clang API Documentation

ParseExpr.cpp
Go to the documentation of this file.
00001 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 ///
00010 /// \file
00011 /// \brief Provides the Expression parsing implementation.
00012 ///
00013 /// Expressions in C99 basically consist of a bunch of binary operators with
00014 /// unary operators and other random stuff at the leaves.
00015 ///
00016 /// In the C99 grammar, these unary operators bind tightest and are represented
00017 /// as the 'cast-expression' production.  Everything else is either a binary
00018 /// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
00019 /// handled by ParseCastExpression, the higher level pieces are handled by
00020 /// ParseBinaryExpression.
00021 ///
00022 //===----------------------------------------------------------------------===//
00023 
00024 #include "clang/Parse/Parser.h"
00025 #include "RAIIObjectsForParser.h"
00026 #include "clang/AST/ASTContext.h"
00027 #include "clang/Basic/PrettyStackTrace.h"
00028 #include "clang/Sema/DeclSpec.h"
00029 #include "clang/Sema/ParsedTemplate.h"
00030 #include "clang/Sema/Scope.h"
00031 #include "clang/Sema/TypoCorrection.h"
00032 #include "llvm/ADT/SmallString.h"
00033 #include "llvm/ADT/SmallVector.h"
00034 using namespace clang;
00035 
00036 /// \brief Simple precedence-based parser for binary/ternary operators.
00037 ///
00038 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
00039 /// production.  C99 specifies that the LHS of an assignment operator should be
00040 /// parsed as a unary-expression, but consistency dictates that it be a
00041 /// conditional-expession.  In practice, the important thing here is that the
00042 /// LHS of an assignment has to be an l-value, which productions between
00043 /// unary-expression and conditional-expression don't produce.  Because we want
00044 /// consistency, we parse the LHS as a conditional-expression, then check for
00045 /// l-value-ness in semantic analysis stages.
00046 ///
00047 /// \verbatim
00048 ///       pm-expression: [C++ 5.5]
00049 ///         cast-expression
00050 ///         pm-expression '.*' cast-expression
00051 ///         pm-expression '->*' cast-expression
00052 ///
00053 ///       multiplicative-expression: [C99 6.5.5]
00054 ///     Note: in C++, apply pm-expression instead of cast-expression
00055 ///         cast-expression
00056 ///         multiplicative-expression '*' cast-expression
00057 ///         multiplicative-expression '/' cast-expression
00058 ///         multiplicative-expression '%' cast-expression
00059 ///
00060 ///       additive-expression: [C99 6.5.6]
00061 ///         multiplicative-expression
00062 ///         additive-expression '+' multiplicative-expression
00063 ///         additive-expression '-' multiplicative-expression
00064 ///
00065 ///       shift-expression: [C99 6.5.7]
00066 ///         additive-expression
00067 ///         shift-expression '<<' additive-expression
00068 ///         shift-expression '>>' additive-expression
00069 ///
00070 ///       relational-expression: [C99 6.5.8]
00071 ///         shift-expression
00072 ///         relational-expression '<' shift-expression
00073 ///         relational-expression '>' shift-expression
00074 ///         relational-expression '<=' shift-expression
00075 ///         relational-expression '>=' shift-expression
00076 ///
00077 ///       equality-expression: [C99 6.5.9]
00078 ///         relational-expression
00079 ///         equality-expression '==' relational-expression
00080 ///         equality-expression '!=' relational-expression
00081 ///
00082 ///       AND-expression: [C99 6.5.10]
00083 ///         equality-expression
00084 ///         AND-expression '&' equality-expression
00085 ///
00086 ///       exclusive-OR-expression: [C99 6.5.11]
00087 ///         AND-expression
00088 ///         exclusive-OR-expression '^' AND-expression
00089 ///
00090 ///       inclusive-OR-expression: [C99 6.5.12]
00091 ///         exclusive-OR-expression
00092 ///         inclusive-OR-expression '|' exclusive-OR-expression
00093 ///
00094 ///       logical-AND-expression: [C99 6.5.13]
00095 ///         inclusive-OR-expression
00096 ///         logical-AND-expression '&&' inclusive-OR-expression
00097 ///
00098 ///       logical-OR-expression: [C99 6.5.14]
00099 ///         logical-AND-expression
00100 ///         logical-OR-expression '||' logical-AND-expression
00101 ///
00102 ///       conditional-expression: [C99 6.5.15]
00103 ///         logical-OR-expression
00104 ///         logical-OR-expression '?' expression ':' conditional-expression
00105 /// [GNU]   logical-OR-expression '?' ':' conditional-expression
00106 /// [C++] the third operand is an assignment-expression
00107 ///
00108 ///       assignment-expression: [C99 6.5.16]
00109 ///         conditional-expression
00110 ///         unary-expression assignment-operator assignment-expression
00111 /// [C++]   throw-expression [C++ 15]
00112 ///
00113 ///       assignment-operator: one of
00114 ///         = *= /= %= += -= <<= >>= &= ^= |=
00115 ///
00116 ///       expression: [C99 6.5.17]
00117 ///         assignment-expression ...[opt]
00118 ///         expression ',' assignment-expression ...[opt]
00119 /// \endverbatim
00120 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
00121   ExprResult LHS(ParseAssignmentExpression(isTypeCast));
00122   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
00123 }
00124 
00125 /// This routine is called when the '@' is seen and consumed.
