00906         Diag(KeywordLoc, diag::err_availability_redundant)
00907           << Keyword
00908           << SourceRange(Changes[Index].KeywordLoc,
00909                          Changes[Index].VersionRange.getEnd());
00910       }
00911 
00912       Changes[Index].KeywordLoc = KeywordLoc;
00913       Changes[Index].Version = Version;
00914       Changes[Index].VersionRange = VersionRange;
00915     } else {
00916       Diag(KeywordLoc, diag::err_availability_unknown_change)
00917         << Keyword << VersionRange;
00918     }
00919 
00920   } while (TryConsumeToken(tok::comma));
00921 
00922   // Closing ')'.
00923   if (T.consumeClose())
00924     return;
00925 
00926   if (endLoc)
00927     *endLoc = T.getCloseLocation();
00928 
00929   // The 'unavailable' availability cannot be combined with any other
00930   // availability changes. Make sure that hasn't happened.
00931   if (UnavailableLoc.isValid()) {
00932     bool Complained = false;
00933     for (unsigned Index = Introduced; Index != Unknown; ++Index) {
00934       if (Changes[Index].KeywordLoc.isValid()) {
00935         if (!Complained) {
00936           Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
00937             << SourceRange(Changes[Index].KeywordLoc,
00938                            Changes[Index].VersionRange.getEnd());
00939           Complained = true;
00940         }
00941 
00942         // Clear out the availability.
00943         Changes[Index] = AvailabilityChange();
00944       }
00945     }
00946   }
00947 
00948   // Record this attribute
00949   attrs.addNew(&Availability,
00950                SourceRange(AvailabilityLoc, T.getCloseLocation()),
00951                ScopeName, ScopeLoc,
00952                Platform,
00953                Changes[Introduced],
00954                Changes[Deprecated],
00955                Changes[Obsoleted],
00956                UnavailableLoc, MessageExpr.get(),
00957                Syntax);
00958 }
00959 
00960 /// \brief Parse the contents of the "objc_bridge_related" attribute.
00961 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
00962 /// related_class:
00963 ///     Identifier
00964 ///
00965 /// opt-class_method:
00966 ///     Identifier: | <empty>
00967 ///
00968 /// opt-instance_method:
00969 ///     Identifier | <empty>
00970 ///
00971 void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
00972                                 SourceLocation ObjCBridgeRelatedLoc,
00973                                 ParsedAttributes &attrs,
00974                                 SourceLocation *endLoc,
00975                                 IdentifierInfo *ScopeName,
00976                                 SourceLocation ScopeLoc,
00977                                 AttributeList::Syntax Syntax) {
00978   // Opening '('.
00979   BalancedDelimiterTracker T(*this, tok::l_paren);
00980   if (T.consumeOpen()) {
00981     Diag(Tok, diag::err_expected) << tok::l_paren;
00982     return;
00983   }
00984   
00985   // Parse the related class name.
00986   if (Tok.isNot(tok::identifier)) {
00987     Diag(Tok, diag::err_objcbridge_related_expected_related_class);
00988     SkipUntil(tok::r_paren, StopAtSemi);
00989     return;
00990   }
00991   IdentifierLoc *RelatedClass = ParseIdentifierLoc();
00992   if (ExpectAndConsume(tok::comma)) {
00993     SkipUntil(tok::r_paren, StopAtSemi);
00994     return;
00995   }
00996 
00997   // Parse optional class method name.
00998   IdentifierLoc *ClassMethod = nullptr;
00999   if (Tok.is(tok::identifier)) {
01000     ClassMethod = ParseIdentifierLoc();
01001     if (!TryConsumeToken(tok::colon)) {
01002       Diag(Tok, diag::err_objcbridge_related_selector_name);
01003       SkipUntil(tok::r_paren, StopAtSemi);
01004       return;
01005     }
01006   }
01007   if (!TryConsumeToken(tok::comma)) {
01008     if (Tok.is(tok::colon))
01009       Diag(Tok, diag::err_objcbridge_related_selector_name);
01010     else
01011       Diag(Tok, diag::err_expected) << tok::comma;
01012     SkipUntil(tok::r_paren, StopAtSemi);
01013     return;
01014   }
01015   
01016   // Parse optional instance method name.
01017   IdentifierLoc *InstanceMethod = nullptr;
01018   if (Tok.is(tok::identifier))
01019     InstanceMethod = ParseIdentifierLoc();
01020   else if (Tok.isNot(tok::r_paren)) {
01021     Diag(Tok, diag::err_expected) << tok::r_paren;
01022     SkipUntil(tok::r_paren, StopAtSemi);
01023     return;
01024   }
01025   
01026   // Closing ')'.
01027   if (T.consumeClose())
01028     return;
01029   
01030   if (endLoc)
01031     *endLoc = T.getCloseLocation();
01032   
01033   // Record this attribute
01034   attrs.addNew(&ObjCBridgeRelated,
01035                SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
01036                ScopeName, ScopeLoc,
01037                RelatedClass,
01038                ClassMethod,
01039                InstanceMethod,
01040                Syntax);
01041 }
01042 
01043 // Late Parsed Attributes:
01044 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
01045 
01046 void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
01047 
01048 void Parser::LateParsedClass::ParseLexedAttributes() {
01049   Self->ParseLexedAttributes(*Class);
01050 }
01051 
01052 void Parser::LateParsedAttribute::ParseLexedAttributes() {
01053   Self->ParseLexedAttribute(*this, true, false);
01054 }
01055 
01056 /// Wrapper class which calls ParseLexedAttribute, after setting up the
01057 /// scope appropriately.
01058 void Parser::ParseLexedAttributes(ParsingClass &Class) {
01059   // Deal with templates
01060   // FIXME: Test cases to make sure this does the right thing for templates.
01061   bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
01062   ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
01063                                 HasTemplateScope);
01064   if (HasTemplateScope)
01065     Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
01066 
01067   // Set or update the scope flags.
01068   bool AlreadyHasClassScope = Class.TopLevelClass;
01069   unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
01070   ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
01071   ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
01072 
01073   // Enter the scope of nested classes
01074   if (!AlreadyHasClassScope)
01075     Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
01076                                                 Class.TagOrTemplate);
01077   if (!Class.LateParsedDeclarations.empty()) {
01078     for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
01079       Class.LateParsedDeclarations[i]->ParseLexedAttributes();
01080     }
01081   }
01082 
01083   if (!AlreadyHasClassScope)
01084     Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
01085                                                  Class.TagOrTemplate);
01086 }
01087 
01088 
01089 /// \brief Parse all attributes in LAs, and attach them to Decl D.
01090 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
01091                                      bool EnterScope, bool OnDefinition) {
01092   assert(LAs.parseSoon() &&
01093          "Attribute list should be marked for immediate parsing.");
01094   for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
01095     if (D)
01096       LAs[i]->addDecl(D);
01097     ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
01098     delete LAs[i];
01099   }
01100   LAs.clear();
01101 }
01102 
01103 
01104 /// \brief Finish parsing an attribute for which parsing was delayed.
01105 /// This will be called at the end of parsing a class declaration
01106 /// for each LateParsedAttribute. We consume the saved tokens and
01107 /// create an attribute with the arguments filled in. We add this
01108 /// to the Attribute list for the decl.
01109 void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
01110                                  bool EnterScope, bool OnDefinition) {
01111   // Save the current token position.
01112   SourceLocation OrigLoc = Tok.getLocation();
01113 
01114   // Append the current token at the end of the new token stream so that it
01115   // doesn't get lost.
01116   LA.Toks.push_back(Tok);
01117   PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
01118   // Consume the previously pushed token.
01119   ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
01120 
01121   ParsedAttributes Attrs(AttrFactory);
01122   SourceLocation endLoc;
01123 
01124   if (LA.Decls.size() > 0) {
01125     Decl *D = LA.Decls[0];
01126     NamedDecl *ND  = dyn_cast<NamedDecl>(D);
01127     RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
01128 
01129     // Allow 'this' within late-parsed attributes.
01130     Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0,
01131                                      ND && ND->isCXXInstanceMember());
01132 
01133     if (LA.Decls.size() == 1) {
01134       // If the Decl is templatized, add template parameters to scope.
01135       bool HasTemplateScope = EnterScope && D->isTemplateDecl();
01136       ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
01137       if (HasTemplateScope)
01138         Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
01139 
01140       // If the Decl is on a function, add function parameters to the scope.
01141       bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
01142       ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunScope);
01143       if (HasFunScope)
01144         Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
01145 
01146       ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
01147                             nullptr, SourceLocation(), AttributeList::AS_GNU,
01148                             nullptr);
01149 
01150       if (HasFunScope) {
01151         Actions.ActOnExitFunctionContext();
01152         FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
01153       }
01154       if (HasTemplateScope) {
01155         TempScope.Exit();
01156       }
01157     } else {
01158       // If there are multiple decls, then the decl cannot be within the
01159       // function scope.
01160       ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
01161                             nullptr, SourceLocation(), AttributeList::AS_GNU,
01162                             nullptr);
01163     }
01164   } else {
01165     Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
01166   }
01167 
01168   const AttributeList *AL = Attrs.getList();
01169   if (OnDefinition && AL && !AL->isCXX11Attribute() &&
01170       AL->isKnownToGCC())
01171     Diag(Tok, diag::warn_attribute_on_function_definition)
01172       << &LA.AttrName;
01173 
01174   for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
01175     Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
01176 
01177   if (Tok.getLocation() != OrigLoc) {
01178     // Due to a parsing error, we either went over the cached tokens or
01179     // there are still cached tokens left, so we skip the leftover tokens.
01180     // Since this is an uncommon situation that should be avoided, use the
01181     // expensive isBeforeInTranslationUnit call.
01182     if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
01183                                                         OrigLoc))
01184     while (Tok.getLocation() != OrigLoc && Tok.isNot(tok::eof))
01185       ConsumeAnyToken();
01186   }
01187 }
01188 
01189 void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
01190                                               SourceLocation AttrNameLoc,
01191                                               ParsedAttributes &Attrs,
01192                                               SourceLocation *EndLoc,
01193                                               IdentifierInfo *ScopeName,
01194                                               SourceLocation ScopeLoc,
01195                                               AttributeList::Syntax Syntax) {
01196   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
01197 
01198   BalancedDelimiterTracker T(*this, tok::l_paren);
01199   T.consumeOpen();
01200 
01201   if (Tok.isNot(tok::identifier)) {
01202     Diag(Tok, diag::err_expected) << tok::identifier;
01203     T.skipToEnd();
01204     return;
01205   }
01206   IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
01207 
01208   if (ExpectAndConsume(tok::comma)) {
01209     T.skipToEnd();
01210     return;
01211   }
01212 
01213   SourceRange MatchingCTypeRange;
01214   TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
01215   if (MatchingCType.isInvalid()) {
01216     T.skipToEnd();
01217     return;
01218   }
01219 
01220   bool LayoutCompatible = false;
01221   bool MustBeNull = false;
01222   while (TryConsumeToken(tok::comma)) {
01223     if (Tok.isNot(tok::identifier)) {
01224       Diag(Tok, diag::err_expected) << tok::identifier;
01225       T.skipToEnd();
01226       return;
01227     }
01228     IdentifierInfo *Flag = Tok.getIdentifierInfo();
01229     if (Flag->isStr("layout_compatible"))
01230       LayoutCompatible = true;
01231     else if (Flag->isStr("must_be_null"))
01232       MustBeNull = true;
01233     else {
01234       Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
01235       T.skipToEnd();
01236       return;
01237     }
01238     ConsumeToken(); // consume flag
01239   }
01240 
01241   if (!T.consumeClose()) {
01242     Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
01243                                    ArgumentKind, MatchingCType.get(),
01244                                    LayoutCompatible, MustBeNull, Syntax);
01245   }
01246 
01247   if (EndLoc)
01248     *EndLoc = T.getCloseLocation();
01249 }
01250 
01251 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
01252 /// of a C++11 attribute-specifier in a location where an attribute is not
01253 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
01254 /// situation.
01255 ///
01256 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
01257 /// this doesn't appear to actually be an attribute-specifier, and the caller
01258 /// should try to parse it.
01259 bool Parser::DiagnoseProhibitedCXX11Attribute() {
01260   assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
01261 
01262   switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
01263   case CAK_NotAttributeSpecifier:
01264     // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
01265     return false;
01266 
01267   case CAK_InvalidAttributeSpecifier:
01268     Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
01269     return false;
01270 
01271   case CAK_AttributeSpecifier:
01272     // Parse and discard the attributes.
01273     SourceLocation BeginLoc = ConsumeBracket();
01274     ConsumeBracket();
01275     SkipUntil(tok::r_square);
01276     assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
01277     SourceLocation EndLoc = ConsumeBracket();
01278     Diag(BeginLoc, diag::err_attributes_not_allowed)
01279       << SourceRange(BeginLoc, EndLoc);
01280     return true;
01281   }
01282   llvm_unreachable("All cases handled above.");
01283 }
01284 
01285 /// \brief We have found the opening square brackets of a C++11
01286 /// attribute-specifier in a location where an attribute is not permitted, but
01287 /// we know where the attributes ought to be written. Parse them anyway, and
01288 /// provide a fixit moving them to the right place.
01289 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
01290                                              SourceLocation CorrectLocation) {
01291   assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
01292          Tok.is(tok::kw_alignas));
01293 
01294   // Consume the attributes.
01295   SourceLocation Loc = Tok.getLocation();
01296   ParseCXX11Attributes(Attrs);
01297   CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
01298 
01299   Diag(Loc, diag::err_attributes_not_allowed)
01300     << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
01301     << FixItHint::CreateRemoval(AttrRange);
01302 }
01303 
01304 void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
01305   Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
01306     << attrs.Range;
01307 }
01308 
01309 void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &attrs) {
01310   AttributeList *AttrList = attrs.getList();
01311   while (AttrList) {
01312     if (AttrList->isCXX11Attribute()) {
01313       Diag(AttrList->getLoc(), diag::err_attribute_not_type_attr) 
01314         << AttrList->getName();
01315       AttrList->setInvalid();
01316     }
01317     AttrList = AttrList->getNext();
01318   }
01319 }
01320 
01321 /// ParseDeclaration - Parse a full 'declaration', which consists of
01322 /// declaration-specifiers, some number of declarators, and a semicolon.
01323 /// 'Context' should be a Declarator::TheContext value.  This returns the
01324 /// location of the semicolon in DeclEnd.
01325 ///
01326 ///       declaration: [C99 6.7]
01327 ///         block-declaration ->
01328 ///           simple-declaration
01329 ///           others                   [FIXME]
01330 /// [C++]   template-declaration
01331 /// [C++]   namespace-definition
01332 /// [C++]   using-directive
01333 /// [C++]   using-declaration
01334 /// [C++11/C11] static_assert-declaration
01335 ///         others... [FIXME]
01336 ///
01337 Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
01338                                                 SourceLocation &DeclEnd,
01339                                           ParsedAttributesWithRange &attrs) {
01340   ParenBraceBracketBalancer BalancerRAIIObj(*this);
01341   // Must temporarily exit the objective-c container scope for
01342   // parsing c none objective-c decls.
01343   ObjCDeclContextSwitch ObjCDC(*this);
01344 
01345   Decl *SingleDecl = nullptr;
01346   Decl *OwnedType = nullptr;
01347   switch (Tok.getKind()) {
01348   case tok::kw_template:
01349   case tok::kw_export:
01350     ProhibitAttributes(attrs);
01351     SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
01352     break;
01353   case tok::kw_inline:
01354     // Could be the start of an inline namespace. Allowed as an ext in C++03.
01355     if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
01356       ProhibitAttributes(attrs);
01357       SourceLocation InlineLoc = ConsumeToken();
01358       SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
01359       break;
01360     }
01361     return ParseSimpleDeclaration(Context, DeclEnd, attrs,
01362                                   true);
01363   case tok::kw_namespace:
01364     ProhibitAttributes(attrs);
01365     SingleDecl = ParseNamespace(Context, DeclEnd);
01366     break;
01367   case tok::kw_using:
01368     SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
01369                                                   DeclEnd, attrs, &OwnedType);
01370     break;
01371   case tok::kw_static_assert:
01372   case tok::kw__Static_assert:
01373     ProhibitAttributes(attrs);
01374     SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
01375     break;
01376   default:
01377     return ParseSimpleDeclaration(Context, DeclEnd, attrs, true);
01378   }
01379 
01380   // This routine returns a DeclGroup, if the thing we parsed only contains a
01381   // single decl, convert it now. Alias declarations can also declare a type;
01382   // include that too if it is present.
01383   return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
01384 }
01385 
01386 ///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
01387 ///         declaration-specifiers init-declarator-list[opt] ';'
01388 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
01389 ///             init-declarator-list ';'
01390 ///[C90/C++]init-declarator-list ';'                             [TODO]
01391 /// [OMP]   threadprivate-directive                              [TODO]
01392 ///
01393 ///       for-range-declaration: [C++11 6.5p1: stmt.ranged]
01394 ///         attribute-specifier-seq[opt] type-specifier-seq declarator
01395 ///
01396 /// If RequireSemi is false, this does not check for a ';' at the end of the
01397 /// declaration.  If it is true, it checks for and eats it.
01398 ///
01399 /// If FRI is non-null, we might be parsing a for-range-declaration instead
01400 /// of a simple-declaration. If we find that we are, we also parse the
01401 /// for-range-initializer, and place it here.
01402 Parser::DeclGroupPtrTy
01403 Parser::ParseSimpleDeclaration(unsigned Context,
01404                                SourceLocation &DeclEnd,
01405                                ParsedAttributesWithRange &Attrs,
01406                                bool RequireSemi, ForRangeInit *FRI) {
01407   // Parse the common declaration-specifiers piece.
01408   ParsingDeclSpec DS(*this);
01409 
01410   DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
01411   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
01412 
01413   // If we had a free-standing type definition with a missing semicolon, we
01414   // may get this far before the problem becomes obvious.
01415   if (DS.hasTagDefinition() &&
01416       DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
01417     return DeclGroupPtrTy();
01418 
01419   // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
01420   // declaration-specifiers init-declarator-list[opt] ';'
01421   if (Tok.is(tok::semi)) {
01422     ProhibitAttributes(Attrs);
01423     DeclEnd = Tok.getLocation();
01424     if (RequireSemi) ConsumeToken();
01425     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
01426                                                        DS);
01427     DS.complete(TheDecl);
01428     return Actions.ConvertDeclToDeclGroup(TheDecl);
01429   }
01430 
01431   DS.takeAttributesFrom(Attrs);
01432   return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);
01433 }
01434 
01435 /// Returns true if this might be the start of a declarator, or a common typo
01436 /// for a declarator.
01437 bool Parser::MightBeDeclarator(unsigned Context) {
01438   switch (Tok.getKind()) {
01439   case tok::annot_cxxscope:
01440   case tok::annot_template_id:
01441   case tok::caret:
01442   case tok::code_completion:
01443   case tok::coloncolon:
01444   case tok::ellipsis:
01445   case tok::kw___attribute:
01446   case tok::kw_operator:
01447   case tok::l_paren:
01448   case tok::star:
01449     return true;
01450 
01451   case tok::amp:
01452   case tok::ampamp:
01453     return getLangOpts().CPlusPlus;
01454 
01455   case tok::l_square: // Might be an attribute on an unnamed bit-field.
01456     return Context == Declarator::MemberContext && getLangOpts().CPlusPlus11 &&
01457            NextToken().is(tok::l_square);
01458 
01459   case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
01460     return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
01461 
01462   case tok::identifier:
01463     switch (NextToken().getKind()) {
01464     case tok::code_completion:
01465     case tok::coloncolon:
01466     case tok::comma:
01467     case tok::equal:
01468     case tok::equalequal: // Might be a typo for '='.
01469     case tok::kw_alignas:
01470     case tok::kw_asm:
01471     case tok::kw___attribute:
01472     case tok::l_brace:
01473     case tok::l_paren:
01474     case tok::l_square:
01475     case tok::less:
01476     case tok::r_brace:
01477     case tok::r_paren:
01478     case tok::r_square:
01479     case tok::semi:
01480       return true;
01481 
01482     case tok::colon:
01483       // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
01484       // and in block scope it's probably a label. Inside a class definition,
01485       // this is a bit-field.
01486       return Context == Declarator::MemberContext ||
01487              (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
01488 
01489     case tok::identifier: // Possible virt-specifier.
01490       return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
01491 
01492     default:
01493       return false;
01494     }
01495 
01496   default:
01497     return false;
01498   }
01499 }
01500 
01501 /// Skip until we reach something which seems like a sensible place to pick
01502 /// up parsing after a malformed declaration. This will sometimes stop sooner
01503 /// than SkipUntil(tok::r_brace) would, but will never stop later.
01504 void Parser::SkipMalformedDecl() {
01505   while (true) {
01506     switch (Tok.getKind()) {
01507     case tok::l_brace:
01508       // Skip until matching }, then stop. We've probably skipped over
01509       // a malformed class or function definition or similar.
01510       ConsumeBrace();
01511       SkipUntil(tok::r_brace);
01512       if (Tok.is(tok::comma) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try)) {
01513         // This declaration isn't over yet. Keep skipping.
01514         continue;
01515       }
01516       TryConsumeToken(tok::semi);
01517       return;
01518 
01519     case tok::l_square:
01520       ConsumeBracket();
01521       SkipUntil(tok::r_square);
01522       continue;
01523 
01524     case tok::l_paren:
01525       ConsumeParen();
01526       SkipUntil(tok::r_paren);
01527       continue;
01528 
01529     case tok::r_brace:
01530       return;
01531 
01532     case tok::semi:
01533       ConsumeToken();
01534       return;
01535 
01536     case tok::kw_inline:
01537       // 'inline namespace' at the start of a line is almost certainly
01538       // a good place to pick back up parsing, except in an Objective-C
01539       // @interface context.
01540       if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
01541           (!ParsingInObjCContainer || CurParsedObjCImpl))
01542         return;
01543       break;
01544 
01545     case tok::kw_namespace:
01546       // 'namespace' at the start of a line is almost certainly a good
01547       // place to pick back up parsing, except in an Objective-C
01548       // @interface context.
01549       if (Tok.isAtStartOfLine() &&
01550           (!ParsingInObjCContainer || CurParsedObjCImpl))
01551         return;
01552       break;
01553 
01554     case tok::at:
01555       // @end is very much like } in Objective-C contexts.
01556       if (NextToken().isObjCAtKeyword(tok::objc_end) &&
01557           ParsingInObjCContainer)
01558         return;
01559       break;
01560 
01561     case tok::minus:
01562     case tok::plus:
01563       // - and + probably start new method declarations in Objective-C contexts.
01564       if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
01565         return;
01566       break;
01567 
01568     case tok::eof:
01569     case tok::annot_module_begin:
01570     case tok::annot_module_end:
01571     case tok::annot_module_include:
01572       return;
01573 
01574     default:
01575       break;
01576     }
01577 
01578     ConsumeAnyToken();
01579   }
01580 }
01581 
01582 /// ParseDeclGroup - Having concluded that this is either a function
01583 /// definition or a group of object declarations, actually parse the
01584 /// result.
01585 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
01586                                               unsigned Context,
01587                                               bool AllowFunctionDefinitions,
01588                                               SourceLocation *DeclEnd,
01589                                               ForRangeInit *FRI) {
01590   // Parse the first declarator.
01591   ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
01592   ParseDeclarator(D);
01593 
01594   // Bail out if the first declarator didn't seem well-formed.
01595   if (!D.hasName() && !D.mayOmitIdentifier()) {
01596     SkipMalformedDecl();
01597     return DeclGroupPtrTy();
01598   }
01599 
01600   // Save late-parsed attributes for now; they need to be parsed in the
01601   // appropriate function scope after the function Decl has been constructed.
01602   // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
01603   LateParsedAttrList LateParsedAttrs(true);
01604   if (D.isFunctionDeclarator()) {
01605     MaybeParseGNUAttributes(D, &LateParsedAttrs);
01606 
01607     // The _Noreturn keyword can't appear here, unlike the GNU noreturn
01608     // attribute. If we find the keyword here, tell the user to put it
01609     // at the start instead.
01610     if (Tok.is(tok::kw__Noreturn)) {
01611       SourceLocation Loc = ConsumeToken();
01612       const char *PrevSpec;
01613       unsigned DiagID;
01614 
01615       // We can offer a fixit if it's valid to mark this function as _Noreturn
01616       // and we don't have any other declarators in this declaration.
01617       bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
01618       MaybeParseGNUAttributes(D, &LateParsedAttrs);
01619       Fixit &= Tok.is(tok::semi) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try);
01620 
01621       Diag(Loc, diag::err_c11_noreturn_misplaced)
01622           << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
01623           << (Fixit ? FixItHint::CreateInsertion(D.getLocStart(), "_Noreturn ")
01624                     : FixItHint());
01625     }
01626   }
01627 
01628   // Check to see if we have a function *definition* which must have a body.
01629   if (D.isFunctionDeclarator() &&
01630       // Look at the next token to make sure that this isn't a function
01631       // declaration.  We have to check this because __attribute__ might be the
01632       // start of a function definition in GCC-extended K&R C.
01633       !isDeclarationAfterDeclarator()) {
01634 
01635     if (AllowFunctionDefinitions) {
01636       if (isStartOfFunctionDefinition(D)) {
01637         if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
01638           Diag(Tok, diag::err_function_declared_typedef);
01639 
01640           // Recover by treating the 'typedef' as spurious.
01641           DS.ClearStorageClassSpecs();
01642         }
01643 
01644         Decl *TheDecl =
01645           ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
01646         return Actions.ConvertDeclToDeclGroup(TheDecl);
01647       }
01648 
01649       if (isDeclarationSpecifier()) {
01650         // If there is an invalid declaration specifier right after the function
01651         // prototype, then we must be in a missing semicolon case where this isn't
01652         // actually a body.  Just fall through into the code that handles it as a
01653         // prototype, and let the top-level code handle the erroneous declspec
01654         // where it would otherwise expect a comma or semicolon.
01655       } else {
01656         Diag(Tok, diag::err_expected_fn_body);
01657         SkipUntil(tok::semi);
01658         return DeclGroupPtrTy();
01659       }
01660     } else {
01661       if (Tok.is(tok::l_brace)) {
01662         Diag(Tok, diag::err_function_definition_not_allowed);
01663         SkipMalformedDecl();
01664         return DeclGroupPtrTy();
01665       }
01666     }
01667   }
01668 
01669   if (ParseAsmAttributesAfterDeclarator(D))
01670     return DeclGroupPtrTy();
01671 
01672   // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
01673   // must parse and analyze the for-range-initializer before the declaration is
01674   // analyzed.
01675   //
01676   // Handle the Objective-C for-in loop variable similarly, although we
01677   // don't need to parse the container in advance.
01678   if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
01679     bool IsForRangeLoop = false;
01680     if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
01681       IsForRangeLoop = true;
01682       if (Tok.is(tok::l_brace))
01683         FRI->RangeExpr = ParseBraceInitializer();
01684       else
01685         FRI->RangeExpr = ParseExpression();
01686     }
01687 
01688     Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
01689     if (IsForRangeLoop)
01690       Actions.ActOnCXXForRangeDecl(ThisDecl);
01691     Actions.FinalizeDeclaration(ThisDecl);
01692     D.complete(ThisDecl);
01693     return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
01694   }
01695 
01696   SmallVector<Decl *, 8> DeclsInGroup;
01697   Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
01698       D, ParsedTemplateInfo(), FRI);
01699   if (LateParsedAttrs.size() > 0)
01700     ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
01701   D.complete(FirstDecl);
01702   if (FirstDecl)
01703     DeclsInGroup.push_back(FirstDecl);
01704 
01705   bool ExpectSemi = Context != Declarator::ForContext;
01706   
01707   // If we don't have a comma, it is either the end of the list (a ';') or an
01708   // error, bail out.
01709   SourceLocation CommaLoc;
01710   while (TryConsumeToken(tok::comma, CommaLoc)) {
01711     if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
01712       // This comma was followed by a line-break and something which can't be
01713       // the start of a declarator. The comma was probably a typo for a
01714       // semicolon.
01715       Diag(CommaLoc, diag::err_expected_semi_declaration)
01716         << FixItHint::CreateReplacement(CommaLoc, ";");
01717       ExpectSemi = false;
01718       break;
01719     }
01720 
01721     // Parse the next declarator.
01722     D.clear();
01723     D.setCommaLoc(CommaLoc);
01724 
01725     // Accept attributes in an init-declarator.  In the first declarator in a
01726     // declaration, these would be part of the declspec.  In subsequent
01727     // declarators, they become part of the declarator itself, so that they
01728     // don't apply to declarators after *this* one.  Examples:
01729     //    short __attribute__((common)) var;    -> declspec
01730     //    short var __attribute__((common));    -> declarator
01731     //    short x, __attribute__((common)) var;    -> declarator
01732     MaybeParseGNUAttributes(D);
01733 
01734     ParseDeclarator(D);
01735     if (!D.isInvalidType()) {
01736       Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
01737       D.complete(ThisDecl);
01738       if (ThisDecl)
01739         DeclsInGroup.push_back(ThisDecl);
01740     }
01741   }
01742 
01743   if (DeclEnd)
01744     *DeclEnd = Tok.getLocation();
01745 
01746   if (ExpectSemi &&
01747       ExpectAndConsumeSemi(Context == Declarator::FileContext
01748                            ? diag::err_invalid_token_after_toplevel_declarator
01749                            : diag::err_expected_semi_declaration)) {
01750     // Okay, there was no semicolon and one was expected.  If we see a
01751     // declaration specifier, just assume it was missing and continue parsing.
01752     // Otherwise things are very confused and we skip to recover.
01753     if (!isDeclarationSpecifier()) {
01754       SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
01755       TryConsumeToken(tok::semi);
01756     }
01757   }
01758 
01759   return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
01760 }
01761 
01762 /// Parse an optional simple-asm-expr and attributes, and attach them to a
01763 /// declarator. Returns true on an error.
01764 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
01765   // If a simple-asm-expr is present, parse it.
01766   if (Tok.is(tok::kw_asm)) {
01767     SourceLocation Loc;
01768     ExprResult AsmLabel(ParseSimpleAsm(&Loc));
01769     if (AsmLabel.isInvalid()) {
01770       SkipUntil(tok::semi, StopBeforeMatch);
01771       return true;
01772     }
01773 
01774     D.setAsmLabel(AsmLabel.get());
01775     D.SetRangeEnd(Loc);
01776   }
01777 
01778   MaybeParseGNUAttributes(D);
01779   return false;
01780 }
01781 
01782 /// \brief Parse 'declaration' after parsing 'declaration-specifiers
01783 /// declarator'. This method parses the remainder of the declaration
01784 /// (including any attributes or initializer, among other things) and
01785 /// finalizes the declaration.
01786 ///
01787 ///       init-declarator: [C99 6.7]
01788 ///         declarator
01789 ///         declarator '=' initializer
01790 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
01791 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
01792 /// [C++]   declarator initializer[opt]
01793 ///
01794 /// [C++] initializer:
01795 /// [C++]   '=' initializer-clause
01796 /// [C++]   '(' expression-list ')'
01797 /// [C++0x] '=' 'default'                                                [TODO]
01798 /// [C++0x] '=' 'delete'
01799 /// [C++0x] braced-init-list
01800 ///
01801 /// According to the standard grammar, =default and =delete are function
01802 /// definitions, but that definitely doesn't fit with the parser here.
01803 ///
01804 Decl *Parser::ParseDeclarationAfterDeclarator(
01805     Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
01806   if (ParseAsmAttributesAfterDeclarator(D))
01807     return nullptr;
01808 
01809   return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
01810 }
01811 
01812 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
01813     Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
01814   // Inform the current actions module that we just parsed this declarator.
01815   Decl *ThisDecl = nullptr;
01816   switch (TemplateInfo.Kind) {
01817   case ParsedTemplateInfo::NonTemplate:
01818     ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
01819     break;
01820 
01821   case ParsedTemplateInfo::Template:
01822   case ParsedTemplateInfo::ExplicitSpecialization: {
01823     ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
01824                                                *TemplateInfo.TemplateParams,
01825                                                D);
01826     if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
01827       // Re-direct this decl to refer to the templated decl so that we can
01828       // initialize it.
01829       ThisDecl = VT->getTemplatedDecl();
01830     break;
01831   }
01832   case ParsedTemplateInfo::ExplicitInstantiation: {
01833     if (Tok.is(tok::semi)) {
01834       DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
01835           getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
01836       if (ThisRes.isInvalid()) {
01837         SkipUntil(tok::semi, StopBeforeMatch);
01838         return nullptr;
01839       }
01840       ThisDecl = ThisRes.get();
01841     } else {
01842       // FIXME: This check should be for a variable template instantiation only.
01843 
01844       // Check that this is a valid instantiation
01845       if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
01846         // If the declarator-id is not a template-id, issue a diagnostic and
01847         // recover by ignoring the 'template' keyword.
01848         Diag(Tok, diag::err_template_defn_explicit_instantiation)
01849             << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
01850         ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
01851       } else {
01852         SourceLocation LAngleLoc =
01853             PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
01854         Diag(D.getIdentifierLoc(),
01855              diag::err_explicit_instantiation_with_definition)
01856             << SourceRange(TemplateInfo.TemplateLoc)
01857             << FixItHint::CreateInsertion(LAngleLoc, "<>");
01858 
01859         // Recover as if it were an explicit specialization.
01860         TemplateParameterLists FakedParamLists;
01861         FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
01862             0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, nullptr,
01863             0, LAngleLoc));
01864 
01865         ThisDecl =
01866             Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
01867       }
01868     }
01869     break;
01870     }
01871   }
01872 
01873   bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
01874 
01875   // Parse declarator '=' initializer.
01876   // If a '==' or '+=' is found, suggest a fixit to '='.
01877   if (isTokenEqualOrEqualTypo()) {
01878     SourceLocation EqualLoc = ConsumeToken();
01879 
01880     if (Tok.is(tok::kw_delete)) {
01881       if (D.isFunctionDeclarator())
01882         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
01883           << 1 /* delete */;
01884       else
01885         Diag(ConsumeToken(), diag::err_deleted_non_function);
01886     } else if (Tok.is(tok::kw_default)) {
01887       if (D.isFunctionDeclarator())
01888         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
01889           << 0 /* default */;
01890       else
01891         Diag(ConsumeToken(), diag::err_default_special_members);
01892     } else {
01893       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
01894         EnterScope(0);
01895         Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
01896       }
01897 
01898       if (Tok.is(tok::code_completion)) {
01899         Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
01900         Actions.FinalizeDeclaration(ThisDecl);
01901         cutOffParsing();
01902         return nullptr;
01903       }
01904 
01905       ExprResult Init(ParseInitializer());
01906 
01907       // If this is the only decl in (possibly) range based for statement,
01908       // our best guess is that the user meant ':' instead of '='.
01909       if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
01910         Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
01911             << FixItHint::CreateReplacement(EqualLoc, ":");
01912         // We are trying to stop parser from looking for ';' in this for
01913         // statement, therefore preventing spurious errors to be issued.
01914         FRI->ColonLoc = EqualLoc;
01915         Init = ExprError();
01916         FRI->RangeExpr = Init;
01917       }
01918 
01919       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
01920         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
01921         ExitScope();
01922       }
01923 
01924       if (Init.isInvalid()) {
01925         SmallVector<tok::TokenKind, 2> StopTokens;
01926         StopTokens.push_back(tok::comma);
01927         if (D.getContext() == Declarator::ForContext)
01928           StopTokens.push_back(tok::r_paren);
01929         SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
01930         Actions.ActOnInitializerError(ThisDecl);
01931       } else
01932         Actions.AddInitializerToDecl(ThisDecl, Init.get(),
01933                                      /*DirectInit=*/false, TypeContainsAuto);
01934     }
01935   } else if (Tok.is(tok::l_paren)) {
01936     // Parse C++ direct initializer: '(' expression-list ')'
01937     BalancedDelimiterTracker T(*this, tok::l_paren);
01938     T.consumeOpen();
01939 
01940     ExprVector Exprs;
01941     CommaLocsTy CommaLocs;
01942 
01943     if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
01944       EnterScope(0);
01945       Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
01946     }
01947 
01948     if (ParseExpressionList(Exprs, CommaLocs)) {
01949       Actions.ActOnInitializerError(ThisDecl);
01950       SkipUntil(tok::r_paren, StopAtSemi);
01951 
01952       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
01953         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
01954         ExitScope();
01955       }
01956     } else {
01957       // Match the ')'.
01958       T.consumeClose();
01959 
01960       assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
01961              "Unexpected number of commas!");
01962 
01963       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
01964         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
01965         ExitScope();
01966       }
01967 
01968       ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
01969                                                           T.getCloseLocation(),
01970                                                           Exprs);
01971       Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
01972                                    /*DirectInit=*/true, TypeContainsAuto);
01973     }
01974   } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
01975              (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
01976     // Parse C++0x braced-init-list.
01977     Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
01978 
01979     if (D.getCXXScopeSpec().isSet()) {
01980       EnterScope(0);
01981       Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
01982     }
01983 
01984     ExprResult Init(ParseBraceInitializer());
01985 
01986     if (D.getCXXScopeSpec().isSet()) {
01987       Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
01988       ExitScope();
01989     }
01990 
01991     if (Init.isInvalid()) {
01992       Actions.ActOnInitializerError(ThisDecl);
01993     } else
01994       Actions.AddInitializerToDecl(ThisDecl, Init.get(),
01995                                    /*DirectInit=*/true, TypeContainsAuto);
01996 
01997   } else {
01998     Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
01999   }
02000 
02001   Actions.FinalizeDeclaration(ThisDecl);
02002 
02003   return ThisDecl;
02004 }
02005 
02006 /// ParseSpecifierQualifierList
02007 ///        specifier-qualifier-list:
02008 ///          type-specifier specifier-qualifier-list[opt]
02009 ///          type-qualifier specifier-qualifier-list[opt]
02010 /// [GNU]    attributes     specifier-qualifier-list[opt]
02011 ///
02012 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
02013                                          DeclSpecContext DSC) {
02014   /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
02015   /// parse declaration-specifiers and complain about extra stuff.
02016   /// TODO: diagnose attribute-specifiers and alignment-specifiers.
02017   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
02018 
02019   // Validate declspec for type-name.
02020   unsigned Specs = DS.getParsedSpecifiers();
02021   if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
02022     Diag(Tok, diag::err_expected_type);
02023     DS.SetTypeSpecError();
02024   } else if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
02025              !DS.hasAttributes()) {
02026     Diag(Tok, diag::err_typename_requires_specqual);
02027     if (!DS.hasTypeSpecifier())
02028       DS.SetTypeSpecError();
02029   }
02030 
02031   // Issue diagnostic and remove storage class if present.
02032   if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
02033     if (DS.getStorageClassSpecLoc().isValid())
02034       Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
02035     else
02036       Diag(DS.getThreadStorageClassSpecLoc(),
02037            diag::err_typename_invalid_storageclass);
02038     DS.ClearStorageClassSpecs();
02039   }
02040 
02041   // Issue diagnostic and remove function specfier if present.
02042   if (Specs & DeclSpec::PQ_FunctionSpecifier) {
02043     if (DS.isInlineSpecified())
02044       Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
02045     if (DS.isVirtualSpecified())
02046       Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
02047     if (DS.isExplicitSpecified())
02048       Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
02049     DS.ClearFunctionSpecs();
02050   }
02051 
02052   // Issue diagnostic and remove constexpr specfier if present.
02053   if (DS.isConstexprSpecified()) {
02054     Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
02055     DS.ClearConstexprSpec();
02056   }
02057 }
02058 
02059 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
02060 /// specified token is valid after the identifier in a declarator which
02061 /// immediately follows the declspec.  For example, these things are valid:
02062 ///
02063 ///      int x   [             4];         // direct-declarator
02064 ///      int x   (             int y);     // direct-declarator
02065 ///  int(int x   )                         // direct-declarator
02066 ///      int x   ;                         // simple-declaration
02067 ///      int x   =             17;         // init-declarator-list
02068 ///      int x   ,             y;          // init-declarator-list
02069 ///      int x   __asm__       ("foo");    // init-declarator-list
02070 ///      int x   :             4;          // struct-declarator
02071 ///      int x   {             5};         // C++'0x unified initializers
02072 ///
02073 /// This is not, because 'x' does not immediately follow the declspec (though
02074 /// ')' happens to be valid anyway).
02075 ///    int (x)
02076 ///
02077 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
02078   return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
02079          T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
02080          T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
02081 }
02082 
02083 
02084 /// ParseImplicitInt - This method is called when we have an non-typename
02085 /// identifier in a declspec (which normally terminates the decl spec) when
02086 /// the declspec has no type specifier.  In this case, the declspec is either
02087 /// malformed or is "implicit int" (in K&R and C89).
02088 ///
02089 /// This method handles diagnosing this prettily and returns false if the
02090 /// declspec is done being processed.  If it recovers and thinks there may be
02091 /// other pieces of declspec after it, it returns true.
02092 ///
02093 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
02094                               const ParsedTemplateInfo &TemplateInfo,
02095                               AccessSpecifier AS, DeclSpecContext DSC,
02096                               ParsedAttributesWithRange &Attrs) {
02097   assert(Tok.is(tok::identifier) && "should have identifier");
02098 
02099   SourceLocation Loc = Tok.getLocation();
02100   // If we see an identifier that is not a type name, we normally would
02101   // parse it as the identifer being declared.  However, when a typename
02102   // is typo'd or the definition is not included, this will incorrectly
02103   // parse the typename as the identifier name and fall over misparsing
02104   // later parts of the diagnostic.
02105   //
02106   // As such, we try to do some look-ahead in cases where this would
02107   // otherwise be an "implicit-int" case to see if this is invalid.  For
02108   // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
02109   // an identifier with implicit int, we'd get a parse error because the
02110   // next token is obviously invalid for a type.  Parse these as a case
02111   // with an invalid type specifier.
02112   assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
02113 
02114   // Since we know that this either implicit int (which is rare) or an
02115   // error, do lookahead to try to do better recovery. This never applies
02116   // within a type specifier. Outside of C++, we allow this even if the
02117   // language doesn't "officially" support implicit int -- we support
02118   // implicit int as an extension in C99 and C11.
02119   if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
02120       isValidAfterIdentifierInDeclarator(NextToken())) {
02121     // If this token is valid for implicit int, e.g. "static x = 4", then
02122     // we just avoid eating the identifier, so it will be parsed as the
02123     // identifier in the declarator.
02124     return false;
02125   }
02126 
02127   if (getLangOpts().CPlusPlus &&
02128       DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
02129     // Don't require a type specifier if we have the 'auto' storage class
02130     // specifier in C++98 -- we'll promote it to a type specifier.
02131     if (SS)
02132       AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
02133     return false;
02134   }
02135 
02136   // Otherwise, if we don't consume this token, we are going to emit an
02137   // error anyway.  Try to recover from various common problems.  Check
02138   // to see if this was a reference to a tag name without a tag specified.
02139   // This is a common problem in C (saying 'foo' instead of 'struct foo').
02140   //
02141   // C++ doesn't need this, and isTagName doesn't take SS.
02142   if (SS == nullptr) {
02143     const char *TagName = nullptr, *FixitTagName = nullptr;
02144     tok::TokenKind TagKind = tok::unknown;
02145 
02146     switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
02147       default: break;
02148       case DeclSpec::TST_enum:
02149         TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
02150       case DeclSpec::TST_union:
02151         TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
02152       case DeclSpec::TST_struct:
02153         TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
02154       case DeclSpec::TST_interface:
02155         TagName="__interface"; FixitTagName = "__interface ";
02156         TagKind=tok::kw___interface;break;
02157       case DeclSpec::TST_class:
02158         TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
02159     }
02160 
02161     if (TagName) {
02162       IdentifierInfo *TokenName = Tok.getIdentifierInfo();
02163       LookupResult R(Actions, TokenName, SourceLocation(),
02164                      Sema::LookupOrdinaryName);
02165 
02166       Diag(Loc, diag::err_use_of_tag_name_without_tag)
02167         << TokenName << TagName << getLangOpts().CPlusPlus
02168         << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
02169 
02170       if (Actions.LookupParsedName(R, getCurScope(), SS)) {
02171         for (LookupResult::iterator I = R.begin(), IEnd = R.end();
02172              I != IEnd; ++I)
02173           Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
02174             << TokenName << TagName;
02175       }
02176 
02177       // Parse this as a tag as if the missing tag were present.
02178       if (TagKind == tok::kw_enum)
02179         ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
02180       else
02181         ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
02182                             /*EnteringContext*/ false, DSC_normal, Attrs);
02183       return true;
02184     }
02185   }
02186 
02187   // Determine whether this identifier could plausibly be the name of something
02188   // being declared (with a missing type).
02189   if (!isTypeSpecifier(DSC) &&
02190       (!SS || DSC == DSC_top_level || DSC == DSC_class)) {
02191     // Look ahead to the next token to try to figure out what this declaration
02192     // was supposed to be.
02193     switch (NextToken().getKind()) {
02194     case tok::l_paren: {
02195       // static x(4); // 'x' is not a type
02196       // x(int n);    // 'x' is not a type
02197       // x (*p)[];    // 'x' is a type
02198       //
02199       // Since we're in an error case, we can afford to perform a tentative
02200       // parse to determine which case we're in.
02201       TentativeParsingAction PA(*this);
02202       ConsumeToken();
02203       TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
02204       PA.Revert();
02205 
02206       if (TPR != TPResult::False) {
02207         // The identifier is followed by a parenthesized declarator.
02208         // It's supposed to be a type.
02209         break;
02210       }
02211 
02212       // If we're in a context where we could be declaring a constructor,
02213       // check whether this is a constructor declaration with a bogus name.