00126 /// Current token is an Identifier and is not a 'try'. This
00127 /// routine is necessary to disambiguate \@try-statement from,
00128 /// for example, \@encode-expression.
00129 ///
00130 ExprResult
00131 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
00132   ExprResult LHS(ParseObjCAtExpression(AtLoc));
00133   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
00134 }
00135 
00136 /// This routine is called when a leading '__extension__' is seen and
00137 /// consumed.  This is necessary because the token gets consumed in the
00138 /// process of disambiguating between an expression and a declaration.
00139 ExprResult
00140 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
00141   ExprResult LHS(true);
00142   {
00143     // Silence extension warnings in the sub-expression
00144     ExtensionRAIIObject O(Diags);
00145 
00146     LHS = ParseCastExpression(false);
00147   }
00148 
00149   if (!LHS.isInvalid())
00150     LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
00151                                LHS.get());
00152 
00153   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
00154 }
00155 
00156 /// \brief Parse an expr that doesn't include (top-level) commas.
00157 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
00158   if (Tok.is(tok::code_completion)) {
00159     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
00160     cutOffParsing();
00161     return ExprError();
00162   }
00163 
00164   if (Tok.is(tok::kw_throw))
00165     return ParseThrowExpression();
00166 
00167   ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
00168                                        /*isAddressOfOperand=*/false,
00169                                        isTypeCast);
00170   return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
00171 }
00172 
00173 /// \brief Parse an assignment expression where part of an Objective-C message
00174 /// send has already been parsed.
00175 ///
00176 /// In this case \p LBracLoc indicates the location of the '[' of the message
00177 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
00178 /// the receiver of the message.
00179 ///
00180 /// Since this handles full assignment-expression's, it handles postfix
00181 /// expressions and other binary operators for these expressions as well.
00182 ExprResult
00183 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
00184                                                     SourceLocation SuperLoc,
00185                                                     ParsedType ReceiverType,
00186                                                     Expr *ReceiverExpr) {
00187   ExprResult R
00188     = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
00189                                      ReceiverType, ReceiverExpr);
00190   R = ParsePostfixExpressionSuffix(R);
00191   return ParseRHSOfBinaryExpression(R, prec::Assignment);
00192 }
00193 
00194 
00195 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
00196   // C++03 [basic.def.odr]p2:
00197   //   An expression is potentially evaluated unless it appears where an
00198   //   integral constant expression is required (see 5.19) [...].
00199   // C++98 and C++11 have no such rule, but this is only a defect in C++98.
00200   EnterExpressionEvaluationContext Unevaluated(Actions,
00201                                                Sema::ConstantEvaluated);
00202 
00203   ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
00204   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
00205   return Actions.ActOnConstantExpression(Res);
00206 }
00207 
00208 bool Parser::isNotExpressionStart() {
00209   tok::TokenKind K = Tok.getKind();
00210   if (K == tok::l_brace || K == tok::r_brace  ||
00211       K == tok::kw_for  || K == tok::kw_while ||
00212       K == tok::kw_if   || K == tok::kw_else  ||
00213       K == tok::kw_goto || K == tok::kw_try)
00214     return true;
00215   // If this is a decl-specifier, we can't be at the start of an expression.
00216   return isKnownToBeDeclarationSpecifier();
00217 }
00218 
00219 static bool isFoldOperator(prec::Level Level) {
00220   return Level > prec::Unknown && Level != prec::Conditional;
00221 }
00222 static bool isFoldOperator(tok::TokenKind Kind) {
00223   return isFoldOperator(getBinOpPrecedence(Kind, false, true));
00224 }
00225 
00226 /// \brief Parse a binary expression that starts with \p LHS and has a
00227 /// precedence of at least \p MinPrec.
00228 ExprResult
00229 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
00230   prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
00231                                                GreaterThanIsOperator,
00232                                                getLangOpts().CPlusPlus11);
00233   SourceLocation ColonLoc;
00234 
00235   while (1) {
00236     // If this token has a lower precedence than we are allowed to parse (e.g.
00237     // because we are called recursively, or because the token is not a binop),
00238     // then we are done!
00239     if (NextTokPrec < MinPrec)
00240       return LHS;
00241 
00242     // Consume the operator, saving the operator token for error reporting.
00243     Token OpToken = Tok;
00244     ConsumeToken();
00245 
00246     // Bail out when encountering a comma followed by a token which can't
00247     // possibly be the start of an expression. For instance:
00248     //   int f() { return 1, }
00249     // We can't do this before consuming the comma, because
00250     // isNotExpressionStart() looks at the token stream.
00251     if (OpToken.is(tok::comma) && isNotExpressionStart()) {
00252       PP.EnterToken(Tok);
00253       Tok = OpToken;
00254       return LHS;
00255     }
00256 
00257     // If the next token is an ellipsis, then this is a fold-expression. Leave
00258     // it alone so we can handle it in the paren expression.
00259     if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
00260       // FIXME: We can't check this via lookahead before we consume the token
00261       // because that tickles a lexer bug.
00262       PP.EnterToken(Tok);
00263       Tok = OpToken;
00264       return LHS;
00265     }
00266 
00267     // Special case handling for the ternary operator.
00268     ExprResult TernaryMiddle(true);
00269     if (NextTokPrec == prec::Conditional) {
00270       if (Tok.isNot(tok::colon)) {
00271         // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
00272         ColonProtectionRAIIObject X(*this);
00273 
00274         // Handle this production specially:
00275         //   logical-OR-expression '?' expression ':' conditional-expression
00276         // In particular, the RHS of the '?' is 'expression', not
00277         // 'logical-OR-expression' as we might expect.
00278         TernaryMiddle = ParseExpression();
00279         if (TernaryMiddle.isInvalid()) {
00280           LHS = ExprError();
00281           TernaryMiddle = nullptr;
00282         }
00283       } else {
00284         // Special case handling of "X ? Y : Z" where Y is empty:
00285         //   logical-OR-expression '?' ':' conditional-expression   [GNU]
00286         TernaryMiddle = nullptr;
00287         Diag(Tok, diag::ext_gnu_conditional_expr);
00288       }
00289 
00290       if (!TryConsumeToken(tok::colon, ColonLoc)) {
00291         // Otherwise, we're missing a ':'.  Assume that this was a typo that
00292         // the user forgot. If we're not in a macro expansion, we can suggest
00293         // a fixit hint. If there were two spaces before the current token,
00294         // suggest inserting the colon in between them, otherwise insert ": ".
00295         SourceLocation FILoc = Tok.getLocation();
00296         const char *FIText = ": ";
00297         const SourceManager &SM = PP.getSourceManager();
00298         if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
00299           assert(FILoc.isFileID());
00300           bool IsInvalid = false;
00301           const char *SourcePtr =
00302             SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
00303           if (!IsInvalid && *SourcePtr == ' ') {
00304             SourcePtr =
00305               SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
00306             if (!IsInvalid && *SourcePtr == ' ') {
00307               FILoc = FILoc.getLocWithOffset(-1);
00308               FIText = ":";
00309             }
00310           }
00311         }
00312 
00313         Diag(Tok, diag::err_expected)
00314             << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
00315         Diag(OpToken, diag::note_matching) << tok::question;
00316         ColonLoc = Tok.getLocation();
00317       }
00318     }
00319     
00320     // Code completion for the right-hand side of an assignment expression
00321     // goes through a special hook that takes the left-hand side into account.