02214       if (DSC == DSC_class || (DSC == DSC_top_level && SS)) {
02215         IdentifierInfo *II = Tok.getIdentifierInfo();
02216         if (Actions.isCurrentClassNameTypo(II, SS)) {
02217           Diag(Loc, diag::err_constructor_bad_name)
02218             << Tok.getIdentifierInfo() << II
02219             << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
02220           Tok.setIdentifierInfo(II);
02221         }
02222       }
02223       // Fall through.
02224     }
02225     case tok::comma:
02226     case tok::equal:
02227     case tok::kw_asm:
02228     case tok::l_brace:
02229     case tok::l_square:
02230     case tok::semi:
02231       // This looks like a variable or function declaration. The type is
02232       // probably missing. We're done parsing decl-specifiers.
02233       if (SS)
02234         AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
02235       return false;
02236 
02237     default:
02238       // This is probably supposed to be a type. This includes cases like:
02239       //   int f(itn);
02240       //   struct S { unsinged : 4; };
02241       break;
02242     }
02243   }
02244 
02245   // This is almost certainly an invalid type name. Let Sema emit a diagnostic
02246   // and attempt to recover.
02247   ParsedType T;
02248   IdentifierInfo *II = Tok.getIdentifierInfo();
02249   Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
02250                                   getLangOpts().CPlusPlus &&
02251                                       NextToken().is(tok::less));
02252   if (T) {
02253     // The action has suggested that the type T could be used. Set that as
02254     // the type in the declaration specifiers, consume the would-be type
02255     // name token, and we're done.
02256     const char *PrevSpec;
02257     unsigned DiagID;
02258     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
02259                        Actions.getASTContext().getPrintingPolicy());
02260     DS.SetRangeEnd(Tok.getLocation());
02261     ConsumeToken();
02262     // There may be other declaration specifiers after this.
02263     return true;
02264   } else if (II != Tok.getIdentifierInfo()) {
02265     // If no type was suggested, the correction is to a keyword
02266     Tok.setKind(II->getTokenID());
02267     // There may be other declaration specifiers after this.
02268     return true;
02269   }
02270 
02271   // Otherwise, the action had no suggestion for us.  Mark this as an error.
02272   DS.SetTypeSpecError();
02273   DS.SetRangeEnd(Tok.getLocation());
02274   ConsumeToken();
02275 
02276   // TODO: Could inject an invalid typedef decl in an enclosing scope to
02277   // avoid rippling error messages on subsequent uses of the same type,
02278   // could be useful if #include was forgotten.
02279   return false;
02280 }
02281 
02282 /// \brief Determine the declaration specifier context from the declarator
02283 /// context.
02284 ///
02285 /// \param Context the declarator context, which is one of the
02286 /// Declarator::TheContext enumerator values.
02287 Parser::DeclSpecContext
02288 Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
02289   if (Context == Declarator::MemberContext)
02290     return DSC_class;
02291   if (Context == Declarator::FileContext)
02292     return DSC_top_level;
02293   if (Context == Declarator::TemplateTypeArgContext)
02294     return DSC_template_type_arg;
02295   if (Context == Declarator::TrailingReturnContext)
02296     return DSC_trailing;
02297   if (Context == Declarator::AliasDeclContext ||
02298       Context == Declarator::AliasTemplateContext)
02299     return DSC_alias_declaration;
02300   return DSC_normal;
02301 }
02302 
02303 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
02304 ///
02305 /// FIXME: Simply returns an alignof() expression if the argument is a
02306 /// type. Ideally, the type should be propagated directly into Sema.
02307 ///
02308 /// [C11]   type-id
02309 /// [C11]   constant-expression
02310 /// [C++0x] type-id ...[opt]
02311 /// [C++0x] assignment-expression ...[opt]
02312 ExprResult Parser::ParseAlignArgument(SourceLocation Start,
02313                                       SourceLocation &EllipsisLoc) {
02314   ExprResult ER;
02315   if (isTypeIdInParens()) {
02316     SourceLocation TypeLoc = Tok.getLocation();
02317     ParsedType Ty = ParseTypeName().get();
02318     SourceRange TypeRange(Start, Tok.getLocation());
02319     ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
02320                                                Ty.getAsOpaquePtr(), TypeRange);
02321   } else
02322     ER = ParseConstantExpression();
02323 
02324   if (getLangOpts().CPlusPlus11)
02325     TryConsumeToken(tok::ellipsis, EllipsisLoc);
02326 
02327   return ER;
02328 }
02329 
02330 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
02331 /// attribute to Attrs.
02332 ///
02333 /// alignment-specifier:
02334 /// [C11]   '_Alignas' '(' type-id ')'
02335 /// [C11]   '_Alignas' '(' constant-expression ')'
02336 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
02337 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
02338 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
02339                                      SourceLocation *EndLoc) {
02340   assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
02341          "Not an alignment-specifier!");
02342 
02343   IdentifierInfo *KWName = Tok.getIdentifierInfo();
02344   SourceLocation KWLoc = ConsumeToken();
02345 
02346   BalancedDelimiterTracker T(*this, tok::l_paren);
02347   if (T.expectAndConsume())
02348     return;
02349 
02350   SourceLocation EllipsisLoc;
02351   ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
02352   if (ArgExpr.isInvalid()) {
02353     T.skipToEnd();
02354     return;
02355   }
02356 
02357   T.consumeClose();
02358   if (EndLoc)
02359     *EndLoc = T.getCloseLocation();
02360 
02361   ArgsVector ArgExprs;
02362   ArgExprs.push_back(ArgExpr.get());
02363   Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
02364                AttributeList::AS_Keyword, EllipsisLoc);
02365 }
02366 
02367 /// Determine whether we're looking at something that might be a declarator
02368 /// in a simple-declaration. If it can't possibly be a declarator, maybe
02369 /// diagnose a missing semicolon after a prior tag definition in the decl
02370 /// specifier.
02371 ///
02372 /// \return \c true if an error occurred and this can't be any kind of
02373 /// declaration.
02374 bool
02375 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
02376                                               DeclSpecContext DSContext,
02377                                               LateParsedAttrList *LateAttrs) {
02378   assert(DS.hasTagDefinition() && "shouldn't call this");
02379 
02380   bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
02381 
02382   if (getLangOpts().CPlusPlus &&
02383       (Tok.is(tok::identifier) || Tok.is(tok::coloncolon) ||
02384        Tok.is(tok::kw_decltype) || Tok.is(tok::annot_template_id)) &&
02385       TryAnnotateCXXScopeToken(EnteringContext)) {
02386     SkipMalformedDecl();
02387     return true;
02388   }
02389 
02390   bool HasScope = Tok.is(tok::annot_cxxscope);
02391   // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
02392   Token AfterScope = HasScope ? NextToken() : Tok;
02393 
02394   // Determine whether the following tokens could possibly be a
02395   // declarator.
02396   bool MightBeDeclarator = true;
02397   if (Tok.is(tok::kw_typename) || Tok.is(tok::annot_typename)) {
02398     // A declarator-id can't start with 'typename'.
02399     MightBeDeclarator = false;
02400   } else if (AfterScope.is(tok::annot_template_id)) {
02401     // If we have a type expressed as a template-id, this cannot be a
02402     // declarator-id (such a type cannot be redeclared in a simple-declaration).
02403     TemplateIdAnnotation *Annot =
02404         static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
02405     if (Annot->Kind == TNK_Type_template)
02406       MightBeDeclarator = false;
02407   } else if (AfterScope.is(tok::identifier)) {
02408     const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
02409 
02410     // These tokens cannot come after the declarator-id in a
02411     // simple-declaration, and are likely to come after a type-specifier.
02412     if (Next.is(tok::star) || Next.is(tok::amp) || Next.is(tok::ampamp) ||
02413         Next.is(tok::identifier) || Next.is(tok::annot_cxxscope) ||
02414         Next.is(tok::coloncolon)) {
02415       // Missing a semicolon.
02416       MightBeDeclarator = false;
02417     } else if (HasScope) {
02418       // If the declarator-id has a scope specifier, it must redeclare a
02419       // previously-declared entity. If that's a type (and this is not a
02420       // typedef), that's an error.
02421       CXXScopeSpec SS;
02422       Actions.RestoreNestedNameSpecifierAnnotation(
02423           Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
02424       IdentifierInfo *Name = AfterScope.getIdentifierInfo();
02425       Sema::NameClassification Classification = Actions.ClassifyName(
02426           getCurScope(), SS, Name, AfterScope.getLocation(), Next,
02427           /*IsAddressOfOperand*/false);
02428       switch (Classification.getKind()) {
02429       case Sema::NC_Error:
02430         SkipMalformedDecl();
02431         return true;
02432 
02433       case Sema::NC_Keyword:
02434       case Sema::NC_NestedNameSpecifier:
02435         llvm_unreachable("typo correction and nested name specifiers not "
02436                          "possible here");
02437 
02438       case Sema::NC_Type:
02439       case Sema::NC_TypeTemplate:
02440         // Not a previously-declared non-type entity.
02441         MightBeDeclarator = false;
02442         break;
02443 
02444       case Sema::NC_Unknown:
02445       case Sema::NC_Expression:
02446       case Sema::NC_VarTemplate:
02447       case Sema::NC_FunctionTemplate:
02448         // Might be a redeclaration of a prior entity.
02449         break;
02450       }
02451     }
02452   }
02453 
02454   if (MightBeDeclarator)
02455     return false;
02456 
02457   const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
02458   Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getLocEnd()),
02459        diag::err_expected_after)
02460       << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
02461 
02462   // Try to recover from the typo, by dropping the tag definition and parsing
02463   // the problematic tokens as a type.
02464   //
02465   // FIXME: Split the DeclSpec into pieces for the standalone
02466   // declaration and pieces for the following declaration, instead
02467   // of assuming that all the other pieces attach to new declaration,
02468   // and call ParsedFreeStandingDeclSpec as appropriate.
02469   DS.ClearTypeSpecType();
02470   ParsedTemplateInfo NotATemplate;
02471   ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
02472   return false;
02473 }
02474 
02475 /// ParseDeclarationSpecifiers
02476 ///       declaration-specifiers: [C99 6.7]
02477 ///         storage-class-specifier declaration-specifiers[opt]
02478 ///         type-specifier declaration-specifiers[opt]
02479 /// [C99]   function-specifier declaration-specifiers[opt]
02480 /// [C11]   alignment-specifier declaration-specifiers[opt]
02481 /// [GNU]   attributes declaration-specifiers[opt]
02482 /// [Clang] '__module_private__' declaration-specifiers[opt]
02483 ///
02484 ///       storage-class-specifier: [C99 6.7.1]
02485 ///         'typedef'
02486 ///         'extern'
02487 ///         'static'
02488 ///         'auto'
02489 ///         'register'
02490 /// [C++]   'mutable'
02491 /// [C++11] 'thread_local'
02492 /// [C11]   '_Thread_local'
02493 /// [GNU]   '__thread'
02494 ///       function-specifier: [C99 6.7.4]
02495 /// [C99]   'inline'
02496 /// [C++]   'virtual'
02497 /// [C++]   'explicit'
02498 /// [OpenCL] '__kernel'
02499 ///       'friend': [C++ dcl.friend]
02500 ///       'constexpr': [C++0x dcl.constexpr]
02501 
02502 ///
02503 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
02504                                         const ParsedTemplateInfo &TemplateInfo,
02505                                         AccessSpecifier AS,
02506                                         DeclSpecContext DSContext,
02507                                         LateParsedAttrList *LateAttrs) {
02508   if (DS.getSourceRange().isInvalid()) {
02509     // Start the range at the current token but make the end of the range
02510     // invalid.  This will make the entire range invalid unless we successfully
02511     // consume a token.
02512     DS.SetRangeStart(Tok.getLocation());
02513     DS.SetRangeEnd(SourceLocation());
02514   }
02515 
02516   bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
02517   bool AttrsLastTime = false;
02518   ParsedAttributesWithRange attrs(AttrFactory);
02519   const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
02520   while (1) {
02521     bool isInvalid = false;
02522     const char *PrevSpec = nullptr;
02523     unsigned DiagID = 0;
02524 
02525     SourceLocation Loc = Tok.getLocation();
02526 
02527     switch (Tok.getKind()) {
02528     default:
02529     DoneWithDeclSpec:
02530       if (!AttrsLastTime)
02531         ProhibitAttributes(attrs);
02532       else {
02533         // Reject C++11 attributes that appertain to decl specifiers as
02534         // we don't support any C++11 attributes that appertain to decl
02535         // specifiers. This also conforms to what g++ 4.8 is doing.
02536         ProhibitCXX11Attributes(attrs);
02537 
02538         DS.takeAttributesFrom(attrs);
02539       }
02540 
02541       // If this is not a declaration specifier token, we're done reading decl
02542       // specifiers.  First verify that DeclSpec's are consistent.
02543       DS.Finish(Diags, PP, Policy);
02544       return;
02545 
02546     case tok::l_square:
02547     case tok::kw_alignas:
02548       if (!getLangOpts().CPlusPlus11 || !isCXX11AttributeSpecifier())
02549         goto DoneWithDeclSpec;
02550 
02551       ProhibitAttributes(attrs);
02552       // FIXME: It would be good to recover by accepting the attributes,
02553       //        but attempting to do that now would cause serious
02554       //        madness in terms of diagnostics.
02555       attrs.clear();
02556       attrs.Range = SourceRange();
02557 
02558       ParseCXX11Attributes(attrs);
02559       AttrsLastTime = true;
02560       continue;
02561 
02562     case tok::code_completion: {
02563       Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
02564       if (DS.hasTypeSpecifier()) {
02565         bool AllowNonIdentifiers
02566           = (getCurScope()->getFlags() & (Scope::ControlScope |
02567                                           Scope::BlockScope |
02568                                           Scope::TemplateParamScope |
02569                                           Scope::FunctionPrototypeScope |
02570                                           Scope::AtCatchScope)) == 0;
02571         bool AllowNestedNameSpecifiers
02572           = DSContext == DSC_top_level ||
02573             (DSContext == DSC_class && DS.isFriendSpecified());
02574 
02575         Actions.CodeCompleteDeclSpec(getCurScope(), DS,
02576                                      AllowNonIdentifiers,
02577                                      AllowNestedNameSpecifiers);
02578         return cutOffParsing();
02579       }
02580 
02581       if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
02582         CCC = Sema::PCC_LocalDeclarationSpecifiers;
02583       else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
02584         CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
02585                                     : Sema::PCC_Template;
02586       else if (DSContext == DSC_class)
02587         CCC = Sema::PCC_Class;
02588       else if (CurParsedObjCImpl)
02589         CCC = Sema::PCC_ObjCImplementation;
02590 
02591       Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
02592       return cutOffParsing();
02593     }
02594 
02595     case tok::coloncolon: // ::foo::bar
02596       // C++ scope specifier.  Annotate and loop, or bail out on error.
02597       if (TryAnnotateCXXScopeToken(EnteringContext)) {
02598         if (!DS.hasTypeSpecifier())
02599           DS.SetTypeSpecError();
02600         goto DoneWithDeclSpec;
02601       }
02602       if (Tok.is(tok::coloncolon)) // ::new or ::delete
02603         goto DoneWithDeclSpec;
02604       continue;
02605 
02606     case tok::annot_cxxscope: {
02607       if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
02608         goto DoneWithDeclSpec;
02609 
02610       CXXScopeSpec SS;
02611       Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
02612                                                    Tok.getAnnotationRange(),
02613                                                    SS);
02614 
02615       // We are looking for a qualified typename.
02616       Token Next = NextToken();
02617       if (Next.is(tok::annot_template_id) &&
02618           static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
02619             ->Kind == TNK_Type_template) {
02620         // We have a qualified template-id, e.g., N::A<int>
02621 
02622         // C++ [class.qual]p2:
02623         //   In a lookup in which the constructor is an acceptable lookup
02624         //   result and the nested-name-specifier nominates a class C:
02625         //
02626         //     - if the name specified after the
02627         //       nested-name-specifier, when looked up in C, is the
02628         //       injected-class-name of C (Clause 9), or
02629         //
02630         //     - if the name specified after the nested-name-specifier
02631         //       is the same as the identifier or the
02632         //       simple-template-id's template-name in the last
02633         //       component of the nested-name-specifier,
02634         //
02635         //   the name is instead considered to name the constructor of
02636         //   class C.
02637         //
02638         // Thus, if the template-name is actually the constructor
02639         // name, then the code is ill-formed; this interpretation is
02640         // reinforced by the NAD status of core issue 635.
02641         TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
02642         if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
02643             TemplateId->Name &&
02644             Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
02645           if (isConstructorDeclarator(/*Unqualified*/false)) {
02646             // The user meant this to be an out-of-line constructor
02647             // definition, but template arguments are not allowed
02648             // there.  Just allow this as a constructor; we'll
02649             // complain about it later.
02650             goto DoneWithDeclSpec;
02651           }
02652 
02653           // The user meant this to name a type, but it actually names
02654           // a constructor with some extraneous template
02655           // arguments. Complain, then parse it as a type as the user
02656           // intended.
02657           Diag(TemplateId->TemplateNameLoc,
02658                diag::err_out_of_line_template_id_names_constructor)
02659             << TemplateId->Name;
02660         }
02661 
02662         DS.getTypeSpecScope() = SS;
02663         ConsumeToken(); // The C++ scope.
02664         assert(Tok.is(tok::annot_template_id) &&
02665                "ParseOptionalCXXScopeSpecifier not working");
02666         AnnotateTemplateIdTokenAsType();
02667         continue;
02668       }
02669 
02670       if (Next.is(tok::annot_typename)) {
02671         DS.getTypeSpecScope() = SS;
02672         ConsumeToken(); // The C++ scope.
02673         if (Tok.getAnnotationValue()) {
02674           ParsedType T = getTypeAnnotation(Tok);
02675           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
02676                                          Tok.getAnnotationEndLoc(),
02677                                          PrevSpec, DiagID, T, Policy);
02678           if (isInvalid)
02679             break;
02680         }
02681         else
02682           DS.SetTypeSpecError();
02683         DS.SetRangeEnd(Tok.getAnnotationEndLoc());
02684         ConsumeToken(); // The typename
02685       }
02686 
02687       if (Next.isNot(tok::identifier))
02688         goto DoneWithDeclSpec;
02689 
02690       // If we're in a context where the identifier could be a class name,
02691       // check whether this is a constructor declaration.
02692       if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
02693           Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
02694                                      &SS)) {
02695         if (isConstructorDeclarator(/*Unqualified*/false))
02696           goto DoneWithDeclSpec;
02697 
02698         // As noted in C++ [class.qual]p2 (cited above), when the name
02699         // of the class is qualified in a context where it could name
02700         // a constructor, its a constructor name. However, we've
02701         // looked at the declarator, and the user probably meant this
02702         // to be a type. Complain that it isn't supposed to be treated
02703         // as a type, then proceed to parse it as a type.
02704         Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
02705           << Next.getIdentifierInfo();
02706       }
02707 
02708       ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
02709                                                Next.getLocation(),
02710                                                getCurScope(), &SS,
02711                                                false, false, ParsedType(),
02712                                                /*IsCtorOrDtorName=*/false,
02713                                                /*NonTrivialSourceInfo=*/true);
02714 
02715       // If the referenced identifier is not a type, then this declspec is
02716       // erroneous: We already checked about that it has no type specifier, and
02717       // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
02718       // typename.
02719       if (!TypeRep) {
02720         ConsumeToken();   // Eat the scope spec so the identifier is current.
02721         ParsedAttributesWithRange Attrs(AttrFactory);
02722         if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
02723           if (!Attrs.empty()) {
02724             AttrsLastTime = true;
02725             attrs.takeAllFrom(Attrs);
02726           }
02727           continue;
02728         }
02729         goto DoneWithDeclSpec;
02730       }
02731 
02732       DS.getTypeSpecScope() = SS;
02733       ConsumeToken(); // The C++ scope.
02734 
02735       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
02736                                      DiagID, TypeRep, Policy);
02737       if (isInvalid)
02738         break;
02739 
02740       DS.SetRangeEnd(Tok.getLocation());
02741       ConsumeToken(); // The typename.
02742 
02743       continue;
02744     }
02745 
02746     case tok::annot_typename: {
02747       // If we've previously seen a tag definition, we were almost surely
02748       // missing a semicolon after it.
02749       if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
02750         goto DoneWithDeclSpec;
02751 
02752       if (Tok.getAnnotationValue()) {
02753         ParsedType T = getTypeAnnotation(Tok);
02754         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
02755                                        DiagID, T, Policy);
02756       } else
02757         DS.SetTypeSpecError();
02758 
02759       if (isInvalid)
02760         break;
02761 
02762       DS.SetRangeEnd(Tok.getAnnotationEndLoc());
02763       ConsumeToken(); // The typename
02764 
02765       // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
02766       // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
02767       // Objective-C interface.
02768       if (Tok.is(tok::less) && getLangOpts().ObjC1)
02769         ParseObjCProtocolQualifiers(DS);
02770 
02771       continue;
02772     }
02773 
02774     case tok::kw___is_signed:
02775       // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
02776       // typically treats it as a trait. If we see __is_signed as it appears
02777       // in libstdc++, e.g.,
02778       //
02779       //   static const bool __is_signed;
02780       //
02781       // then treat __is_signed as an identifier rather than as a keyword.
02782       if (DS.getTypeSpecType() == TST_bool &&
02783           DS.getTypeQualifiers() == DeclSpec::TQ_const &&
02784           DS.getStorageClassSpec() == DeclSpec::SCS_static)
02785         TryKeywordIdentFallback(true);
02786 
02787       // We're done with the declaration-specifiers.
02788       goto DoneWithDeclSpec;
02789 
02790       // typedef-name
02791     case tok::kw___super:
02792     case tok::kw_decltype:
02793     case tok::identifier: {
02794       // This identifier can only be a typedef name if we haven't already seen
02795       // a type-specifier.  Without this check we misparse:
02796       //  typedef int X; struct Y { short X; };  as 'short int'.
02797       if (DS.hasTypeSpecifier())
02798         goto DoneWithDeclSpec;
02799 
02800       // In C++, check to see if this is a scope specifier like foo::bar::, if
02801       // so handle it as such.  This is important for ctor parsing.
02802       if (getLangOpts().CPlusPlus) {
02803         if (TryAnnotateCXXScopeToken(EnteringContext)) {
02804           DS.SetTypeSpecError();
02805           goto DoneWithDeclSpec;
02806         }
02807         if (!Tok.is(tok::identifier))
02808           continue;
02809       }
02810 
02811       // Check for need to substitute AltiVec keyword tokens.
02812       if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
02813         break;
02814 
02815       // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
02816       //                allow the use of a typedef name as a type specifier.