00322     if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
00323       Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
00324       cutOffParsing();
00325       return ExprError();
00326     }
00327     
00328     // Parse another leaf here for the RHS of the operator.
00329     // ParseCastExpression works here because all RHS expressions in C have it
00330     // as a prefix, at least. However, in C++, an assignment-expression could
00331     // be a throw-expression, which is not a valid cast-expression.
00332     // Therefore we need some special-casing here.
00333     // Also note that the third operand of the conditional operator is
00334     // an assignment-expression in C++, and in C++11, we can have a
00335     // braced-init-list on the RHS of an assignment. For better diagnostics,
00336     // parse as if we were allowed braced-init-lists everywhere, and check that
00337     // they only appear on the RHS of assignments later.
00338     ExprResult RHS;
00339     bool RHSIsInitList = false;
00340     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
00341       RHS = ParseBraceInitializer();
00342       RHSIsInitList = true;
00343     } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
00344       RHS = ParseAssignmentExpression();
00345     else
00346       RHS = ParseCastExpression(false);
00347 
00348     if (RHS.isInvalid())
00349       LHS = ExprError();
00350     
00351     // Remember the precedence of this operator and get the precedence of the
00352     // operator immediately to the right of the RHS.
00353     prec::Level ThisPrec = NextTokPrec;
00354     NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
00355                                      getLangOpts().CPlusPlus11);
00356 
00357     // Assignment and conditional expressions are right-associative.
00358     bool isRightAssoc = ThisPrec == prec::Conditional ||
00359                         ThisPrec == prec::Assignment;
00360 
00361     // Get the precedence of the operator to the right of the RHS.  If it binds
00362     // more tightly with RHS than we do, evaluate it completely first.
00363     if (ThisPrec < NextTokPrec ||
00364         (ThisPrec == NextTokPrec && isRightAssoc)) {
00365       if (!RHS.isInvalid() && RHSIsInitList) {
00366         Diag(Tok, diag::err_init_list_bin_op)
00367           << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
00368         RHS = ExprError();
00369       }
00370       // If this is left-associative, only parse things on the RHS that bind
00371       // more tightly than the current operator.  If it is left-associative, it
00372       // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
00373       // A=(B=(C=D)), where each paren is a level of recursion here.
00374       // The function takes ownership of the RHS.
00375       RHS = ParseRHSOfBinaryExpression(RHS, 
00376                             static_cast<prec::Level>(ThisPrec + !isRightAssoc));
00377       RHSIsInitList = false;
00378 
00379       if (RHS.isInvalid())
00380         LHS = ExprError();
00381 
00382       NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
00383                                        getLangOpts().CPlusPlus11);
00384     }
00385 
00386     if (!RHS.isInvalid() && RHSIsInitList) {
00387       if (ThisPrec == prec::Assignment) {
00388         Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
00389           << Actions.getExprRange(RHS.get());
00390       } else {
00391         Diag(OpToken, diag::err_init_list_bin_op)
00392           << /*RHS*/1 << PP.getSpelling(OpToken)
00393           << Actions.getExprRange(RHS.get());
00394         LHS = ExprError();
00395       }
00396     }
00397 
00398     if (!LHS.isInvalid()) {
00399       // Combine the LHS and RHS into the LHS (e.g. build AST).
00400       if (TernaryMiddle.isInvalid()) {
00401         // If we're using '>>' as an operator within a template
00402         // argument list (in C++98), suggest the addition of
00403         // parentheses so that the code remains well-formed in C++0x.
00404         if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
00405           SuggestParentheses(OpToken.getLocation(),
00406                              diag::warn_cxx11_right_shift_in_template_arg,
00407                          SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
00408                                      Actions.getExprRange(RHS.get()).getEnd()));
00409 
00410         LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
00411                                  OpToken.getKind(), LHS.get(), RHS.get());
00412       } else
00413         LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
00414                                          LHS.get(), TernaryMiddle.get(),
00415                                          RHS.get());
00416     }
00417   }
00418 }
00419 
00420 /// \brief Parse a cast-expression, or, if \p isUnaryExpression is true,
00421 /// parse a unary-expression.
00422 ///
00423 /// \p isAddressOfOperand exists because an id-expression that is the
00424 /// operand of address-of gets special treatment due to member pointers.