02817       if (DS.isTypeAltiVecVector())
02818         goto DoneWithDeclSpec;
02819 
02820       ParsedType TypeRep =
02821         Actions.getTypeName(*Tok.getIdentifierInfo(),
02822                             Tok.getLocation(), getCurScope());
02823 
02824       // MSVC: If we weren't able to parse a default template argument, and it's
02825       // just a simple identifier, create a DependentNameType.  This will allow us
02826       // to defer the name lookup to template instantiation time, as long we forge a
02827       // NestedNameSpecifier for the current context.
02828       if (!TypeRep && DSContext == DSC_template_type_arg &&
02829           getLangOpts().MSVCCompat && getCurScope()->isTemplateParamScope()) {
02830         TypeRep = Actions.ActOnDelayedDefaultTemplateArg(
02831             *Tok.getIdentifierInfo(), Tok.getLocation());
02832       }
02833 
02834       // If this is not a typedef name, don't parse it as part of the declspec,
02835       // it must be an implicit int or an error.
02836       if (!TypeRep) {
02837         ParsedAttributesWithRange Attrs(AttrFactory);
02838         if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
02839           if (!Attrs.empty()) {
02840             AttrsLastTime = true;
02841             attrs.takeAllFrom(Attrs);
02842           }
02843           continue;
02844         }
02845         goto DoneWithDeclSpec;
02846       }
02847 
02848       // If we're in a context where the identifier could be a class name,
02849       // check whether this is a constructor declaration.
02850       if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
02851           Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
02852           isConstructorDeclarator(/*Unqualified*/true))
02853         goto DoneWithDeclSpec;
02854 
02855       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
02856                                      DiagID, TypeRep, Policy);
02857       if (isInvalid)
02858         break;
02859 
02860       DS.SetRangeEnd(Tok.getLocation());
02861       ConsumeToken(); // The identifier
02862 
02863       // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
02864       // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
02865       // Objective-C interface.
02866       if (Tok.is(tok::less) && getLangOpts().ObjC1)
02867         ParseObjCProtocolQualifiers(DS);
02868 
02869       // Need to support trailing type qualifiers (e.g. "id<p> const").
02870       // If a type specifier follows, it will be diagnosed elsewhere.
02871       continue;
02872     }
02873 
02874       // type-name
02875     case tok::annot_template_id: {
02876       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
02877       if (TemplateId->Kind != TNK_Type_template) {
02878         // This template-id does not refer to a type name, so we're
02879         // done with the type-specifiers.
02880         goto DoneWithDeclSpec;
02881       }
02882 
02883       // If we're in a context where the template-id could be a
02884       // constructor name or specialization, check whether this is a
02885       // constructor declaration.
02886       if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
02887           Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
02888           isConstructorDeclarator(TemplateId->SS.isEmpty()))
02889         goto DoneWithDeclSpec;
02890 
02891       // Turn the template-id annotation token into a type annotation
02892       // token, then try again to parse it as a type-specifier.
02893       AnnotateTemplateIdTokenAsType();
02894       continue;
02895     }
02896 
02897     // GNU attributes support.
02898     case tok::kw___attribute:
02899       ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
02900       continue;
02901 
02902     // Microsoft declspec support.
02903     case tok::kw___declspec:
02904       ParseMicrosoftDeclSpec(DS.getAttributes());
02905       continue;
02906 
02907     // Microsoft single token adornments.
02908     case tok::kw___forceinline: {
02909       isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
02910       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
02911       SourceLocation AttrNameLoc = Tok.getLocation();
02912       DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
02913                                 nullptr, 0, AttributeList::AS_Keyword);
02914       break;
02915     }
02916 
02917     case tok::kw___sptr:
02918     case tok::kw___uptr:
02919     case tok::kw___ptr64:
02920     case tok::kw___ptr32:
02921     case tok::kw___w64:
02922     case tok::kw___cdecl:
02923     case tok::kw___stdcall:
02924     case tok::kw___fastcall:
02925     case tok::kw___thiscall:
02926     case tok::kw___vectorcall:
02927     case tok::kw___unaligned:
02928       ParseMicrosoftTypeAttributes(DS.getAttributes());
02929       continue;
02930 
02931     // Borland single token adornments.
02932     case tok::kw___pascal:
02933       ParseBorlandTypeAttributes(DS.getAttributes());
02934       continue;
02935 
02936     // OpenCL single token adornments.
02937     case tok::kw___kernel:
02938       ParseOpenCLAttributes(DS.getAttributes());
02939       continue;
02940 
02941     // storage-class-specifier
02942     case tok::kw_typedef:
02943       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
02944                                          PrevSpec, DiagID, Policy);
02945       break;
02946     case tok::kw_extern:
02947       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
02948         Diag(Tok, diag::ext_thread_before) << "extern";
02949       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
02950                                          PrevSpec, DiagID, Policy);
02951       break;
02952     case tok::kw___private_extern__:
02953       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
02954                                          Loc, PrevSpec, DiagID, Policy);
02955       break;
02956     case tok::kw_static:
02957       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
02958         Diag(Tok, diag::ext_thread_before) << "static";
02959       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
02960                                          PrevSpec, DiagID, Policy);
02961       break;
02962     case tok::kw_auto:
02963       if (getLangOpts().CPlusPlus11) {
02964         if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
02965           isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
02966                                              PrevSpec, DiagID, Policy);
02967           if (!isInvalid)
02968             Diag(Tok, diag::ext_auto_storage_class)
02969               << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
02970         } else
02971           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
02972                                          DiagID, Policy);
02973       } else
02974         isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
02975                                            PrevSpec, DiagID, Policy);
02976       break;
02977     case tok::kw_register:
02978       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
02979                                          PrevSpec, DiagID, Policy);
02980       break;
02981     case tok::kw_mutable:
02982       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
02983                                          PrevSpec, DiagID, Policy);
02984       break;
02985     case tok::kw___thread:
02986       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
02987                                                PrevSpec, DiagID);
02988       break;
02989     case tok::kw_thread_local:
02990       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
02991                                                PrevSpec, DiagID);
02992       break;
02993     case tok::kw__Thread_local:
02994       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
02995                                                Loc, PrevSpec, DiagID);
02996       break;
02997 
02998     // function-specifier
02999     case tok::kw_inline:
03000       isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
03001       break;
03002     case tok::kw_virtual:
03003       isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
03004       break;
03005     case tok::kw_explicit:
03006       isInvalid = DS.setFunctionSpecExplicit(Loc, PrevSpec, DiagID);
03007       break;
03008     case tok::kw__Noreturn:
03009       if (!getLangOpts().C11)
03010         Diag(Loc, diag::ext_c11_noreturn);
03011       isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
03012       break;
03013 
03014     // alignment-specifier
03015     case tok::kw__Alignas:
03016       if (!getLangOpts().C11)
03017         Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
03018       ParseAlignmentSpecifier(DS.getAttributes());
03019       continue;
03020 
03021     // friend
03022     case tok::kw_friend:
03023       if (DSContext == DSC_class)
03024         isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
03025       else {
03026         PrevSpec = ""; // not actually used by the diagnostic
03027         DiagID = diag::err_friend_invalid_in_context;
03028         isInvalid = true;
03029       }
03030       break;
03031 
03032     // Modules
03033     case tok::kw___module_private__:
03034       isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
03035       break;
03036 
03037     // constexpr
03038     case tok::kw_constexpr:
03039       isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
03040       break;
03041 
03042     // type-specifier
03043     case tok::kw_short:
03044       isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
03045                                       DiagID, Policy);
03046       break;
03047     case tok::kw_long:
03048       if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
03049         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
03050                                         DiagID, Policy);
03051       else
03052         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
03053                                         DiagID, Policy);
03054       break;
03055     case tok::kw___int64:
03056         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
03057                                         DiagID, Policy);
03058       break;
03059     case tok::kw_signed:
03060       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
03061                                      DiagID);
03062       break;
03063     case tok::kw_unsigned:
03064       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
03065                                      DiagID);
03066       break;
03067     case tok::kw__Complex:
03068       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
03069                                         DiagID);
03070       break;
03071     case tok::kw__Imaginary:
03072       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
03073                                         DiagID);
03074       break;
03075     case tok::kw_void:
03076       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
03077                                      DiagID, Policy);
03078       break;
03079     case tok::kw_char:
03080       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
03081                                      DiagID, Policy);
03082       break;
03083     case tok::kw_int:
03084       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
03085                                      DiagID, Policy);
03086       break;
03087     case tok::kw___int128:
03088       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
03089                                      DiagID, Policy);
03090       break;
03091     case tok::kw_half:
03092       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
03093                                      DiagID, Policy);
03094       break;
03095     case tok::kw_float:
03096       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
03097                                      DiagID, Policy);
03098       break;
03099     case tok::kw_double:
03100       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
03101                                      DiagID, Policy);
03102       break;
03103     case tok::kw_wchar_t:
03104       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
03105                                      DiagID, Policy);
03106       break;
03107     case tok::kw_char16_t:
03108       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
03109                                      DiagID, Policy);
03110       break;
03111     case tok::kw_char32_t:
03112       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
03113                                      DiagID, Policy);
03114       break;
03115     case tok::kw_bool:
03116     case tok::kw__Bool:
03117       if (Tok.is(tok::kw_bool) &&
03118           DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
03119           DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
03120         PrevSpec = ""; // Not used by the diagnostic.
03121         DiagID = diag::err_bool_redeclaration;
03122         // For better error recovery.
03123         Tok.setKind(tok::identifier);
03124         isInvalid = true;
03125       } else {
03126         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
03127                                        DiagID, Policy);
03128       }
03129       break;
03130     case tok::kw__Decimal32:
03131       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
03132                                      DiagID, Policy);
03133       break;
03134     case tok::kw__Decimal64:
03135       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
03136                                      DiagID, Policy);
03137       break;
03138     case tok::kw__Decimal128:
03139       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
03140                                      DiagID, Policy);
03141       break;
03142     case tok::kw___vector:
03143       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
03144       break;
03145     case tok::kw___pixel:
03146       isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
03147       break;
03148     case tok::kw___unknown_anytype:
03149       isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
03150                                      PrevSpec, DiagID, Policy);
03151       break;
03152 
03153     // class-specifier:
03154     case tok::kw_class:
03155     case tok::kw_struct:
03156     case tok::kw___interface:
03157     case tok::kw_union: {
03158       tok::TokenKind Kind = Tok.getKind();
03159       ConsumeToken();
03160 
03161       // These are attributes following class specifiers.
03162       // To produce better diagnostic, we parse them when
03163       // parsing class specifier.
03164       ParsedAttributesWithRange Attributes(AttrFactory);
03165       ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
03166                           EnteringContext, DSContext, Attributes);
03167 
03168       // If there are attributes following class specifier,
03169       // take them over and handle them here.
03170       if (!Attributes.empty()) {
03171         AttrsLastTime = true;
03172         attrs.takeAllFrom(Attributes);
03173       }
03174       continue;
03175     }
03176 
03177     // enum-specifier:
03178     case tok::kw_enum:
03179       ConsumeToken();
03180       ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
03181       continue;
03182 
03183     // cv-qualifier:
03184     case tok::kw_const:
03185       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
03186                                  getLangOpts());
03187       break;
03188     case tok::kw_volatile:
03189       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
03190                                  getLangOpts());
03191       break;
03192     case tok::kw_restrict:
03193       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
03194                                  getLangOpts());
03195       break;
03196 
03197     // C++ typename-specifier:
03198     case tok::kw_typename:
03199       if (TryAnnotateTypeOrScopeToken()) {
03200         DS.SetTypeSpecError();
03201         goto DoneWithDeclSpec;
03202       }
03203       if (!Tok.is(tok::kw_typename))
03204         continue;
03205       break;
03206 
03207     // GNU typeof support.
03208     case tok::kw_typeof:
03209       ParseTypeofSpecifier(DS);
03210       continue;
03211 
03212     case tok::annot_decltype:
03213       ParseDecltypeSpecifier(DS);
03214       continue;
03215 
03216     case tok::kw___underlying_type:
03217       ParseUnderlyingTypeSpecifier(DS);
03218       continue;
03219 
03220     case tok::kw__Atomic:
03221       // C11 6.7.2.4/4:
03222       //   If the _Atomic keyword is immediately followed by a left parenthesis,
03223       //   it is interpreted as a type specifier (with a type name), not as a
03224       //   type qualifier.
03225       if (NextToken().is(tok::l_paren)) {
03226         ParseAtomicSpecifier(DS);
03227         continue;
03228       }
03229       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
03230                                  getLangOpts());
03231       break;
03232 
03233     // OpenCL qualifiers:
03234     case tok::kw___private:
03235     case tok::kw___global:
03236     case tok::kw___local:
03237     case tok::kw___constant:
03238     case tok::kw___read_only:
03239     case tok::kw___write_only:
03240     case tok::kw___read_write:
03241       ParseOpenCLQualifiers(DS.getAttributes());
03242       break;
03243 
03244     case tok::less:
03245       // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
03246       // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
03247       // but we support it.
03248       if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
03249         goto DoneWithDeclSpec;
03250 
03251       if (!ParseObjCProtocolQualifiers(DS))
03252         Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
03253           << FixItHint::CreateInsertion(Loc, "id")
03254           << SourceRange(Loc, DS.getSourceRange().getEnd());
03255 
03256       // Need to support trailing type qualifiers (e.g. "id<p> const").
03257       // If a type specifier follows, it will be diagnosed elsewhere.
03258       continue;
03259     }
03260     // If the specifier wasn't legal, issue a diagnostic.
03261     if (isInvalid) {
03262       assert(PrevSpec && "Method did not return previous specifier!");
03263       assert(DiagID);
03264 
03265       if (DiagID == diag::ext_duplicate_declspec)
03266         Diag(Tok, DiagID)
03267           << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
03268       else
03269         Diag(Tok, DiagID) << PrevSpec;
03270     }
03271 
03272     DS.SetRangeEnd(Tok.getLocation());
03273     if (DiagID != diag::err_bool_redeclaration)
03274       ConsumeToken();
03275 
03276     AttrsLastTime = false;
03277   }
03278 }
03279 
03280 /// ParseStructDeclaration - Parse a struct declaration without the terminating
03281 /// semicolon.
03282 ///
03283 ///       struct-declaration:
03284 ///         specifier-qualifier-list struct-declarator-list
03285 /// [GNU]   __extension__ struct-declaration
03286 /// [GNU]   specifier-qualifier-list
03287 ///       struct-declarator-list:
03288 ///         struct-declarator
03289 ///         struct-declarator-list ',' struct-declarator
03290 /// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
03291 ///       struct-declarator:
03292 ///         declarator
03293 /// [GNU]   declarator attributes[opt]
03294 ///         declarator[opt] ':' constant-expression
03295 /// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
03296 ///
03297 void Parser::ParseStructDeclaration(
03298     ParsingDeclSpec &DS,
03299     llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
03300 
03301   if (Tok.is(tok::kw___extension__)) {
03302     // __extension__ silences extension warnings in the subexpression.
03303     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
03304     ConsumeToken();
03305     return ParseStructDeclaration(DS, FieldsCallback);
03306   }
03307 
03308   // Parse the common specifier-qualifiers-list piece.
03309   ParseSpecifierQualifierList(DS);
03310 
03311   // If there are no declarators, this is a free-standing declaration
03312   // specifier. Let the actions module cope with it.
03313   if (Tok.is(tok::semi)) {
03314     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
03315                                                        DS);
03316     DS.complete(TheDecl);
03317     return;
03318   }
03319 
03320   // Read struct-declarators until we find the semicolon.
03321   bool FirstDeclarator = true;
03322   SourceLocation CommaLoc;
03323   while (1) {
03324     ParsingFieldDeclarator DeclaratorInfo(*this, DS);
03325     DeclaratorInfo.D.setCommaLoc(CommaLoc);
03326 
03327     // Attributes are only allowed here on successive declarators.
03328     if (!FirstDeclarator)
03329       MaybeParseGNUAttributes(DeclaratorInfo.D);
03330 
03331     /// struct-declarator: declarator
03332     /// struct-declarator: declarator[opt] ':' constant-expression
03333     if (Tok.isNot(tok::colon)) {
03334       // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
03335       ColonProtectionRAIIObject X(*this);
03336       ParseDeclarator(DeclaratorInfo.D);
03337     } else
03338       DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
03339 
03340     if (TryConsumeToken(tok::colon)) {
03341       ExprResult Res(ParseConstantExpression());
03342       if (Res.isInvalid())
03343         SkipUntil(tok::semi, StopBeforeMatch);
03344       else
03345         DeclaratorInfo.BitfieldSize = Res.get();
03346     }
03347 
03348     // If attributes exist after the declarator, parse them.
03349     MaybeParseGNUAttributes(DeclaratorInfo.D);
03350 
03351     // We're done with this declarator;  invoke the callback.
03352     FieldsCallback(DeclaratorInfo);
03353 
03354     // If we don't have a comma, it is either the end of the list (a ';')
03355     // or an error, bail out.
03356     if (!TryConsumeToken(tok::comma, CommaLoc))
03357       return;
03358 
03359     FirstDeclarator = false;
03360   }
03361 }
03362 
03363 /// ParseStructUnionBody
03364 ///       struct-contents:
03365 ///         struct-declaration-list
03366 /// [EXT]   empty
03367 /// [GNU]   "struct-declaration-list" without terminatoring ';'
03368 ///       struct-declaration-list:
03369 ///         struct-declaration
03370 ///         struct-declaration-list struct-declaration
03371 /// [OBC]   '@' 'defs' '(' class-name ')'
03372 ///
03373 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
03374                                   unsigned TagType, Decl *TagDecl) {
03375   PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
03376                                       "parsing struct/union body");
03377   assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
03378 
03379   BalancedDelimiterTracker T(*this, tok::l_brace);
03380   if (T.consumeOpen())
03381     return;
03382 
03383   ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
03384   Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
03385 
03386   SmallVector<Decl *, 32> FieldDecls;
03387 
03388   // While we still have something to read, read the declarations in the struct.
03389   while (Tok.isNot(tok::r_brace) && !isEofOrEom()) {
03390     // Each iteration of this loop reads one struct-declaration.
03391 
03392     // Check for extraneous top-level semicolon.
03393     if (Tok.is(tok::semi)) {
03394       ConsumeExtraSemi(InsideStruct, TagType);
03395       continue;
03396     }
03397 
03398     // Parse _Static_assert declaration.
03399     if (Tok.is(tok::kw__Static_assert)) {
03400       SourceLocation DeclEnd;
03401       ParseStaticAssertDeclaration(DeclEnd);
03402       continue;
03403     }
03404 
03405     if (Tok.is(tok::annot_pragma_pack)) {
03406       HandlePragmaPack();
03407       continue;
03408     }
03409 
03410     if (Tok.is(tok::annot_pragma_align)) {
03411       HandlePragmaAlign();
03412       continue;
03413     }
03414 
03415     if (!Tok.is(tok::at)) {
03416       auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
03417         // Install the declarator into the current TagDecl.
03418         Decl *Field =
03419             Actions.ActOnField(getCurScope(), TagDecl,
03420                                FD.D.getDeclSpec().getSourceRange().getBegin(),
03421                                FD.D, FD.BitfieldSize);
03422         FieldDecls.push_back(Field);
03423         FD.complete(Field);
03424       };
03425 
03426       // Parse all the comma separated declarators.
03427       ParsingDeclSpec DS(*this);
03428       ParseStructDeclaration(DS, CFieldCallback);
03429     } else { // Handle @defs
03430       ConsumeToken();
03431       if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
03432         Diag(Tok, diag::err_unexpected_at);
03433         SkipUntil(tok::semi);
03434         continue;
03435       }
03436       ConsumeToken();
03437       ExpectAndConsume(tok::l_paren);
03438       if (!Tok.is(tok::identifier)) {
03439         Diag(Tok, diag::err_expected) << tok::identifier;
03440         SkipUntil(tok::semi);
03441         continue;
03442       }
03443       SmallVector<Decl *, 16> Fields;
03444       Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
03445                         Tok.getIdentifierInfo(), Fields);
03446       FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
03447       ConsumeToken();
03448       ExpectAndConsume(tok::r_paren);
03449     }
03450 
03451     if (TryConsumeToken(tok::semi))
03452       continue;
03453 
03454     if (Tok.is(tok::r_brace)) {
03455       ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
03456       break;
03457     }
03458 
03459     ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
03460     // Skip to end of block or statement to avoid ext-warning on extra ';'.
03461     SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
03462     // If we stopped at a ';', eat it.
03463     TryConsumeToken(tok::semi);
03464   }
03465 
03466   T.consumeClose();
03467 
03468   ParsedAttributes attrs(AttrFactory);
03469   // If attributes exist after struct contents, parse them.
03470   MaybeParseGNUAttributes(attrs);
03471 
03472   Actions.ActOnFields(getCurScope(),
03473                       RecordLoc, TagDecl, FieldDecls,
03474                       T.getOpenLocation(), T.getCloseLocation(),
03475                       attrs.getList());
03476   StructScope.Exit();
03477   Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
03478                                    T.getCloseLocation());
03479 }
03480 
03481 /// ParseEnumSpecifier
03482 ///       enum-specifier: [C99 6.7.2.2]
03483 ///         'enum' identifier[opt] '{' enumerator-list '}'
03484 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
03485 /// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
03486 ///                                                 '}' attributes[opt]
03487 /// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
03488 ///                                                 '}'
03489 ///         'enum' identifier
03490 /// [GNU]   'enum' attributes[opt] identifier
03491 ///
03492 /// [C++11] enum-head '{' enumerator-list[opt] '}'
03493 /// [C++11] enum-head '{' enumerator-list ','  '}'
03494 ///
03495 ///       enum-head: [C++11]
03496 ///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
03497 ///         enum-key attribute-specifier-seq[opt] nested-name-specifier
03498 ///             identifier enum-base[opt]
03499 ///
03500 ///       enum-key: [C++11]
03501 ///         'enum'
03502 ///         'enum' 'class'
03503 ///         'enum' 'struct'
03504 ///
03505 ///       enum-base: [C++11]
03506 ///         ':' type-specifier-seq
03507 ///
03508 /// [C++] elaborated-type-specifier:
03509 /// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
03510 ///
03511 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
03512                                 const ParsedTemplateInfo &TemplateInfo,
03513                                 AccessSpecifier AS, DeclSpecContext DSC) {
03514   // Parse the tag portion of this.
03515   if (Tok.is(tok::code_completion)) {
03516     // Code completion for an enum name.
03517     Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
03518     return cutOffParsing();
03519   }
03520 
03521   // If attributes exist after tag, parse them.
03522   ParsedAttributesWithRange attrs(AttrFactory);
03523   MaybeParseGNUAttributes(attrs);
03524   MaybeParseCXX11Attributes(attrs);
03525 
03526   // If declspecs exist after tag, parse them.
03527   while (Tok.is(tok::kw___declspec))
03528     ParseMicrosoftDeclSpec(attrs);
03529 
03530   SourceLocation ScopedEnumKWLoc;
03531   bool IsScopedUsingClassTag = false;
03532 
03533   // In C++11, recognize 'enum class' and 'enum struct'.
03534   if (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct)) {
03535     Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
03536                                         : diag::ext_scoped_enum);
03537     IsScopedUsingClassTag = Tok.is(tok::kw_class);
03538     ScopedEnumKWLoc = ConsumeToken();
03539 
03540     // Attributes are not allowed between these keywords.  Diagnose,
03541     // but then just treat them like they appeared in the right place.
03542     ProhibitAttributes(attrs);
03543 
03544     // They are allowed afterwards, though.
03545     MaybeParseGNUAttributes(attrs);
03546     MaybeParseCXX11Attributes(attrs);
03547     while (Tok.is(tok::kw___declspec))
03548       ParseMicrosoftDeclSpec(attrs);
03549   }
03550 
03551   // C++11 [temp.explicit]p12:
03552   //   The usual access controls do not apply to names used to specify
03553   //   explicit instantiations.
03554   // We extend this to also cover explicit specializations.  Note that
03555   // we don't suppress if this turns out to be an elaborated type
03556   // specifier.
03557   bool shouldDelayDiagsInTag =
03558     (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
03559      TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
03560   SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
03561 
03562   // Enum definitions should not be parsed in a trailing-return-type.
03563   bool AllowDeclaration = DSC != DSC_trailing;
03564 
03565   bool AllowFixedUnderlyingType = AllowDeclaration &&
03566     (getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt ||
03567      getLangOpts().ObjC2);
03568 
03569   CXXScopeSpec &SS = DS.getTypeSpecScope();
03570   if (getLangOpts().CPlusPlus) {
03571     // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
03572     // if a fixed underlying type is allowed.
03573     ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
03574 
03575     if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
03576                                        /*EnteringContext=*/true))
03577       return;
03578 
03579     if (SS.isSet() && Tok.isNot(tok::identifier)) {
03580       Diag(Tok, diag::err_expected) << tok::identifier;
03581       if (Tok.isNot(tok::l_brace)) {
03582         // Has no name and is not a definition.
03583         // Skip the rest of this declarator, up until the comma or semicolon.
03584         SkipUntil(tok::comma, StopAtSemi);
03585         return;
03586       }
03587     }
03588   }
03589 
03590   // Must have either 'enum name' or 'enum {...}'.
03591   if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
03592       !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
03593     Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
03594 
03595     // Skip the rest of this declarator, up until the comma or semicolon.
03596     SkipUntil(tok::comma, StopAtSemi);
03597     return;
03598   }
03599 
03600   // If an identifier is present, consume and remember it.
03601   IdentifierInfo *Name = nullptr;
03602   SourceLocation NameLoc;
03603   if (Tok.is(tok::identifier)) {
03604     Name = Tok.getIdentifierInfo();
03605     NameLoc = ConsumeToken();
03606   }
03607 
03608   if (!Name && ScopedEnumKWLoc.isValid()) {
03609     // C++0x 7.2p2: The optional identifier shall not be omitted in the
03610     // declaration of a scoped enumeration.
03611     Diag(Tok, diag::err_scoped_enum_missing_identifier);
03612     ScopedEnumKWLoc = SourceLocation();
03613     IsScopedUsingClassTag = false;
03614   }
03615 
03616   // Okay, end the suppression area.  We'll decide whether to emit the
03617   // diagnostics in a second.
03618   if (shouldDelayDiagsInTag)
03619     diagsFromTag.done();
03620 
03621   TypeResult BaseType;
03622 
03623   // Parse the fixed underlying type.
03624   bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
03625   if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
03626     bool PossibleBitfield = false;
03627     if (CanBeBitfield) {
03628       // If we're in class scope, this can either be an enum declaration with
03629       // an underlying type, or a declaration of a bitfield member. We try to
03630       // use a simple disambiguation scheme first to catch the common cases
03631       // (integer literal, sizeof); if it's still ambiguous, we then consider
03632       // anything that's a simple-type-specifier followed by '(' as an
03633       // expression. This suffices because function types are not valid
03634       // underlying types anyway.
03635       EnterExpressionEvaluationContext Unevaluated(Actions,
03636                                                    Sema::ConstantEvaluated);
03637       TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
03638       // If the next token starts an expression, we know we're parsing a
03639       // bit-field. This is the common case.
03640       if (TPR == TPResult::True)
03641         PossibleBitfield = true;
03642       // If the next token starts a type-specifier-seq, it may be either a
03643       // a fixed underlying type or the start of a function-style cast in C++;
03644       // lookahead one more token to see if it's obvious that we have a
03645       // fixed underlying type.
03646       else if (TPR == TPResult::False &&
03647                GetLookAheadToken(2).getKind() == tok::semi) {
03648         // Consume the ':'.
03649         ConsumeToken();
03650       } else {
03651         // We have the start of a type-specifier-seq, so we have to perform
03652         // tentative parsing to determine whether we have an expression or a
03653         // type.
03654         TentativeParsingAction TPA(*this);
03655 
03656         // Consume the ':'.
03657         ConsumeToken();
03658 
03659         // If we see a type specifier followed by an open-brace, we have an
03660         // ambiguity between an underlying type and a C++11 braced
03661         // function-style cast. Resolve this by always treating it as an
03662         // underlying type.
03663         // FIXME: The standard is not entirely clear on how to disambiguate in
03664         // this case.
03665         if ((getLangOpts().CPlusPlus &&
03666              isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
03667             (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
03668           // We'll parse this as a bitfield later.
03669           PossibleBitfield = true;
03670           TPA.Revert();
03671         } else {
03672           // We have a type-specifier-seq.
03673           TPA.Commit();
03674         }
03675       }
03676     } else {
03677       // Consume the ':'.
03678       ConsumeToken();
03679     }
03680 
03681     if (!PossibleBitfield) {
03682       SourceRange Range;
03683       BaseType = ParseTypeName(&Range);
03684 
03685       if (getLangOpts().CPlusPlus11) {
03686         Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
03687       } else if (!getLangOpts().ObjC2) {
03688         if (getLangOpts().CPlusPlus)
03689           Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range;
03690         else
03691           Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range;
03692       }
03693     }
03694   }
03695 
03696   // There are four options here.  If we have 'friend enum foo;' then this is a
03697   // friend declaration, and cannot have an accompanying definition. If we have
03698   // 'enum foo;', then this is a forward declaration.  If we have
03699   // 'enum foo {...' then this is a definition. Otherwise we have something
03700   // like 'enum foo xyz', a reference.
03701   //
03702   // This is needed to handle stuff like this right (C99 6.7.2.3p11):
03703   // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
03704   // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
03705   //
03706   Sema::TagUseKind TUK;
03707   if (!AllowDeclaration) {
03708     TUK = Sema::TUK_Reference;
03709   } else if (Tok.is(tok::l_brace)) {
03710     if (DS.isFriendSpecified()) {
03711       Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
03712         << SourceRange(DS.getFriendSpecLoc());
03713       ConsumeBrace();
03714       SkipUntil(tok::r_brace, StopAtSemi);
03715       TUK = Sema::TUK_Friend;
03716     } else {
03717       TUK = Sema::TUK_Definition;
03718     }
03719   } else if (!isTypeSpecifier(DSC) &&
03720              (Tok.is(tok::semi) ||
03721               (Tok.isAtStartOfLine() &&
03722                !isValidAfterTypeSpecifier(CanBeBitfield)))) {
03723     TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
03724     if (Tok.isNot(tok::semi)) {
03725       // A semicolon was missing after this declaration. Diagnose and recover.
03726       ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
03727       PP.EnterToken(Tok);
03728       Tok.setKind(tok::semi);
03729     }
03730   } else {
03731     TUK = Sema::TUK_Reference;
03732   }
03733 
03734   // If this is an elaborated type specifier, and we delayed
03735   // diagnostics before, just merge them into the current pool.
03736   if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
03737     diagsFromTag.redelay();
03738   }
03739 
03740   MultiTemplateParamsArg TParams;
03741   if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
03742       TUK != Sema::TUK_Reference) {
03743     if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
03744       // Skip the rest of this declarator, up until the comma or semicolon.
03745       Diag(Tok, diag::err_enum_template);
03746       SkipUntil(tok::comma, StopAtSemi);
03747       return;
03748     }
03749 
03750     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
03751       // Enumerations can't be explicitly instantiated.
03752       DS.SetTypeSpecError();
03753       Diag(StartLoc, diag::err_explicit_instantiation_enum);
03754       return;
03755     }
03756 
03757     assert(TemplateInfo.TemplateParams && "no template parameters");
03758     TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
03759                                      TemplateInfo.TemplateParams->size());
03760   }
03761 
03762   if (TUK == Sema::TUK_Reference)
03763     ProhibitAttributes(attrs);
03764 
03765   if (!Name && TUK != Sema::TUK_Definition) {
03766     Diag(Tok, diag::err_enumerator_unnamed_no_def);
03767 
03768     // Skip the rest of this declarator, up until the comma or semicolon.
03769     SkipUntil(tok::comma, StopAtSemi);
03770     return;
03771   }
03772 
03773   bool Owned = false;
03774   bool IsDependent = false;
03775   const char *PrevSpec = nullptr;
03776   unsigned DiagID;
03777   Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
03778                                    StartLoc, SS, Name, NameLoc, attrs.getList(),
03779                                    AS, DS.getModulePrivateSpecLoc(), TParams,
03780                                    Owned, IsDependent, ScopedEnumKWLoc,
03781                                    IsScopedUsingClassTag, BaseType,
03782                                    DSC == DSC_type_specifier);
03783 
03784   if (IsDependent) {
03785     // This enum has a dependent nested-name-specifier. Handle it as a
03786     // dependent tag.
03787     if (!Name) {
03788       DS.SetTypeSpecError();
03789       Diag(Tok, diag::err_expected_type_name_after_typename);
03790       return;
03791     }
03792 
03793     TypeResult Type = Actions.ActOnDependentTag(
03794         getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
03795     if (Type.isInvalid()) {
03796       DS.SetTypeSpecError();
03797       return;
03798     }
03799 
03800     if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
03801                            NameLoc.isValid() ? NameLoc : StartLoc,
03802                            PrevSpec, DiagID, Type.get(),
03803                            Actions.getASTContext().getPrintingPolicy()))
03804       Diag(StartLoc, DiagID) << PrevSpec;
03805 
03806     return;
03807   }
03808 
03809   if (!TagDecl) {
03810     // The action failed to produce an enumeration tag. If this is a
03811     // definition, consume the entire definition.
03812     if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
03813       ConsumeBrace();
03814       SkipUntil(tok::r_brace, StopAtSemi);
03815     }
03816 
03817     DS.SetTypeSpecError();
03818     return;
03819   }
03820 
03821   if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference)
03822     ParseEnumBody(StartLoc, TagDecl);
03823 
03824   if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
03825                          NameLoc.isValid() ? NameLoc : StartLoc,
03826                          PrevSpec, DiagID, TagDecl, Owned,
03827                          Actions.getASTContext().getPrintingPolicy()))
03828     Diag(StartLoc, DiagID) << PrevSpec;
03829 }
03830 
03831 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
03832 ///       enumerator-list:
03833 ///         enumerator
03834 ///         enumerator-list ',' enumerator
03835 ///       enumerator:
03836 ///         enumeration-constant attributes[opt]
03837 ///         enumeration-constant attributes[opt] '=' constant-expression
03838 ///       enumeration-constant:
03839 ///         identifier
03840 ///
03841 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
03842   // Enter the scope of the enum body and start the definition.
03843   ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
03844   Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
03845 
03846   BalancedDelimiterTracker T(*this, tok::l_brace);
03847   T.consumeOpen();
03848 
03849   // C does not allow an empty enumerator-list, C++ does [dcl.enum].
03850   if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
03851     Diag(Tok, diag::error_empty_enum);
03852 
03853   SmallVector<Decl *, 32> EnumConstantDecls;
03854 
03855   Decl *LastEnumConstDecl = nullptr;
03856 
03857   // Parse the enumerator-list.
03858   while (Tok.isNot(tok::r_brace)) {
03859     // Parse enumerator. If failed, try skipping till the start of the next
03860     // enumerator definition.
03861     if (Tok.isNot(tok::identifier)) {
03862       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
03863       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
03864           TryConsumeToken(tok::comma))
03865         continue;
03866       break;
03867     }
03868     IdentifierInfo *Ident = Tok.getIdentifierInfo();
03869     SourceLocation IdentLoc = ConsumeToken();
03870 
03871     // If attributes exist after the enumerator, parse them.
03872     ParsedAttributesWithRange attrs(AttrFactory);
03873     MaybeParseGNUAttributes(attrs);
03874     ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
03875     if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier()) {
03876       if (!getLangOpts().CPlusPlus1z)
03877         Diag(Tok.getLocation(), diag::warn_cxx14_compat_attribute)
03878             << 1 /*enumerator*/;
03879       ParseCXX11Attributes(attrs);
03880     }
03881 
03882     SourceLocation EqualLoc;
03883     ExprResult AssignedVal;
03884     ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
03885 
03886     if (TryConsumeToken(tok::equal, EqualLoc)) {
03887       AssignedVal = ParseConstantExpression();
03888       if (AssignedVal.isInvalid())
03889         SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
03890     }
03891 
03892     // Install the enumerator constant into EnumDecl.
03893     Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
03894                                                     LastEnumConstDecl,
03895                                                     IdentLoc, Ident,
03896                                                     attrs.getList(), EqualLoc,
03897                                                     AssignedVal.get());
03898     PD.complete(EnumConstDecl);
03899 
03900     EnumConstantDecls.push_back(EnumConstDecl);
03901     LastEnumConstDecl = EnumConstDecl;
03902 
03903     if (Tok.is(tok::identifier)) {
03904       // We're missing a comma between enumerators.
03905       SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
03906       Diag(Loc, diag::err_enumerator_list_missing_comma)
03907         << FixItHint::CreateInsertion(Loc, ", ");
03908       continue;
03909     }
03910 
03911     // Emumerator definition must be finished, only comma or r_brace are
03912     // allowed here.
03913     SourceLocation CommaLoc;
03914     if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
03915       if (EqualLoc.isValid())
03916         Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
03917                                                            << tok::comma;
03918       else
03919         Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
03920       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
03921         if (TryConsumeToken(tok::comma, CommaLoc))
03922           continue;
03923       } else {
03924         break;
03925       }
03926     }
03927 
03928     // If comma is followed by r_brace, emit appropriate warning.
03929     if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
03930       if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
03931         Diag(CommaLoc, getLangOpts().CPlusPlus ?
03932                diag::ext_enumerator_list_comma_cxx :
03933                diag::ext_enumerator_list_comma_c)
03934           << FixItHint::CreateRemoval(CommaLoc);
03935       else if (getLangOpts().CPlusPlus11)
03936         Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
03937           << FixItHint::CreateRemoval(CommaLoc);
03938       break;
03939     }
03940   }
03941 
03942   // Eat the }.
03943   T.consumeClose();
03944 
03945   // If attributes exist after the identifier list, parse them.
03946   ParsedAttributes attrs(AttrFactory);
03947   MaybeParseGNUAttributes(attrs);
03948 
03949   Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
03950                         EnumDecl, EnumConstantDecls,
03951                         getCurScope(),
03952                         attrs.getList());
03953 
03954   EnumScope.Exit();
03955   Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
03956                                    T.getCloseLocation());
03957 
03958   // The next token must be valid after an enum definition. If not, a ';'
03959   // was probably forgotten.
03960   bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
03961   if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
03962     ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
03963     // Push this token back into the preprocessor and change our current token
03964     // to ';' so that the rest of the code recovers as though there were an
03965     // ';' after the definition.
03966     PP.EnterToken(Tok);
03967     Tok.setKind(tok::semi);
03968   }
03969 }
03970 
03971 /// isTypeSpecifierQualifier - Return true if the current token could be the
03972 /// start of a type-qualifier-list.
03973 bool Parser::isTypeQualifier() const {
03974   switch (Tok.getKind()) {
03975   default: return false;
03976   // type-qualifier
03977   case tok::kw_const:
03978   case tok::kw_volatile:
03979   case tok::kw_restrict:
03980   case tok::kw___private:
03981   case tok::kw___local:
03982   case tok::kw___global:
03983   case tok::kw___constant:
03984   case tok::kw___read_only:
03985   case tok::kw___read_write:
03986   case tok::kw___write_only:
03987     return true;
03988   }
03989 }
03990 
03991 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
03992 /// is definitely a type-specifier.  Return false if it isn't part of a type
03993 /// specifier or if we're not sure.
03994 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
03995   switch (Tok.getKind()) {
03996   default: return false;
03997     // type-specifiers
03998   case tok::kw_short:
03999   case tok::kw_long:
04000   case tok::kw___int64:
04001   case tok::kw___int128:
04002   case tok::kw_signed:
04003   case tok::kw_unsigned:
04004   case tok::kw__Complex:
04005   case tok::kw__Imaginary:
04006   case tok::kw_void:
04007   case tok::kw_char:
04008   case tok::kw_wchar_t:
04009   case tok::kw_char16_t:
04010   case tok::kw_char32_t:
04011   case tok::kw_int:
04012   case tok::kw_half:
04013   case tok::kw_float:
04014   case tok::kw_double:
04015   case tok::kw_bool:
04016   case tok::kw__Bool:
04017   case tok::kw__Decimal32:
04018   case tok::kw__Decimal64:
04019   case tok::kw__Decimal128:
04020   case tok::kw___vector:
04021 
04022     // struct-or-union-specifier (C99) or class-specifier (C++)
04023   case tok::kw_class:
04024   case tok::kw_struct:
04025   case tok::kw___interface:
04026   case tok::kw_union:
04027     // enum-specifier
04028   case tok::kw_enum:
04029 
04030     // typedef-name
04031   case tok::annot_typename:
04032     return true;
04033   }
04034 }
04035 
04036 /// isTypeSpecifierQualifier - Return true if the current token could be the
04037 /// start of a specifier-qualifier-list.
04038 bool Parser::isTypeSpecifierQualifier() {
04039   switch (Tok.getKind()) {
04040   default: return false;
04041 
04042   case tok::identifier:   // foo::bar
04043     if (TryAltiVecVectorToken())
04044       return true;
04045     // Fall through.
04046   case tok::kw_typename:  // typename T::type
04047     // Annotate typenames and C++ scope specifiers.  If we get one, just
04048     // recurse to handle whatever we get.
04049     if (TryAnnotateTypeOrScopeToken())
04050       return true;
04051     if (Tok.is(tok::identifier))
04052       return false;
04053     return isTypeSpecifierQualifier();
04054 
04055   case tok::coloncolon:   // ::foo::bar
04056     if (NextToken().is(tok::kw_new) ||    // ::new
04057         NextToken().is(tok::kw_delete))   // ::delete
04058       return false;
04059 
04060     if (TryAnnotateTypeOrScopeToken())
04061       return true;
04062     return isTypeSpecifierQualifier();
04063 
04064     // GNU attributes support.
04065   case tok::kw___attribute:
04066     // GNU typeof support.
04067   case tok::kw_typeof:
04068 
04069     // type-specifiers
04070   case tok::kw_short:
04071   case tok::kw_long:
04072   case tok::kw___int64:
04073   case tok::kw___int128:
04074   case tok::kw_signed:
04075   case tok::kw_unsigned:
04076   case tok::kw__Complex:
04077   case tok::kw__Imaginary:
04078   case tok::kw_void:
04079   case tok::kw_char:
04080   case tok::kw_wchar_t:
04081   case tok::kw_char16_t:
04082   case tok::kw_char32_t:
04083   case tok::kw_int:
04084   case tok::kw_half:
04085   case tok::kw_float:
04086   case tok::kw_double:
04087   case tok::kw_bool:
04088   case tok::kw__Bool:
04089   case tok::kw__Decimal32:
04090   case tok::kw__Decimal64:
04091   case tok::kw__Decimal128:
04092   case tok::kw___vector:
04093 
04094     // struct-or-union-specifier (C99) or class-specifier (C++)
04095   case tok::kw_class:
04096   case tok::kw_struct:
04097   case tok::kw___interface:
04098   case tok::kw_union:
04099     // enum-specifier
04100   case tok::kw_enum:
04101 
04102     // type-qualifier
04103   case tok::kw_const:
04104   case tok::kw_volatile:
04105   case tok::kw_restrict:
04106 
04107     // Debugger support.
04108   case tok::kw___unknown_anytype:
04109 
04110     // typedef-name
04111   case tok::annot_typename:
04112     return true;
04113 
04114     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
04115   case tok::less:
04116     return getLangOpts().ObjC1;
04117 
04118   case tok::kw___cdecl:
04119   case tok::kw___stdcall:
04120   case tok::kw___fastcall:
04121   case tok::kw___thiscall:
04122   case tok::kw___vectorcall:
04123   case tok::kw___w64:
04124   case tok::kw___ptr64:
04125   case tok::kw___ptr32:
04126   case tok::kw___pascal:
04127   case tok::kw___unaligned:
04128 
04129   case tok::kw___private:
04130   case tok::kw___local:
04131   case tok::kw___global:
04132   case tok::kw___constant:
04133   case tok::kw___read_only:
04134   case tok::kw___read_write:
04135   case tok::kw___write_only:
04136 
04137     return true;
04138 
04139   // C11 _Atomic
04140   case tok::kw__Atomic:
04141     return true;
04142   }
04143 }
04144 
04145 /// isDeclarationSpecifier() - Return true if the current token is part of a
04146 /// declaration specifier.
04147 ///
04148 /// \param DisambiguatingWithExpression True to indicate that the purpose of
04149 /// this check is to disambiguate between an expression and a declaration.
04150 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
04151   switch (Tok.getKind()) {
04152   default: return false;
04153 
04154   case tok::identifier:   // foo::bar
04155     // Unfortunate hack to support "Class.factoryMethod" notation.
04156     if (getLangOpts().ObjC1 && NextToken().is(tok::period))
04157       return false;
04158     if (TryAltiVecVectorToken())
04159       return true;
04160     // Fall through.
04161   case tok::kw_decltype: // decltype(T())::type
04162   case tok::kw_typename: // typename T::type
04163     // Annotate typenames and C++ scope specifiers.  If we get one, just
04164     // recurse to handle whatever we get.
04165     if (TryAnnotateTypeOrScopeToken())
04166       return true;
04167     if (Tok.is(tok::identifier))
04168       return false;
04169 
04170     // If we're in Objective-C and we have an Objective-C class type followed
04171     // by an identifier and then either ':' or ']', in a place where an
04172     // expression is permitted, then this is probably a class message send
04173     // missing the initial '['. In this case, we won't consider this to be
04174     // the start of a declaration.
04175     if (DisambiguatingWithExpression &&
04176         isStartOfObjCClassMessageMissingOpenBracket())
04177       return false;
04178 
04179     return isDeclarationSpecifier();
04180 
04181   case tok::coloncolon:   // ::foo::bar
04182     if (NextToken().is(tok::kw_new) ||    // ::new
04183         NextToken().is(tok::kw_delete))   // ::delete
04184       return false;
04185 
04186     // Annotate typenames and C++ scope specifiers.  If we get one, just
04187     // recurse to handle whatever we get.