00425 ///
00426 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
00427                                        bool isAddressOfOperand,
00428                                        TypeCastState isTypeCast) {
00429   bool NotCastExpr;
00430   ExprResult Res = ParseCastExpression(isUnaryExpression,
00431                                        isAddressOfOperand,
00432                                        NotCastExpr,
00433                                        isTypeCast);
00434   if (NotCastExpr)
00435     Diag(Tok, diag::err_expected_expression);
00436   return Res;
00437 }
00438 
00439 namespace {
00440 class CastExpressionIdValidator : public CorrectionCandidateCallback {
00441  public:
00442   CastExpressionIdValidator(bool AllowTypes, bool AllowNonTypes)
00443       : AllowNonTypes(AllowNonTypes) {
00444     WantTypeSpecifiers = AllowTypes;
00445   }
00446 
00447   bool ValidateCandidate(const TypoCorrection &candidate) override {
00448     NamedDecl *ND = candidate.getCorrectionDecl();
00449     if (!ND)
00450       return candidate.isKeyword();
00451 
00452     if (isa<TypeDecl>(ND))
00453       return WantTypeSpecifiers;
00454     return AllowNonTypes &&
00455            CorrectionCandidateCallback::ValidateCandidate(candidate);
00456   }
00457 
00458  private:
00459   bool AllowNonTypes;
00460 };
00461 }
00462 
00463 /// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse
00464 /// a unary-expression.
00465 ///
00466 /// \p isAddressOfOperand exists because an id-expression that is the operand
00467 /// of address-of gets special treatment due to member pointers. NotCastExpr
00468 /// is set to true if the token is not the start of a cast-expression, and no
00469 /// diagnostic is emitted in this case.
00470 ///
00471 /// \verbatim
00472 ///       cast-expression: [C99 6.5.4]
00473 ///         unary-expression
00474 ///         '(' type-name ')' cast-expression
00475 ///
00476 ///       unary-expression:  [C99 6.5.3]
00477 ///         postfix-expression
00478 ///         '++' unary-expression
00479 ///         '--' unary-expression
00480 ///         unary-operator cast-expression
00481 ///         'sizeof' unary-expression
00482 ///         'sizeof' '(' type-name ')'
00483 /// [C++11] 'sizeof' '...' '(' identifier ')'
00484 /// [GNU]   '__alignof' unary-expression
00485 /// [GNU]   '__alignof' '(' type-name ')'
00486 /// [C11]   '_Alignof' '(' type-name ')'
00487 /// [C++11] 'alignof' '(' type-id ')'
00488 /// [GNU]   '&&' identifier
00489 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
00490 /// [C++]   new-expression
00491 /// [C++]   delete-expression
00492 ///
00493 ///       unary-operator: one of
00494 ///         '&'  '*'  '+'  '-'  '~'  '!'
00495 /// [GNU]   '__extension__'  '__real'  '__imag'
00496 ///
00497 ///       primary-expression: [C99 6.5.1]
00498 /// [C99]   identifier
00499 /// [C++]   id-expression
00500 ///         constant
00501 ///         string-literal
00502 /// [C++]   boolean-literal  [C++ 2.13.5]
00503 /// [C++11] 'nullptr'        [C++11 2.14.7]
00504 /// [C++11] user-defined-literal
00505 ///         '(' expression ')'
00506 /// [C11]   generic-selection
00507 ///         '__func__'        [C99 6.4.2.2]
00508 /// [GNU]   '__FUNCTION__'
00509 /// [MS]    '__FUNCDNAME__'
00510 /// [MS]    'L__FUNCTION__'
00511 /// [GNU]   '__PRETTY_FUNCTION__'
00512 /// [GNU]   '(' compound-statement ')'
00513 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
00514 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
00515 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
00516 ///                                     assign-expr ')'
00517 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
00518 /// [GNU]   '__null'
00519 /// [OBJC]  '[' objc-message-expr ']'
00520 /// [OBJC]  '\@selector' '(' objc-selector-arg ')'
00521 /// [OBJC]  '\@protocol' '(' identifier ')'
00522 /// [OBJC]  '\@encode' '(' type-name ')'
00523 /// [OBJC]  objc-string-literal
00524 /// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
00525 /// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
00526 /// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
00527 /// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
00528 /// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
00529 /// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
00530 /// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
00531 /// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
00532 /// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
00533 /// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
00534 /// [C++]   'this'          [C++ 9.3.2]
00535 /// [G++]   unary-type-trait '(' type-id ')'
00536 /// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
00537 /// [EMBT]  array-type-trait '(' type-id ',' integer ')'
00538 /// [clang] '^' block-literal