04188     if (TryAnnotateTypeOrScopeToken())
04189       return true;
04190     return isDeclarationSpecifier();
04191 
04192     // storage-class-specifier
04193   case tok::kw_typedef:
04194   case tok::kw_extern:
04195   case tok::kw___private_extern__:
04196   case tok::kw_static:
04197   case tok::kw_auto:
04198   case tok::kw_register:
04199   case tok::kw___thread:
04200   case tok::kw_thread_local:
04201   case tok::kw__Thread_local:
04202 
04203     // Modules
04204   case tok::kw___module_private__:
04205 
04206     // Debugger support
04207   case tok::kw___unknown_anytype:
04208 
04209     // type-specifiers
04210   case tok::kw_short:
04211   case tok::kw_long:
04212   case tok::kw___int64:
04213   case tok::kw___int128:
04214   case tok::kw_signed:
04215   case tok::kw_unsigned:
04216   case tok::kw__Complex:
04217   case tok::kw__Imaginary:
04218   case tok::kw_void:
04219   case tok::kw_char:
04220   case tok::kw_wchar_t:
04221   case tok::kw_char16_t:
04222   case tok::kw_char32_t:
04223 
04224   case tok::kw_int:
04225   case tok::kw_half:
04226   case tok::kw_float:
04227   case tok::kw_double:
04228   case tok::kw_bool:
04229   case tok::kw__Bool:
04230   case tok::kw__Decimal32:
04231   case tok::kw__Decimal64:
04232   case tok::kw__Decimal128:
04233   case tok::kw___vector:
04234 
04235     // struct-or-union-specifier (C99) or class-specifier (C++)
04236   case tok::kw_class:
04237   case tok::kw_struct:
04238   case tok::kw_union:
04239   case tok::kw___interface:
04240     // enum-specifier
04241   case tok::kw_enum:
04242 
04243     // type-qualifier
04244   case tok::kw_const:
04245   case tok::kw_volatile:
04246   case tok::kw_restrict:
04247 
04248     // function-specifier
04249   case tok::kw_inline:
04250   case tok::kw_virtual:
04251   case tok::kw_explicit:
04252   case tok::kw__Noreturn:
04253 
04254     // alignment-specifier
04255   case tok::kw__Alignas:
04256 
04257     // friend keyword.
04258   case tok::kw_friend:
04259 
04260     // static_assert-declaration
04261   case tok::kw__Static_assert:
04262 
04263     // GNU typeof support.
04264   case tok::kw_typeof:
04265 
04266     // GNU attributes.
04267   case tok::kw___attribute:
04268 
04269     // C++11 decltype and constexpr.
04270   case tok::annot_decltype:
04271   case tok::kw_constexpr:
04272 
04273     // C11 _Atomic
04274   case tok::kw__Atomic:
04275     return true;
04276 
04277     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
04278   case tok::less:
04279     return getLangOpts().ObjC1;
04280 
04281     // typedef-name
04282   case tok::annot_typename:
04283     return !DisambiguatingWithExpression ||
04284            !isStartOfObjCClassMessageMissingOpenBracket();
04285 
04286   case tok::kw___declspec:
04287   case tok::kw___cdecl:
04288   case tok::kw___stdcall:
04289   case tok::kw___fastcall:
04290   case tok::kw___thiscall:
04291   case tok::kw___vectorcall:
04292   case tok::kw___w64:
04293   case tok::kw___sptr:
04294   case tok::kw___uptr:
04295   case tok::kw___ptr64:
04296   case tok::kw___ptr32:
04297   case tok::kw___forceinline:
04298   case tok::kw___pascal:
04299   case tok::kw___unaligned:
04300 
04301   case tok::kw___private:
04302   case tok::kw___local:
04303   case tok::kw___global:
04304   case tok::kw___constant:
04305   case tok::kw___read_only:
04306   case tok::kw___read_write:
04307   case tok::kw___write_only:
04308 
04309     return true;
04310   }
04311 }
04312 
04313 bool Parser::isConstructorDeclarator(bool IsUnqualified) {
04314   TentativeParsingAction TPA(*this);
04315 
04316   // Parse the C++ scope specifier.
04317   CXXScopeSpec SS;
04318   if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
04319                                      /*EnteringContext=*/true)) {
04320     TPA.Revert();
04321     return false;
04322   }
04323 
04324   // Parse the constructor name.
04325   if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
04326     // We already know that we have a constructor name; just consume
04327     // the token.
04328     ConsumeToken();
04329   } else {
04330     TPA.Revert();
04331     return false;
04332   }
04333 
04334   // Current class name must be followed by a left parenthesis.
04335   if (Tok.isNot(tok::l_paren)) {
04336     TPA.Revert();
04337     return false;
04338   }
04339   ConsumeParen();
04340 
04341   // A right parenthesis, or ellipsis followed by a right parenthesis signals
04342   // that we have a constructor.
04343   if (Tok.is(tok::r_paren) ||
04344       (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
04345     TPA.Revert();
04346     return true;
04347   }
04348 
04349   // A C++11 attribute here signals that we have a constructor, and is an
04350   // attribute on the first constructor parameter.
04351   if (getLangOpts().CPlusPlus11 &&
04352       isCXX11AttributeSpecifier(/*Disambiguate*/ false,
04353                                 /*OuterMightBeMessageSend*/ true)) {
04354     TPA.Revert();
04355     return true;
04356   }
04357 
04358   // If we need to, enter the specified scope.
04359   DeclaratorScopeObj DeclScopeObj(*this, SS);
04360   if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
04361     DeclScopeObj.EnterDeclaratorScope();
04362 
04363   // Optionally skip Microsoft attributes.
04364   ParsedAttributes Attrs(AttrFactory);
04365   MaybeParseMicrosoftAttributes(Attrs);
04366 
04367   // Check whether the next token(s) are part of a declaration
04368   // specifier, in which case we have the start of a parameter and,
04369   // therefore, we know that this is a constructor.
04370   bool IsConstructor = false;
04371   if (isDeclarationSpecifier())
04372     IsConstructor = true;
04373   else if (Tok.is(tok::identifier) ||
04374            (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
04375     // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
04376     // This might be a parenthesized member name, but is more likely to
04377     // be a constructor declaration with an invalid argument type. Keep
04378     // looking.
04379     if (Tok.is(tok::annot_cxxscope))
04380       ConsumeToken();
04381     ConsumeToken();
04382 
04383     // If this is not a constructor, we must be parsing a declarator,
04384     // which must have one of the following syntactic forms (see the
04385     // grammar extract at the start of ParseDirectDeclarator):
04386     switch (Tok.getKind()) {
04387     case tok::l_paren:
04388       // C(X   (   int));
04389     case tok::l_square:
04390       // C(X   [   5]);
04391       // C(X   [   [attribute]]);
04392     case tok::coloncolon:
04393       // C(X   ::   Y);
04394       // C(X   ::   *p);
04395       // Assume this isn't a constructor, rather than assuming it's a
04396       // constructor with an unnamed parameter of an ill-formed type.
04397       break;
04398 
04399     case tok::r_paren:
04400       // C(X   )
04401       if (NextToken().is(tok::colon) || NextToken().is(tok::kw_try)) {
04402         // Assume these were meant to be constructors:
04403         //   C(X)   :    (the name of a bit-field cannot be parenthesized).
04404         //   C(X)   try  (this is otherwise ill-formed).
04405         IsConstructor = true;
04406       }
04407       if (NextToken().is(tok::semi) || NextToken().is(tok::l_brace)) {
04408         // If we have a constructor name within the class definition,
04409         // assume these were meant to be constructors:
04410         //   C(X)   {
04411         //   C(X)   ;
04412         // ... because otherwise we would be declaring a non-static data
04413         // member that is ill-formed because it's of the same type as its
04414         // surrounding class.
04415         //
04416         // FIXME: We can actually do this whether or not the name is qualified,
04417         // because if it is qualified in this context it must be being used as
04418         // a constructor name. However, we do not implement that rule correctly
04419         // currently, so we're somewhat conservative here.
04420         IsConstructor = IsUnqualified;
04421       }
04422       break;
04423 
04424     default:
04425       IsConstructor = true;
04426       break;
04427     }
04428   }
04429 
04430   TPA.Revert();
04431   return IsConstructor;
04432 }
04433 
04434 /// ParseTypeQualifierListOpt
04435 ///          type-qualifier-list: [C99 6.7.5]
04436 ///            type-qualifier
04437 /// [vendor]   attributes
04438 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
04439 ///            type-qualifier-list type-qualifier
04440 /// [vendor]   type-qualifier-list attributes
04441 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
04442 /// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
04443 ///              [ only if AttReqs & AR_CXX11AttributesParsed ]
04444 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
04445 /// AttrRequirements bitmask values.
04446 void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, unsigned AttrReqs,
04447                                        bool AtomicAllowed,
04448                                        bool IdentifierRequired) {
04449   if (getLangOpts().CPlusPlus11 && (AttrReqs & AR_CXX11AttributesParsed) &&
04450       isCXX11AttributeSpecifier()) {
04451     ParsedAttributesWithRange attrs(AttrFactory);
04452     ParseCXX11Attributes(attrs);
04453     DS.takeAttributesFrom(attrs);
04454   }
04455 
04456   SourceLocation EndLoc;
04457 
04458   while (1) {
04459     bool isInvalid = false;
04460     const char *PrevSpec = nullptr;
04461     unsigned DiagID = 0;
04462     SourceLocation Loc = Tok.getLocation();
04463 
04464     switch (Tok.getKind()) {
04465     case tok::code_completion:
04466       Actions.CodeCompleteTypeQualifiers(DS);
04467       return cutOffParsing();
04468 
04469     case tok::kw_const:
04470       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
04471                                  getLangOpts());
04472       break;
04473     case tok::kw_volatile:
04474       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
04475                                  getLangOpts());
04476       break;
04477     case tok::kw_restrict:
04478       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
04479                                  getLangOpts());
04480       break;
04481     case tok::kw__Atomic:
04482       if (!AtomicAllowed)
04483         goto DoneWithTypeQuals;
04484       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
04485                                  getLangOpts());
04486       break;
04487 
04488     // OpenCL qualifiers:
04489     case tok::kw___private:
04490     case tok::kw___global:
04491     case tok::kw___local:
04492     case tok::kw___constant:
04493     case tok::kw___read_only:
04494     case tok::kw___write_only:
04495     case tok::kw___read_write:
04496       ParseOpenCLQualifiers(DS.getAttributes());
04497       break;
04498 
04499     case tok::kw___uptr:
04500       // GNU libc headers in C mode use '__uptr' as an identifer which conflicts
04501       // with the MS modifier keyword.
04502       if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
04503           IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
04504         if (TryKeywordIdentFallback(false))
04505           continue;
04506       }
04507     case tok::kw___sptr:
04508     case tok::kw___w64:
04509     case tok::kw___ptr64:
04510     case tok::kw___ptr32:
04511     case tok::kw___cdecl:
04512     case tok::kw___stdcall:
04513     case tok::kw___fastcall:
04514     case tok::kw___thiscall:
04515     case tok::kw___vectorcall:
04516     case tok::kw___unaligned:
04517       if (AttrReqs & AR_DeclspecAttributesParsed) {
04518         ParseMicrosoftTypeAttributes(DS.getAttributes());
04519         continue;
04520       }
04521       goto DoneWithTypeQuals;
04522     case tok::kw___pascal:
04523       if (AttrReqs & AR_VendorAttributesParsed) {
04524         ParseBorlandTypeAttributes(DS.getAttributes());
04525         continue;
04526       }
04527       goto DoneWithTypeQuals;
04528     case tok::kw___attribute:
04529       if (AttrReqs & AR_GNUAttributesParsedAndRejected)
04530         // When GNU attributes are expressly forbidden, diagnose their usage.
04531         Diag(Tok, diag::err_attributes_not_allowed);
04532 
04533       // Parse the attributes even if they are rejected to ensure that error
04534       // recovery is graceful.
04535       if (AttrReqs & AR_GNUAttributesParsed ||
04536           AttrReqs & AR_GNUAttributesParsedAndRejected) {
04537         ParseGNUAttributes(DS.getAttributes());
04538         continue; // do *not* consume the next token!
04539       }
04540       // otherwise, FALL THROUGH!
04541     default:
04542       DoneWithTypeQuals:
04543       // If this is not a type-qualifier token, we're done reading type
04544       // qualifiers.  First verify that DeclSpec's are consistent.
04545       DS.Finish(Diags, PP, Actions.getASTContext().getPrintingPolicy());
04546       if (EndLoc.isValid())
04547         DS.SetRangeEnd(EndLoc);
04548       return;
04549     }
04550 
04551     // If the specifier combination wasn't legal, issue a diagnostic.
04552     if (isInvalid) {
04553       assert(PrevSpec && "Method did not return previous specifier!");
04554       Diag(Tok, DiagID) << PrevSpec;
04555     }
04556     EndLoc = ConsumeToken();
04557   }
04558 }
04559 
04560 
04561 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
04562 ///
04563 void Parser::ParseDeclarator(Declarator &D) {
04564   /// This implements the 'declarator' production in the C grammar, then checks
04565   /// for well-formedness and issues diagnostics.
04566   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
04567 }
04568 
04569 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
04570                                unsigned TheContext) {
04571   if (Kind == tok::star || Kind == tok::caret)
04572     return true;
04573 
04574   if (!Lang.CPlusPlus)
04575     return false;
04576 
04577   if (Kind == tok::amp)
04578     return true;
04579 
04580   // We parse rvalue refs in C++03, because otherwise the errors are scary.
04581   // But we must not parse them in conversion-type-ids and new-type-ids, since
04582   // those can be legitimately followed by a && operator.
04583   // (The same thing can in theory happen after a trailing-return-type, but
04584   // since those are a C++11 feature, there is no rejects-valid issue there.)
04585   if (Kind == tok::ampamp)
04586     return Lang.CPlusPlus11 || (TheContext != Declarator::ConversionIdContext &&
04587                                 TheContext != Declarator::CXXNewContext);
04588 
04589   return false;
04590 }
04591 
04592 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
04593 /// is parsed by the function passed to it. Pass null, and the direct-declarator
04594 /// isn't parsed at all, making this function effectively parse the C++
04595 /// ptr-operator production.
04596 ///
04597 /// If the grammar of this construct is extended, matching changes must also be
04598 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
04599 /// isConstructorDeclarator.
04600 ///
04601 ///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
04602 /// [C]     pointer[opt] direct-declarator
04603 /// [C++]   direct-declarator
04604 /// [C++]   ptr-operator declarator
04605 ///
04606 ///       pointer: [C99 6.7.5]
04607 ///         '*' type-qualifier-list[opt]
04608 ///         '*' type-qualifier-list[opt] pointer
04609 ///
04610 ///       ptr-operator:
04611 ///         '*' cv-qualifier-seq[opt]
04612 ///         '&'
04613 /// [C++0x] '&&'
04614 /// [GNU]   '&' restrict[opt] attributes[opt]
04615 /// [GNU?]  '&&' restrict[opt] attributes[opt]
04616 ///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
04617 void Parser::ParseDeclaratorInternal(Declarator &D,
04618                                      DirectDeclParseFunction DirectDeclParser) {
04619   if (Diags.hasAllExtensionsSilenced())
04620     D.setExtension();
04621 
04622   // C++ member pointers start with a '::' or a nested-name.
04623   // Member pointers get special handling, since there's no place for the
04624   // scope spec in the generic path below.
04625   if (getLangOpts().CPlusPlus &&
04626       (Tok.is(tok::coloncolon) ||
04627        (Tok.is(tok::identifier) &&
04628         (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
04629        Tok.is(tok::annot_cxxscope))) {
04630     bool EnteringContext = D.getContext() == Declarator::FileContext ||
04631                            D.getContext() == Declarator::MemberContext;
04632     CXXScopeSpec SS;
04633     ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
04634 
04635     if (SS.isNotEmpty()) {
04636       if (Tok.isNot(tok::star)) {
04637         // The scope spec really belongs to the direct-declarator.
04638         if (D.mayHaveIdentifier())
04639           D.getCXXScopeSpec() = SS;
04640         else
04641           AnnotateScopeToken(SS, true);
04642 
04643         if (DirectDeclParser)
04644           (this->*DirectDeclParser)(D);
04645         return;
04646       }
04647 
04648       SourceLocation Loc = ConsumeToken();
04649       D.SetRangeEnd(Loc);
04650       DeclSpec DS(AttrFactory);
04651       ParseTypeQualifierListOpt(DS);
04652       D.ExtendWithDeclSpec(DS);
04653 
04654       // Recurse to parse whatever is left.
04655       ParseDeclaratorInternal(D, DirectDeclParser);
04656 
04657       // Sema will have to catch (syntactically invalid) pointers into global
04658       // scope. It has to catch pointers into namespace scope anyway.
04659       D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
04660                                                       Loc),
04661                     DS.getAttributes(),
04662                     /* Don't replace range end. */SourceLocation());
04663       return;
04664     }
04665   }
04666 
04667   tok::TokenKind Kind = Tok.getKind();
04668   // Not a pointer, C++ reference, or block.
04669   if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
04670     if (DirectDeclParser)
04671       (this->*DirectDeclParser)(D);
04672     return;
04673   }
04674 
04675   // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
04676   // '&&' -> rvalue reference
04677   SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
04678   D.SetRangeEnd(Loc);
04679 
04680   if (Kind == tok::star || Kind == tok::caret) {
04681     // Is a pointer.
04682     DeclSpec DS(AttrFactory);
04683 
04684     // GNU attributes are not allowed here in a new-type-id, but Declspec and
04685     // C++11 attributes are allowed.
04686     unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
04687                             ((D.getContext() != Declarator::CXXNewContext)
04688                                  ? AR_GNUAttributesParsed
04689                                  : AR_GNUAttributesParsedAndRejected);
04690     ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
04691     D.ExtendWithDeclSpec(DS);
04692 
04693     // Recursively parse the declarator.
04694     ParseDeclaratorInternal(D, DirectDeclParser);
04695     if (Kind == tok::star)
04696       // Remember that we parsed a pointer type, and remember the type-quals.
04697       D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
04698                                                 DS.getConstSpecLoc(),
04699                                                 DS.getVolatileSpecLoc(),
04700                                                 DS.getRestrictSpecLoc()),
04701                     DS.getAttributes(),
04702                     SourceLocation());
04703     else
04704       // Remember that we parsed a Block type, and remember the type-quals.
04705       D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
04706                                                      Loc),
04707                     DS.getAttributes(),
04708                     SourceLocation());
04709   } else {
04710     // Is a reference
04711     DeclSpec DS(AttrFactory);
04712 
04713     // Complain about rvalue references in C++03, but then go on and build
04714     // the declarator.
04715     if (Kind == tok::ampamp)
04716       Diag(Loc, getLangOpts().CPlusPlus11 ?
04717            diag::warn_cxx98_compat_rvalue_reference :
04718            diag::ext_rvalue_reference);
04719 
04720     // GNU-style and C++11 attributes are allowed here, as is restrict.
04721     ParseTypeQualifierListOpt(DS);
04722     D.ExtendWithDeclSpec(DS);
04723 
04724     // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
04725     // cv-qualifiers are introduced through the use of a typedef or of a
04726     // template type argument, in which case the cv-qualifiers are ignored.
04727     if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
04728       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
04729         Diag(DS.getConstSpecLoc(),
04730              diag::err_invalid_reference_qualifier_application) << "const";
04731       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
04732         Diag(DS.getVolatileSpecLoc(),
04733              diag::err_invalid_reference_qualifier_application) << "volatile";
04734       // 'restrict' is permitted as an extension.
04735       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
04736         Diag(DS.getAtomicSpecLoc(),
04737              diag::err_invalid_reference_qualifier_application) << "_Atomic";
04738     }
04739 
04740     // Recursively parse the declarator.
04741     ParseDeclaratorInternal(D, DirectDeclParser);
04742 
04743     if (D.getNumTypeObjects() > 0) {
04744       // C++ [dcl.ref]p4: There shall be no references to references.
04745       DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
04746       if (InnerChunk.Kind == DeclaratorChunk::Reference) {
04747         if (const IdentifierInfo *II = D.getIdentifier())
04748           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
04749            << II;
04750         else
04751           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
04752             << "type name";
04753 
04754         // Once we've complained about the reference-to-reference, we
04755         // can go ahead and build the (technically ill-formed)
04756         // declarator: reference collapsing will take care of it.
04757       }
04758     }
04759 
04760     // Remember that we parsed a reference type.
04761     D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
04762                                                 Kind == tok::amp),
04763                   DS.getAttributes(),
04764                   SourceLocation());
04765   }
04766 }
04767 
04768 // When correcting from misplaced brackets before the identifier, the location
04769 // is saved inside the declarator so that other diagnostic messages can use
04770 // them.  This extracts and returns that location, or returns the provided
04771 // location if a stored location does not exist.
04772 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
04773                                                 SourceLocation Loc) {
04774   if (D.getName().StartLocation.isInvalid() &&
04775       D.getName().EndLocation.isValid())
04776     return D.getName().EndLocation;
04777 
04778   return Loc;
04779 }
04780 
04781 /// ParseDirectDeclarator
04782 ///       direct-declarator: [C99 6.7.5]
04783 /// [C99]   identifier
04784 ///         '(' declarator ')'
04785 /// [GNU]   '(' attributes declarator ')'
04786 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
04787 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
04788 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
04789 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
04790 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
04791 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
04792 ///                    attribute-specifier-seq[opt]
04793 ///         direct-declarator '(' parameter-type-list ')'
04794 ///         direct-declarator '(' identifier-list[opt] ')'
04795 /// [GNU]   direct-declarator '(' parameter-forward-declarations
04796 ///                    parameter-type-list[opt] ')'
04797 /// [C++]   direct-declarator '(' parameter-declaration-clause ')'
04798 ///                    cv-qualifier-seq[opt] exception-specification[opt]
04799 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
04800 ///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
04801 ///                    ref-qualifier[opt] exception-specification[opt]
04802 /// [C++]   declarator-id
04803 /// [C++11] declarator-id attribute-specifier-seq[opt]
04804 ///
04805 ///       declarator-id: [C++ 8]
04806 ///         '...'[opt] id-expression
04807 ///         '::'[opt] nested-name-specifier[opt] type-name
04808 ///
04809 ///       id-expression: [C++ 5.1]
04810 ///         unqualified-id
04811 ///         qualified-id
04812 ///
04813 ///       unqualified-id: [C++ 5.1]
04814 ///         identifier
04815 ///         operator-function-id
04816 ///         conversion-function-id
04817 ///          '~' class-name
04818 ///         template-id
04819 ///
04820 /// Note, any additional constructs added here may need corresponding changes
04821 /// in isConstructorDeclarator.
04822 void Parser::ParseDirectDeclarator(Declarator &D) {
04823   DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
04824 
04825   if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
04826     // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
04827     // this context it is a bitfield. Also in range-based for statement colon
04828     // may delimit for-range-declaration.
04829     ColonProtectionRAIIObject X(*this,
04830                                 D.getContext() == Declarator::MemberContext ||
04831                                     (D.getContext() == Declarator::ForContext &&
04832                                      getLangOpts().CPlusPlus11));
04833 
04834     // ParseDeclaratorInternal might already have parsed the scope.
04835     if (D.getCXXScopeSpec().isEmpty()) {
04836       bool EnteringContext = D.getContext() == Declarator::FileContext ||
04837                              D.getContext() == Declarator::MemberContext;
04838       ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
04839                                      EnteringContext);
04840     }
04841 
04842     if (D.getCXXScopeSpec().isValid()) {
04843       if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
04844         // Change the declaration context for name lookup, until this function
04845         // is exited (and the declarator has been parsed).
04846         DeclScopeObj.EnterDeclaratorScope();
04847     }
04848 
04849     // C++0x [dcl.fct]p14:
04850     //   There is a syntactic ambiguity when an ellipsis occurs at the end
04851     //   of a parameter-declaration-clause without a preceding comma. In
04852     //   this case, the ellipsis is parsed as part of the
04853     //   abstract-declarator if the type of the parameter names a template
04854     //   parameter pack that has not been expanded; otherwise, it is parsed
04855     //   as part of the parameter-declaration-clause.
04856     if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
04857         !((D.getContext() == Declarator::PrototypeContext ||
04858            D.getContext() == Declarator::LambdaExprParameterContext ||
04859            D.getContext() == Declarator::BlockLiteralContext) &&
04860           NextToken().is(tok::r_paren) &&
04861           !D.hasGroupingParens() &&
04862           !Actions.containsUnexpandedParameterPacks(D))) {
04863       SourceLocation EllipsisLoc = ConsumeToken();
04864       if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
04865         // The ellipsis was put in the wrong place. Recover, and explain to
04866         // the user what they should have done.
04867         ParseDeclarator(D);
04868         if (EllipsisLoc.isValid())
04869           DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
04870         return;
04871       } else
04872         D.setEllipsisLoc(EllipsisLoc);
04873 
04874       // The ellipsis can't be followed by a parenthesized declarator. We
04875       // check for that in ParseParenDeclarator, after we have disambiguated
04876       // the l_paren token.
04877     }
04878 
04879     if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
04880         Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
04881       // We found something that indicates the start of an unqualified-id.
04882       // Parse that unqualified-id.
04883       bool AllowConstructorName;
04884       if (D.getDeclSpec().hasTypeSpecifier())
04885         AllowConstructorName = false;
04886       else if (D.getCXXScopeSpec().isSet())
04887         AllowConstructorName =
04888           (D.getContext() == Declarator::FileContext ||
04889            D.getContext() == Declarator::MemberContext);
04890       else
04891         AllowConstructorName = (D.getContext() == Declarator::MemberContext);
04892 
04893       SourceLocation TemplateKWLoc;
04894       if (ParseUnqualifiedId(D.getCXXScopeSpec(),
04895                              /*EnteringContext=*/true,
04896                              /*AllowDestructorName=*/true,
04897                              AllowConstructorName,
04898                              ParsedType(),
04899                              TemplateKWLoc,
04900                              D.getName()) ||
04901           // Once we're past the identifier, if the scope was bad, mark the
04902           // whole declarator bad.
04903           D.getCXXScopeSpec().isInvalid()) {
04904         D.SetIdentifier(nullptr, Tok.getLocation());
04905         D.setInvalidType(true);
04906       } else {
04907         // Parsed the unqualified-id; update range information and move along.
04908         if (D.getSourceRange().getBegin().isInvalid())
04909           D.SetRangeBegin(D.getName().getSourceRange().getBegin());
04910         D.SetRangeEnd(D.getName().getSourceRange().getEnd());
04911       }
04912       goto PastIdentifier;
04913     }
04914   } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
04915     assert(!getLangOpts().CPlusPlus &&
04916            "There's a C++-specific check for tok::identifier above");
04917     assert(Tok.getIdentifierInfo() && "Not an identifier?");
04918     D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
04919     D.SetRangeEnd(Tok.getLocation());
04920     ConsumeToken();
04921     goto PastIdentifier;
04922   } else if (Tok.is(tok::identifier) && D.diagnoseIdentifier()) {
04923     // A virt-specifier isn't treated as an identifier if it appears after a
04924     // trailing-return-type.
04925     if (D.getContext() != Declarator::TrailingReturnContext ||
04926         !isCXX11VirtSpecifier(Tok)) {
04927       Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
04928         << FixItHint::CreateRemoval(Tok.getLocation());
04929       D.SetIdentifier(nullptr, Tok.getLocation());
04930       ConsumeToken();
04931       goto PastIdentifier;
04932     }
04933   }
04934 
04935   if (Tok.is(tok::l_paren)) {
04936     // direct-declarator: '(' declarator ')'
04937     // direct-declarator: '(' attributes declarator ')'
04938     // Example: 'char (*X)'   or 'int (*XX)(void)'
04939     ParseParenDeclarator(D);
04940 
04941     // If the declarator was parenthesized, we entered the declarator
04942     // scope when parsing the parenthesized declarator, then exited
04943     // the scope already. Re-enter the scope, if we need to.
04944     if (D.getCXXScopeSpec().isSet()) {
04945       // If there was an error parsing parenthesized declarator, declarator
04946       // scope may have been entered before. Don't do it again.
04947       if (!D.isInvalidType() &&
04948           Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
04949         // Change the declaration context for name lookup, until this function
04950         // is exited (and the declarator has been parsed).
04951         DeclScopeObj.EnterDeclaratorScope();
04952     }
04953   } else if (D.mayOmitIdentifier()) {
04954     // This could be something simple like "int" (in which case the declarator
04955     // portion is empty), if an abstract-declarator is allowed.
04956     D.SetIdentifier(nullptr, Tok.getLocation());
04957 
04958     // The grammar for abstract-pack-declarator does not allow grouping parens.
04959     // FIXME: Revisit this once core issue 1488 is resolved.
04960     if (D.hasEllipsis() && D.hasGroupingParens())
04961       Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
04962            diag::ext_abstract_pack_declarator_parens);
04963   } else {
04964     if (Tok.getKind() == tok::annot_pragma_parser_crash)
04965       LLVM_BUILTIN_TRAP;
04966     if (Tok.is(tok::l_square))
04967       return ParseMisplacedBracketDeclarator(D);
04968     if (D.getContext() == Declarator::MemberContext) {
04969       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
04970            diag::err_expected_member_name_or_semi)
04971           << (D.getDeclSpec().isEmpty() ? SourceRange()
04972                                         : D.getDeclSpec().getSourceRange());
04973     } else if (getLangOpts().CPlusPlus) {
04974       if (Tok.is(tok::period) || Tok.is(tok::arrow))
04975         Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
04976       else {
04977         SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
04978         if (Tok.isAtStartOfLine() && Loc.isValid())
04979           Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
04980               << getLangOpts().CPlusPlus;
04981         else
04982           Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
04983                diag::err_expected_unqualified_id)
04984               << getLangOpts().CPlusPlus;
04985       }
04986     } else {
04987       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
04988            diag::err_expected_either)
04989           << tok::identifier << tok::l_paren;
04990     }
04991     D.SetIdentifier(nullptr, Tok.getLocation());
04992     D.setInvalidType(true);
04993   }
04994 
04995  PastIdentifier:
04996   assert(D.isPastIdentifier() &&
04997          "Haven't past the location of the identifier yet?");
04998 
04999   // Don't parse attributes unless we have parsed an unparenthesized name.
05000   if (D.hasName() && !D.getNumTypeObjects())
05001     MaybeParseCXX11Attributes(D);
05002 
05003   while (1) {
05004     if (Tok.is(tok::l_paren)) {
05005       // Enter function-declaration scope, limiting any declarators to the
05006       // function prototype scope, including parameter declarators.
05007       ParseScope PrototypeScope(this,
05008                                 Scope::FunctionPrototypeScope|Scope::DeclScope|
05009                                 (D.isFunctionDeclaratorAFunctionDeclaration()
05010                                    ? Scope::FunctionDeclarationScope : 0));
05011 
05012       // The paren may be part of a C++ direct initializer, eg. "int x(1);".
05013       // In such a case, check if we actually have a function declarator; if it
05014       // is not, the declarator has been fully parsed.
05015       bool IsAmbiguous = false;
05016       if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
05017         // The name of the declarator, if any, is tentatively declared within
05018         // a possible direct initializer.
05019         TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
05020         bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
05021         TentativelyDeclaredIdentifiers.pop_back();
05022         if (!IsFunctionDecl)
05023           break;
05024       }
05025       ParsedAttributes attrs(AttrFactory);
05026       BalancedDelimiterTracker T(*this, tok::l_paren);
05027       T.consumeOpen();
05028       ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
05029       PrototypeScope.Exit();
05030     } else if (Tok.is(tok::l_square)) {
05031       ParseBracketDeclarator(D);
05032     } else {
05033       break;
05034     }
05035   }
05036 }
05037 
05038 /// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
05039 /// only called before the identifier, so these are most likely just grouping
05040 /// parens for precedence.  If we find that these are actually function
05041 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
05042 ///
05043 ///       direct-declarator:
05044 ///         '(' declarator ')'
05045 /// [GNU]   '(' attributes declarator ')'
05046 ///         direct-declarator '(' parameter-type-list ')'
05047 ///         direct-declarator '(' identifier-list[opt] ')'
05048 /// [GNU]   direct-declarator '(' parameter-forward-declarations
05049 ///                    parameter-type-list[opt] ')'
05050 ///
05051 void Parser::ParseParenDeclarator(Declarator &D) {
05052   BalancedDelimiterTracker T(*this, tok::l_paren);
05053   T.consumeOpen();
05054 
05055   assert(!D.isPastIdentifier() && "Should be called before passing identifier");
05056 
05057   // Eat any attributes before we look at whether this is a grouping or function
05058   // declarator paren.  If this is a grouping paren, the attribute applies to
05059   // the type being built up, for example:
05060   //     int (__attribute__(()) *x)(long y)
05061   // If this ends up not being a grouping paren, the attribute applies to the
05062   // first argument, for example:
05063   //     int (__attribute__(()) int x)
05064   // In either case, we need to eat any attributes to be able to determine what
05065   // sort of paren this is.
05066   //
05067   ParsedAttributes attrs(AttrFactory);
05068   bool RequiresArg = false;
05069   if (Tok.is(tok::kw___attribute)) {
05070     ParseGNUAttributes(attrs);
05071 
05072     // We require that the argument list (if this is a non-grouping paren) be
05073     // present even if the attribute list was empty.
05074     RequiresArg = true;
05075   }
05076 
05077   // Eat any Microsoft extensions.
05078   ParseMicrosoftTypeAttributes(attrs);
05079 
05080   // Eat any Borland extensions.
05081   if  (Tok.is(tok::kw___pascal))
05082     ParseBorlandTypeAttributes(attrs);
05083 
05084   // If we haven't past the identifier yet (or where the identifier would be
05085   // stored, if this is an abstract declarator), then this is probably just
05086   // grouping parens. However, if this could be an abstract-declarator, then
05087   // this could also be the start of function arguments (consider 'void()').
05088   bool isGrouping;
05089 
05090   if (!D.mayOmitIdentifier()) {
05091     // If this can't be an abstract-declarator, this *must* be a grouping
05092     // paren, because we haven't seen the identifier yet.
05093     isGrouping = true;
05094   } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
05095              (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
05096               NextToken().is(tok::r_paren)) || // C++ int(...)
05097              isDeclarationSpecifier() ||       // 'int(int)' is a function.
05098              isCXX11AttributeSpecifier()) {    // 'int([[]]int)' is a function.
05099     // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
05100     // considered to be a type, not a K&R identifier-list.
05101     isGrouping = false;
05102   } else {
05103     // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
05104     isGrouping = true;
05105   }
05106 
05107   // If this is a grouping paren, handle:
05108   // direct-declarator: '(' declarator ')'
05109   // direct-declarator: '(' attributes declarator ')'
05110   if (isGrouping) {
05111     SourceLocation EllipsisLoc = D.getEllipsisLoc();
05112     D.setEllipsisLoc(SourceLocation());
05113 
05114     bool hadGroupingParens = D.hasGroupingParens();
05115     D.setGroupingParens(true);
05116     ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
05117     // Match the ')'.
05118     T.consumeClose();
05119     D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
05120                                             T.getCloseLocation()),
05121                   attrs, T.getCloseLocation());
05122 
05123     D.setGroupingParens(hadGroupingParens);
05124 
05125     // An ellipsis cannot be placed outside parentheses.
05126     if (EllipsisLoc.isValid())
05127       DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
05128 
05129     return;
05130   }
05131 
05132   // Okay, if this wasn't a grouping paren, it must be the start of a function
05133   // argument list.  Recognize that this declarator will never have an
05134   // identifier (and remember where it would have been), then call into
05135   // ParseFunctionDeclarator to handle of argument list.
05136   D.SetIdentifier(nullptr, Tok.getLocation());
05137 
05138   // Enter function-declaration scope, limiting any declarators to the
05139   // function prototype scope, including parameter declarators.
05140   ParseScope PrototypeScope(this,
05141                             Scope::FunctionPrototypeScope | Scope::DeclScope |
05142                             (D.isFunctionDeclaratorAFunctionDeclaration()
05143                                ? Scope::FunctionDeclarationScope : 0));
05144   ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
05145   PrototypeScope.Exit();
05146 }
05147 
05148 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
05149 /// declarator D up to a paren, which indicates that we are parsing function
05150 /// arguments.
05151 ///
05152 /// If FirstArgAttrs is non-null, then the caller parsed those arguments
05153 /// immediately after the open paren - they should be considered to be the
05154 /// first argument of a parameter.
05155 ///
05156 /// If RequiresArg is true, then the first argument of the function is required
05157 /// to be present and required to not be an identifier list.
05158 ///
05159 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
05160 /// (C++11) ref-qualifier[opt], exception-specification[opt],
05161 /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
05162 ///
05163 /// [C++11] exception-specification:
05164 ///           dynamic-exception-specification
05165 ///           noexcept-specification
05166 ///
05167 void Parser::ParseFunctionDeclarator(Declarator &D,
05168                                      ParsedAttributes &FirstArgAttrs,
05169                                      BalancedDelimiterTracker &Tracker,
05170                                      bool IsAmbiguous,
05171                                      bool RequiresArg) {
05172   assert(getCurScope()->isFunctionPrototypeScope() &&
05173          "Should call from a Function scope");
05174   // lparen is already consumed!
05175   assert(D.isPastIdentifier() && "Should not call before identifier!");
05176 
05177   // This should be true when the function has typed arguments.
05178   // Otherwise, it is treated as a K&R-style function.
05179   bool HasProto = false;
05180   // Build up an array of information about the parsed arguments.
05181   SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
05182   // Remember where we see an ellipsis, if any.
05183   SourceLocation EllipsisLoc;
05184 
05185   DeclSpec DS(AttrFactory);
05186   bool RefQualifierIsLValueRef = true;
05187   SourceLocation RefQualifierLoc;
05188   SourceLocation ConstQualifierLoc;
05189   SourceLocation VolatileQualifierLoc;
05190   SourceLocation RestrictQualifierLoc;
05191   ExceptionSpecificationType ESpecType = EST_None;
05192   SourceRange ESpecRange;
05193   SmallVector<ParsedType, 2> DynamicExceptions;
05194   SmallVector<SourceRange, 2> DynamicExceptionRanges;
05195   ExprResult NoexceptExpr;
05196   CachedTokens *ExceptionSpecTokens = 0;
05197   ParsedAttributes FnAttrs(AttrFactory);
05198   TypeResult TrailingReturnType;
05199 
05200   /* LocalEndLoc is the end location for the local FunctionTypeLoc.
05201      EndLoc is the end location for the function declarator.
05202      They differ for trailing return types. */
05203   SourceLocation StartLoc, LocalEndLoc, EndLoc;
05204   SourceLocation LParenLoc, RParenLoc;
05205   LParenLoc = Tracker.getOpenLocation();
05206   StartLoc = LParenLoc;
05207 
05208   if (isFunctionDeclaratorIdentifierList()) {
05209     if (RequiresArg)
05210       Diag(Tok, diag::err_argument_required_after_attribute);
05211 
05212     ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
05213 
05214     Tracker.consumeClose();
05215     RParenLoc = Tracker.getCloseLocation();
05216     LocalEndLoc = RParenLoc;
05217     EndLoc = RParenLoc;
05218   } else {
05219     if (Tok.isNot(tok::r_paren))
05220       ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, 
05221                                       EllipsisLoc);
05222     else if (RequiresArg)
05223       Diag(Tok, diag::err_argument_required_after_attribute);
05224 
05225     HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
05226 
05227     // If we have the closing ')', eat it.
05228     Tracker.consumeClose();
05229     RParenLoc = Tracker.getCloseLocation();
05230     LocalEndLoc = RParenLoc;
05231     EndLoc = RParenLoc;
05232 
05233     if (getLangOpts().CPlusPlus) {
05234       // FIXME: Accept these components in any order, and produce fixits to
05235       // correct the order if the user gets it wrong. Ideally we should deal
05236       // with the virt-specifier-seq and pure-specifier in the same way.
05237 
05238       // Parse cv-qualifier-seq[opt].
05239       ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
05240                                 /*AtomicAllowed*/ false);
05241       if (!DS.getSourceRange().getEnd().isInvalid()) {
05242         EndLoc = DS.getSourceRange().getEnd();
05243         ConstQualifierLoc = DS.getConstSpecLoc();
05244         VolatileQualifierLoc = DS.getVolatileSpecLoc();
05245         RestrictQualifierLoc = DS.getRestrictSpecLoc();
05246       }
05247 
05248       // Parse ref-qualifier[opt].
05249       if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
05250         Diag(Tok, getLangOpts().CPlusPlus11 ?
05251              diag::warn_cxx98_compat_ref_qualifier :
05252              diag::ext_ref_qualifier);
05253 
05254         RefQualifierIsLValueRef = Tok.is(tok::amp);
05255         RefQualifierLoc = ConsumeToken();
05256         EndLoc = RefQualifierLoc;
05257       }
05258 
05259       // C++11 [expr.prim.general]p3:
05260       //   If a declaration declares a member function or member function
05261       //   template of a class X, the expression this is a prvalue of type
05262       //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
05263       //   and the end of the function-definition, member-declarator, or
05264       //   declarator.
05265       // FIXME: currently, "static" case isn't handled correctly.
05266       bool IsCXX11MemberFunction =
05267         getLangOpts().CPlusPlus11 &&
05268         D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
05269         (D.getContext() == Declarator::MemberContext
05270          ? !D.getDeclSpec().isFriendSpecified()
05271          : D.getContext() == Declarator::FileContext &&
05272            D.getCXXScopeSpec().isValid() &&
05273            Actions.CurContext->isRecord());
05274       Sema::CXXThisScopeRAII ThisScope(Actions,
05275                                dyn_cast<CXXRecordDecl>(Actions.CurContext),
05276                                DS.getTypeQualifiers() |
05277                                (D.getDeclSpec().isConstexprSpecified() &&
05278                                 !getLangOpts().CPlusPlus14
05279                                   ? Qualifiers::Const : 0),
05280                                IsCXX11MemberFunction);
05281 
05282       // Parse exception-specification[opt].
05283       bool Delayed = D.isFirstDeclarationOfMember() &&
05284                      D.isFunctionDeclaratorAFunctionDeclaration() &&
05285                      !Actions.isLibstdcxxEagerExceptionSpecHack(D);
05286       ESpecType = tryParseExceptionSpecification(Delayed,
05287                                                  ESpecRange,
05288                                                  DynamicExceptions,
05289                                                  DynamicExceptionRanges,
05290                                                  NoexceptExpr,
05291                                                  ExceptionSpecTokens);
05292       if (ESpecType != EST_None)
05293         EndLoc = ESpecRange.getEnd();
05294 
05295       // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
05296       // after the exception-specification.
05297       MaybeParseCXX11Attributes(FnAttrs);
05298 
05299       // Parse trailing-return-type[opt].
05300       LocalEndLoc = EndLoc;
05301       if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
05302         Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
05303         if (D.getDeclSpec().getTypeSpecType() == TST_auto)
05304           StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
05305         LocalEndLoc = Tok.getLocation();
05306         SourceRange Range;
05307         TrailingReturnType = ParseTrailingReturnType(Range);
05308         EndLoc = Range.getEnd();
05309       }
05310     }
05311   }
05312 
05313   // Remember that we parsed a function type, and remember the attributes.
05314   D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
05315                                              IsAmbiguous,
05316                                              LParenLoc,
05317                                              ParamInfo.data(), ParamInfo.size(),
05318                                              EllipsisLoc, RParenLoc,
05319                                              DS.getTypeQualifiers(),
05320                                              RefQualifierIsLValueRef,
05321                                              RefQualifierLoc, ConstQualifierLoc,
05322                                              VolatileQualifierLoc,
05323                                              RestrictQualifierLoc,
05324                                              /*MutableLoc=*/SourceLocation(),
05325                                              ESpecType, ESpecRange.getBegin(),
05326                                              DynamicExceptions.data(),
05327                                              DynamicExceptionRanges.data(),
05328                                              DynamicExceptions.size(),
05329                                              NoexceptExpr.isUsable() ?
05330                                                NoexceptExpr.get() : nullptr,
05331                                              ExceptionSpecTokens,
05332                                              StartLoc, LocalEndLoc, D,
05333                                              TrailingReturnType),
05334                 FnAttrs, EndLoc);
05335 }
05336 
05337 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
05338 /// identifier list form for a K&R-style function:  void foo(a,b,c)
05339 ///
05340 /// Note that identifier-lists are only allowed for normal declarators, not for
05341 /// abstract-declarators.
05342 bool Parser::isFunctionDeclaratorIdentifierList() {
05343   return !getLangOpts().CPlusPlus
05344          && Tok.is(tok::identifier)
05345          && !TryAltiVecVectorToken()
05346          // K&R identifier lists can't have typedefs as identifiers, per C99
05347          // 6.7.5.3p11.
05348          && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
05349          // Identifier lists follow a really simple grammar: the identifiers can
05350          // be followed *only* by a ", identifier" or ")".  However, K&R
05351          // identifier lists are really rare in the brave new modern world, and
05352          // it is very common for someone to typo a type in a non-K&R style
05353          // list.  If we are presented with something like: "void foo(intptr x,
05354          // float y)", we don't want to start parsing the function declarator as
05355          // though it is a K&R style declarator just because intptr is an
05356          // invalid type.
05357          //
05358          // To handle this, we check to see if the token after the first
05359          // identifier is a "," or ")".  Only then do we parse it as an
05360          // identifier list.
05361          && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
05362 }
05363 
05364 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
05365 /// we found a K&R-style identifier list instead of a typed parameter list.
05366 ///
05367 /// After returning, ParamInfo will hold the parsed parameters.