00539 ///
00540 ///       constant: [C99 6.4.4]
00541 ///         integer-constant
00542 ///         floating-constant
00543 ///         enumeration-constant -> identifier
00544 ///         character-constant
00545 ///
00546 ///       id-expression: [C++ 5.1]
00547 ///                   unqualified-id
00548 ///                   qualified-id          
00549 ///
00550 ///       unqualified-id: [C++ 5.1]
00551 ///                   identifier
00552 ///                   operator-function-id
00553 ///                   conversion-function-id
00554 ///                   '~' class-name        
00555 ///                   template-id           
00556 ///
00557 ///       new-expression: [C++ 5.3.4]
00558 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
00559 ///                                     new-initializer[opt]
00560 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
00561 ///                                     new-initializer[opt]
00562 ///
00563 ///       delete-expression: [C++ 5.3.5]
00564 ///                   '::'[opt] 'delete' cast-expression
00565 ///                   '::'[opt] 'delete' '[' ']' cast-expression
00566 ///
00567 /// [GNU/Embarcadero] unary-type-trait:
00568 ///                   '__is_arithmetic'
00569 ///                   '__is_floating_point'
00570 ///                   '__is_integral'
00571 ///                   '__is_lvalue_expr'
00572 ///                   '__is_rvalue_expr'
00573 ///                   '__is_complete_type'
00574 ///                   '__is_void'
00575 ///                   '__is_array'
00576 ///                   '__is_function'
00577 ///                   '__is_reference'
00578 ///                   '__is_lvalue_reference'
00579 ///                   '__is_rvalue_reference'
00580 ///                   '__is_fundamental'
00581 ///                   '__is_object'
00582 ///                   '__is_scalar'
00583 ///                   '__is_compound'
00584 ///                   '__is_pointer'
00585 ///                   '__is_member_object_pointer'
00586 ///                   '__is_member_function_pointer'
00587 ///                   '__is_member_pointer'
00588 ///                   '__is_const'
00589 ///                   '__is_volatile'
00590 ///                   '__is_trivial'
00591 ///                   '__is_standard_layout'
00592 ///                   '__is_signed'
00593 ///                   '__is_unsigned'
00594 ///
00595 /// [GNU] unary-type-trait:
00596 ///                   '__has_nothrow_assign'
00597 ///                   '__has_nothrow_copy'
00598 ///                   '__has_nothrow_constructor'
00599 ///                   '__has_trivial_assign'                  [TODO]
00600 ///                   '__has_trivial_copy'                    [TODO]
00601 ///                   '__has_trivial_constructor'
00602 ///                   '__has_trivial_destructor'
00603 ///                   '__has_virtual_destructor'
00604 ///                   '__is_abstract'                         [TODO]
00605 ///                   '__is_class'
00606 ///                   '__is_empty'                            [TODO]
00607 ///                   '__is_enum'
00608 ///                   '__is_final'
00609 ///                   '__is_pod'
00610 ///                   '__is_polymorphic'
00611 ///                   '__is_sealed'                           [MS]
00612 ///                   '__is_trivial'
00613 ///                   '__is_union'
00614 ///
00615 /// [Clang] unary-type-trait:
00616 ///                   '__trivially_copyable'
00617 ///
00618 ///       binary-type-trait:
00619 /// [GNU]             '__is_base_of'       
00620 /// [MS]              '__is_convertible_to'
00621 ///                   '__is_convertible'
00622 ///                   '__is_same'
00623 ///
00624 /// [Embarcadero] array-type-trait:
00625 ///                   '__array_rank'
00626 ///                   '__array_extent'
00627 ///
00628 /// [Embarcadero] expression-trait:
00629 ///                   '__is_lvalue_expr'
00630 ///                   '__is_rvalue_expr'
00631 /// \endverbatim
00632 ///
00633 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
00634                                        bool isAddressOfOperand,
00635                                        bool &NotCastExpr,
00636                                        TypeCastState isTypeCast) {
00637   ExprResult Res;
00638   tok::TokenKind SavedKind = Tok.getKind();
00639   NotCastExpr = false;
00640 
00641   // This handles all of cast-expression, unary-expression, postfix-expression,
00642   // and primary-expression.  We handle them together like this for efficiency
00643   // and to simplify handling of an expression starting with a '(' token: which
00644   // may be one of a parenthesized expression, cast-expression, compound literal
00645   // expression, or statement expression.