05368 ///
05369 ///       identifier-list: [C99 6.7.5]
05370 ///         identifier
05371 ///         identifier-list ',' identifier
05372 ///
05373 void Parser::ParseFunctionDeclaratorIdentifierList(
05374        Declarator &D,
05375        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
05376   // If there was no identifier specified for the declarator, either we are in
05377   // an abstract-declarator, or we are in a parameter declarator which was found
05378   // to be abstract.  In abstract-declarators, identifier lists are not valid:
05379   // diagnose this.
05380   if (!D.getIdentifier())
05381     Diag(Tok, diag::ext_ident_list_in_param);
05382 
05383   // Maintain an efficient lookup of params we have seen so far.
05384   llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
05385 
05386   do {
05387     // If this isn't an identifier, report the error and skip until ')'.
05388     if (Tok.isNot(tok::identifier)) {
05389       Diag(Tok, diag::err_expected) << tok::identifier;
05390       SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
05391       // Forget we parsed anything.
05392       ParamInfo.clear();
05393       return;
05394     }
05395 
05396     IdentifierInfo *ParmII = Tok.getIdentifierInfo();
05397 
05398     // Reject 'typedef int y; int test(x, y)', but continue parsing.
05399     if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
05400       Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
05401 
05402     // Verify that the argument identifier has not already been mentioned.
05403     if (!ParamsSoFar.insert(ParmII)) {
05404       Diag(Tok, diag::err_param_redefinition) << ParmII;
05405     } else {
05406       // Remember this identifier in ParamInfo.
05407       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
05408                                                      Tok.getLocation(),
05409                                                      nullptr));
05410     }
05411 
05412     // Eat the identifier.
05413     ConsumeToken();
05414     // The list continues if we see a comma.
05415   } while (TryConsumeToken(tok::comma));
05416 }
05417 
05418 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
05419 /// after the opening parenthesis. This function will not parse a K&R-style
05420 /// identifier list.
05421 ///
05422 /// D is the declarator being parsed.  If FirstArgAttrs is non-null, then the
05423 /// caller parsed those arguments immediately after the open paren - they should
05424 /// be considered to be part of the first parameter.
05425 ///
05426 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
05427 /// be the location of the ellipsis, if any was parsed.
05428 ///
05429 ///       parameter-type-list: [C99 6.7.5]
05430 ///         parameter-list
05431 ///         parameter-list ',' '...'
05432 /// [C++]   parameter-list '...'
05433 ///
05434 ///       parameter-list: [C99 6.7.5]
05435 ///         parameter-declaration
05436 ///         parameter-list ',' parameter-declaration
05437 ///
05438 ///       parameter-declaration: [C99 6.7.5]
05439 ///         declaration-specifiers declarator
05440 /// [C++]   declaration-specifiers declarator '=' assignment-expression
05441 /// [C++11]                                       initializer-clause
05442 /// [GNU]   declaration-specifiers declarator attributes
05443 ///         declaration-specifiers abstract-declarator[opt]
05444 /// [C++]   declaration-specifiers abstract-declarator[opt]
05445 ///           '=' assignment-expression
05446 /// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
05447 /// [C++11] attribute-specifier-seq parameter-declaration
05448 ///
05449 void Parser::ParseParameterDeclarationClause(
05450        Declarator &D,
05451        ParsedAttributes &FirstArgAttrs,
05452        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
05453        SourceLocation &EllipsisLoc) {
05454   do {
05455     // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
05456     // before deciding this was a parameter-declaration-clause.
05457     if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
05458       break;
05459 
05460     // Parse the declaration-specifiers.
05461     // Just use the ParsingDeclaration "scope" of the declarator.
05462     DeclSpec DS(AttrFactory);
05463 
05464     // Parse any C++11 attributes.
05465     MaybeParseCXX11Attributes(DS.getAttributes());
05466 
05467     // Skip any Microsoft attributes before a param.
05468     MaybeParseMicrosoftAttributes(DS.getAttributes());
05469 
05470     SourceLocation DSStart = Tok.getLocation();
05471 
05472     // If the caller parsed attributes for the first argument, add them now.
05473     // Take them so that we only apply the attributes to the first parameter.
05474     // FIXME: If we can leave the attributes in the token stream somehow, we can
05475     // get rid of a parameter (FirstArgAttrs) and this statement. It might be
05476     // too much hassle.
05477     DS.takeAttributesFrom(FirstArgAttrs);
05478 
05479     ParseDeclarationSpecifiers(DS);
05480 
05481 
05482     // Parse the declarator.  This is "PrototypeContext" or 
05483     // "LambdaExprParameterContext", because we must accept either 
05484     // 'declarator' or 'abstract-declarator' here.
05485     Declarator ParmDeclarator(DS, 
05486               D.getContext() == Declarator::LambdaExprContext ?
05487                                   Declarator::LambdaExprParameterContext : 
05488                                                 Declarator::PrototypeContext);
05489     ParseDeclarator(ParmDeclarator);
05490 
05491     // Parse GNU attributes, if present.
05492     MaybeParseGNUAttributes(ParmDeclarator);
05493 
05494     // Remember this parsed parameter in ParamInfo.
05495     IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
05496 
05497     // DefArgToks is used when the parsing of default arguments needs
05498     // to be delayed.
05499     CachedTokens *DefArgToks = nullptr;
05500 
05501     // If no parameter was specified, verify that *something* was specified,
05502     // otherwise we have a missing type and identifier.
05503     if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
05504         ParmDeclarator.getNumTypeObjects() == 0) {
05505       // Completely missing, emit error.
05506       Diag(DSStart, diag::err_missing_param);
05507     } else {
05508       // Otherwise, we have something.  Add it and let semantic analysis try
05509       // to grok it and add the result to the ParamInfo we are building.
05510 
05511       // Last chance to recover from a misplaced ellipsis in an attempted
05512       // parameter pack declaration.
05513       if (Tok.is(tok::ellipsis) &&
05514           (NextToken().isNot(tok::r_paren) ||
05515            (!ParmDeclarator.getEllipsisLoc().isValid() &&
05516             !Actions.isUnexpandedParameterPackPermitted())) &&
05517           Actions.containsUnexpandedParameterPacks(ParmDeclarator))
05518         DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
05519 
05520       // Inform the actions module about the parameter declarator, so it gets
05521       // added to the current scope.
05522       Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
05523       // Parse the default argument, if any. We parse the default
05524       // arguments in all dialects; the semantic analysis in
05525       // ActOnParamDefaultArgument will reject the default argument in
05526       // C.
05527       if (Tok.is(tok::equal)) {
05528         SourceLocation EqualLoc = Tok.getLocation();
05529 
05530         // Parse the default argument
05531         if (D.getContext() == Declarator::MemberContext) {
05532           // If we're inside a class definition, cache the tokens
05533           // corresponding to the default argument. We'll actually parse
05534           // them when we see the end of the class definition.
05535           // FIXME: Can we use a smart pointer for Toks?
05536           DefArgToks = new CachedTokens;
05537 
05538           if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
05539             delete DefArgToks;
05540             DefArgToks = nullptr;
05541             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
05542           } else {
05543             // Mark the end of the default argument so that we know when to
05544             // stop when we parse it later on.
05545             Token DefArgEnd;
05546             DefArgEnd.startToken();
05547             DefArgEnd.setKind(tok::cxx_defaultarg_end);
05548             DefArgEnd.setLocation(Tok.getLocation());
05549             DefArgToks->push_back(DefArgEnd);
05550             Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
05551                                                 (*DefArgToks)[1].getLocation());
05552           }
05553         } else {
05554           // Consume the '='.
05555           ConsumeToken();
05556 
05557           // The argument isn't actually potentially evaluated unless it is
05558           // used.
05559           EnterExpressionEvaluationContext Eval(Actions,
05560                                               Sema::PotentiallyEvaluatedIfUsed,
05561                                                 Param);
05562 
05563           ExprResult DefArgResult;
05564           if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
05565             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
05566             DefArgResult = ParseBraceInitializer();
05567           } else
05568             DefArgResult = ParseAssignmentExpression();
05569           if (DefArgResult.isInvalid()) {
05570             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
05571             SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
05572           } else {
05573             // Inform the actions module about the default argument
05574             Actions.ActOnParamDefaultArgument(Param, EqualLoc,
05575                                               DefArgResult.get());
05576           }
05577         }
05578       }
05579 
05580       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
05581                                           ParmDeclarator.getIdentifierLoc(), 
05582                                           Param, DefArgToks));
05583     }
05584 
05585     if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
05586       if (!getLangOpts().CPlusPlus) {
05587         // We have ellipsis without a preceding ',', which is ill-formed
05588         // in C. Complain and provide the fix.
05589         Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
05590             << FixItHint::CreateInsertion(EllipsisLoc, ", ");
05591       } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
05592                  Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
05593         // It looks like this was supposed to be a parameter pack. Warn and
05594         // point out where the ellipsis should have gone.
05595         SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
05596         Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
05597           << ParmEllipsis.isValid() << ParmEllipsis;
05598         if (ParmEllipsis.isValid()) {
05599           Diag(ParmEllipsis,
05600                diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
05601         } else {
05602           Diag(ParmDeclarator.getIdentifierLoc(),
05603                diag::note_misplaced_ellipsis_vararg_add_ellipsis)
05604             << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
05605                                           "...")
05606             << !ParmDeclarator.hasName();
05607         }
05608         Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
05609           << FixItHint::CreateInsertion(EllipsisLoc, ", ");
05610       }
05611 
05612       // We can't have any more parameters after an ellipsis.
05613       break;
05614     }
05615 
05616     // If the next token is a comma, consume it and keep reading arguments.
05617   } while (TryConsumeToken(tok::comma));
05618 }
05619 
05620 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
05621 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
05622 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
05623 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
05624 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
05625 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
05626 ///                           attribute-specifier-seq[opt]
05627 void Parser::ParseBracketDeclarator(Declarator &D) {
05628   if (CheckProhibitedCXX11Attribute())
05629     return;
05630 
05631   BalancedDelimiterTracker T(*this, tok::l_square);
05632   T.consumeOpen();
05633 
05634   // C array syntax has many features, but by-far the most common is [] and [4].
05635   // This code does a fast path to handle some of the most obvious cases.
05636   if (Tok.getKind() == tok::r_square) {
05637     T.consumeClose();
05638     ParsedAttributes attrs(AttrFactory);
05639     MaybeParseCXX11Attributes(attrs);
05640 
05641     // Remember that we parsed the empty array type.
05642     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
05643                                             T.getOpenLocation(),
05644                                             T.getCloseLocation()),
05645                   attrs, T.getCloseLocation());
05646     return;
05647   } else if (Tok.getKind() == tok::numeric_constant &&
05648              GetLookAheadToken(1).is(tok::r_square)) {
05649     // [4] is very common.  Parse the numeric constant expression.
05650     ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
05651     ConsumeToken();
05652 
05653     T.consumeClose();
05654     ParsedAttributes attrs(AttrFactory);
05655     MaybeParseCXX11Attributes(attrs);
05656 
05657     // Remember that we parsed a array type, and remember its features.
05658     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false,
05659                                             ExprRes.get(),
05660                                             T.getOpenLocation(),
05661                                             T.getCloseLocation()),
05662                   attrs, T.getCloseLocation());
05663     return;
05664   }
05665 
05666   // If valid, this location is the position where we read the 'static' keyword.
05667   SourceLocation StaticLoc;
05668   TryConsumeToken(tok::kw_static, StaticLoc);
05669 
05670   // If there is a type-qualifier-list, read it now.
05671   // Type qualifiers in an array subscript are a C99 feature.
05672   DeclSpec DS(AttrFactory);
05673   ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
05674 
05675   // If we haven't already read 'static', check to see if there is one after the
05676   // type-qualifier-list.
05677   if (!StaticLoc.isValid())
05678     TryConsumeToken(tok::kw_static, StaticLoc);
05679 
05680   // Handle "direct-declarator [ type-qual-list[opt] * ]".
05681   bool isStar = false;
05682   ExprResult NumElements;
05683 
05684   // Handle the case where we have '[*]' as the array size.  However, a leading
05685   // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
05686   // the token after the star is a ']'.  Since stars in arrays are
05687   // infrequent, use of lookahead is not costly here.
05688   if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
05689     ConsumeToken();  // Eat the '*'.
05690 
05691     if (StaticLoc.isValid()) {
05692       Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
05693       StaticLoc = SourceLocation();  // Drop the static.
05694     }
05695     isStar = true;
05696   } else if (Tok.isNot(tok::r_square)) {
05697     // Note, in C89, this production uses the constant-expr production instead
05698     // of assignment-expr.  The only difference is that assignment-expr allows
05699     // things like '=' and '*='.  Sema rejects these in C89 mode because they
05700     // are not i-c-e's, so we don't need to distinguish between the two here.
05701 
05702     // Parse the constant-expression or assignment-expression now (depending
05703     // on dialect).
05704     if (getLangOpts().CPlusPlus) {
05705       NumElements = ParseConstantExpression();
05706     } else {
05707       EnterExpressionEvaluationContext Unevaluated(Actions,
05708                                                    Sema::ConstantEvaluated);
05709       NumElements = ParseAssignmentExpression();
05710     }
05711   } else {
05712     if (StaticLoc.isValid()) {
05713       Diag(StaticLoc, diag::err_unspecified_size_with_static);
05714       StaticLoc = SourceLocation();  // Drop the static.
05715     }
05716   }
05717 
05718   // If there was an error parsing the assignment-expression, recover.
05719   if (NumElements.isInvalid()) {
05720     D.setInvalidType(true);
05721     // If the expression was invalid, skip it.
05722     SkipUntil(tok::r_square, StopAtSemi);
05723     return;
05724   }
05725 
05726   T.consumeClose();
05727 
05728   ParsedAttributes attrs(AttrFactory);
05729   MaybeParseCXX11Attributes(attrs);
05730 
05731   // Remember that we parsed a array type, and remember its features.
05732   D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
05733                                           StaticLoc.isValid(), isStar,
05734                                           NumElements.get(),
05735                                           T.getOpenLocation(),
05736                                           T.getCloseLocation()),
05737                 attrs, T.getCloseLocation());
05738 }
05739 
05740 /// Diagnose brackets before an identifier.
05741 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
05742   assert(Tok.is(tok::l_square) && "Missing opening bracket");
05743   assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
05744 
05745   SourceLocation StartBracketLoc = Tok.getLocation();
05746   Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
05747 
05748   while (Tok.is(tok::l_square)) {
05749     ParseBracketDeclarator(TempDeclarator);
05750   }
05751 
05752   // Stuff the location of the start of the brackets into the Declarator.
05753   // The diagnostics from ParseDirectDeclarator will make more sense if
05754   // they use this location instead.
05755   if (Tok.is(tok::semi))
05756     D.getName().EndLocation = StartBracketLoc;
05757 
05758   SourceLocation SuggestParenLoc = Tok.getLocation();
05759 
05760   // Now that the brackets are removed, try parsing the declarator again.
05761   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
05762 
05763   // Something went wrong parsing the brackets, in which case,
05764   // ParseBracketDeclarator has emitted an error, and we don't need to emit
05765   // one here.
05766   if (TempDeclarator.getNumTypeObjects() == 0)
05767     return;
05768 
05769   // Determine if parens will need to be suggested in the diagnostic.
05770   bool NeedParens = false;
05771   if (D.getNumTypeObjects() != 0) {
05772     switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
05773     case DeclaratorChunk::Pointer:
05774     case DeclaratorChunk::Reference:
05775     case DeclaratorChunk::BlockPointer:
05776     case DeclaratorChunk::MemberPointer:
05777       NeedParens = true;
05778       break;
05779     case DeclaratorChunk::Array:
05780     case DeclaratorChunk::Function:
05781     case DeclaratorChunk::Paren:
05782       break;
05783     }
05784   }
05785 
05786   if (NeedParens) {
05787     // Create a DeclaratorChunk for the inserted parens.
05788     ParsedAttributes attrs(AttrFactory);
05789     SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
05790     D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), attrs,
05791                   SourceLocation());
05792   }
05793 
05794   // Adding back the bracket info to the end of the Declarator.
05795   for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
05796     const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
05797     ParsedAttributes attrs(AttrFactory);
05798     attrs.set(Chunk.Common.AttrList);
05799     D.AddTypeInfo(Chunk, attrs, SourceLocation());
05800   }
05801 
05802   // The missing identifier would have been diagnosed in ParseDirectDeclarator.
05803   // If parentheses are required, always suggest them.
05804   if (!D.getIdentifier() && !NeedParens)
05805     return;
05806 
05807   SourceLocation EndBracketLoc = TempDeclarator.getLocEnd();
05808 
05809   // Generate the move bracket error message.
05810   SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
05811   SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
05812 
05813   if (NeedParens) {
05814     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
05815         << getLangOpts().CPlusPlus
05816         << FixItHint::CreateInsertion(SuggestParenLoc, "(")
05817         << FixItHint::CreateInsertion(EndLoc, ")")
05818         << FixItHint::CreateInsertionFromRange(
05819                EndLoc, CharSourceRange(BracketRange, true))
05820         << FixItHint::CreateRemoval(BracketRange);
05821   } else {
05822     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
05823         << getLangOpts().CPlusPlus
05824         << FixItHint::CreateInsertionFromRange(
05825                EndLoc, CharSourceRange(BracketRange, true))
05826         << FixItHint::CreateRemoval(BracketRange);
05827   }
05828 }
05829 
05830 /// [GNU]   typeof-specifier:
05831 ///           typeof ( expressions )
05832 ///           typeof ( type-name )
05833 /// [GNU/C++] typeof unary-expression
05834 ///
05835 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
05836   assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
05837   Token OpTok = Tok;
05838   SourceLocation StartLoc = ConsumeToken();
05839 
05840   const bool hasParens = Tok.is(tok::l_paren);
05841 
05842   EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
05843                                                Sema::ReuseLambdaContextDecl);
05844 
05845   bool isCastExpr;
05846   ParsedType CastTy;
05847   SourceRange CastRange;
05848   ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
05849                                                           CastTy, CastRange);
05850   if (hasParens)
05851     DS.setTypeofParensRange(CastRange);
05852 
05853   if (CastRange.getEnd().isInvalid())
05854     // FIXME: Not accurate, the range gets one token more than it should.
05855     DS.SetRangeEnd(Tok.getLocation());
05856   else
05857     DS.SetRangeEnd(CastRange.getEnd());
05858 
05859   if (isCastExpr) {
05860     if (!CastTy) {
05861       DS.SetTypeSpecError();
05862       return;
05863     }
05864 
05865     const char *PrevSpec = nullptr;
05866     unsigned DiagID;
05867     // Check for duplicate type specifiers (e.g. "int typeof(int)").
05868     if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
05869                            DiagID, CastTy,
05870                            Actions.getASTContext().getPrintingPolicy()))
05871       Diag(StartLoc, DiagID) << PrevSpec;
05872     return;
05873   }
05874 
05875   // If we get here, the operand to the typeof was an expresion.
05876   if (Operand.isInvalid()) {
05877     DS.SetTypeSpecError();
05878     return;
05879   }
05880 
05881   // We might need to transform the operand if it is potentially evaluated.
05882   Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
05883   if (Operand.isInvalid()) {
05884     DS.SetTypeSpecError();
05885     return;
05886   }
05887 
05888   const char *PrevSpec = nullptr;
05889   unsigned DiagID;
05890   // Check for duplicate type specifiers (e.g. "int typeof(int)").
05891   if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
05892                          DiagID, Operand.get(),
05893                          Actions.getASTContext().getPrintingPolicy()))
05894     Diag(StartLoc, DiagID) << PrevSpec;
05895 }
05896 
05897 /// [C11]   atomic-specifier:
05898 ///           _Atomic ( type-name )
05899 ///
05900 void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
05901   assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
05902          "Not an atomic specifier");
05903 
05904   SourceLocation StartLoc = ConsumeToken();
05905   BalancedDelimiterTracker T(*this, tok::l_paren);
05906   if (T.consumeOpen())
05907     return;
05908 
05909   TypeResult Result = ParseTypeName();
05910   if (Result.isInvalid()) {
05911     SkipUntil(tok::r_paren, StopAtSemi);
05912     return;
05913   }
05914 
05915   // Match the ')'
05916   T.consumeClose();
05917 
05918   if (T.getCloseLocation().isInvalid())
05919     return;
05920 
05921   DS.setTypeofParensRange(T.getRange());
05922   DS.SetRangeEnd(T.getCloseLocation());
05923 
05924   const char *PrevSpec = nullptr;
05925   unsigned DiagID;
05926   if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
05927                          DiagID, Result.get(),
05928                          Actions.getASTContext().getPrintingPolicy()))
05929     Diag(StartLoc, DiagID) << PrevSpec;
05930 }
05931 
05932 
05933 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
05934 /// from TryAltiVecVectorToken.
05935 bool Parser::TryAltiVecVectorTokenOutOfLine() {
05936   Token Next = NextToken();
05937   switch (Next.getKind()) {
05938   default: return false;
05939   case tok::kw_short:
05940   case tok::kw_long:
05941   case tok::kw_signed:
05942   case tok::kw_unsigned:
05943   case tok::kw_void:
05944   case tok::kw_char:
05945   case tok::kw_int:
05946   case tok::kw_float:
05947   case tok::kw_double:
05948   case tok::kw_bool:
05949   case tok::kw___pixel:
05950     Tok.setKind(tok::kw___vector);
05951     return true;
05952   case tok::identifier:
05953     if (Next.getIdentifierInfo() == Ident_pixel) {
05954       Tok.setKind(tok::kw___vector);
05955       return true;
05956     }
05957     if (Next.getIdentifierInfo() == Ident_bool) {
05958       Tok.setKind(tok::kw___vector);
05959       return true;
05960     }
05961     return false;
05962   }
05963 }
05964 
05965 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
05966                                       const char *&PrevSpec, unsigned &DiagID,
05967                                       bool &isInvalid) {
05968   const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
05969   if (Tok.getIdentifierInfo() == Ident_vector) {
05970     Token Next = NextToken();
05971     switch (Next.getKind()) {
05972     case tok::kw_short:
05973     case tok::kw_long:
05974     case tok::kw_signed:
05975     case tok::kw_unsigned:
05976     case tok::kw_void:
05977     case tok::kw_char:
05978     case tok::kw_int:
05979     case tok::kw_float:
05980     case tok::kw_double:
05981     case tok::kw_bool:
05982     case tok::kw___pixel:
05983       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
05984       return true;
05985     case tok::identifier:
05986       if (Next.getIdentifierInfo() == Ident_pixel) {
05987         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
05988         return true;
05989       }
05990       if (Next.getIdentifierInfo() == Ident_bool) {
05991         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
05992         return true;
05993       }
05994       break;
05995     default:
05996       break;
05997     }
05998   } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
05999              DS.isTypeAltiVecVector()) {
06000     isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
06001     return true;
06002   } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
06003              DS.isTypeAltiVecVector()) {
06004     isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
06005     return true;
06006   }
06007   return false;
06008 }