00646   //
00647   // If the parsed tokens consist of a primary-expression, the cases below
00648   // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
00649   // to handle the postfix expression suffixes.  Cases that cannot be followed
00650   // by postfix exprs should return without invoking
00651   // ParsePostfixExpressionSuffix.
00652   switch (SavedKind) {
00653   case tok::l_paren: {
00654     // If this expression is limited to being a unary-expression, the parent can
00655     // not start a cast expression.
00656     ParenParseOption ParenExprType =
00657         (isUnaryExpression && !getLangOpts().CPlusPlus) ? CompoundLiteral
00658                                                         : CastExpr;
00659     ParsedType CastTy;
00660     SourceLocation RParenLoc;
00661     Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
00662                                isTypeCast == IsTypeCast, CastTy, RParenLoc);
00663 
00664     switch (ParenExprType) {
00665     case SimpleExpr:   break;    // Nothing else to do.
00666     case CompoundStmt: break;  // Nothing else to do.
00667     case CompoundLiteral:
00668       // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
00669       // postfix-expression exist, parse them now.
00670       break;
00671     case CastExpr:
00672       // We have parsed the cast-expression and no postfix-expr pieces are
00673       // following.
00674       return Res;
00675     }
00676 
00677     break;
00678   }
00679 
00680     // primary-expression
00681   case tok::numeric_constant:
00682     // constant: integer-constant
00683     // constant: floating-constant
00684 
00685     Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
00686     ConsumeToken();
00687     break;
00688 
00689   case tok::kw_true:
00690   case tok::kw_false:
00691     return ParseCXXBoolLiteral();
00692   
00693   case tok::kw___objc_yes:
00694   case tok::kw___objc_no:
00695       return ParseObjCBoolLiteral();
00696 
00697   case tok::kw_nullptr:
00698     Diag(Tok, diag::warn_cxx98_compat_nullptr);
00699     return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
00700 
00701   case tok::annot_primary_expr:
00702     assert(Res.get() == nullptr && "Stray primary-expression annotation?");
00703     Res = getExprAnnotation(Tok);
00704     ConsumeToken();
00705     break;
00706 
00707   case tok::kw___super:
00708   case tok::kw_decltype:
00709     // Annotate the token and tail recurse.
00710     if (TryAnnotateTypeOrScopeToken())
00711       return ExprError();
00712     assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
00713     return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
00714       
00715   case tok::identifier: {      // primary-expression: identifier
00716                                // unqualified-id: identifier
00717                                // constant: enumeration-constant
00718     // Turn a potentially qualified name into a annot_typename or
00719     // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
00720     if (getLangOpts().CPlusPlus) {
00721       // Avoid the unnecessary parse-time lookup in the common case
00722       // where the syntax forbids a type.
00723       const Token &Next = NextToken();
00724 
00725       // If this identifier was reverted from a token ID, and the next token
00726       // is a parenthesis, this is likely to be a use of a type trait. Check
00727       // those tokens.
00728       if (Next.is(tok::l_paren) &&
00729           Tok.is(tok::identifier) &&
00730           Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
00731         IdentifierInfo *II = Tok.getIdentifierInfo();
00732         // Build up the mapping of revertible type traits, for future use.
00733         if (RevertibleTypeTraits.empty()) {
00734 #define RTT_JOIN(X,Y) X##Y
00735 #define REVERTIBLE_TYPE_TRAIT(Name)                         \
00736           RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
00737             = RTT_JOIN(tok::kw_,Name)
00738 
00739           REVERTIBLE_TYPE_TRAIT(__is_abstract);
00740           REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
00741           REVERTIBLE_TYPE_TRAIT(__is_array);
00742           REVERTIBLE_TYPE_TRAIT(__is_base_of);
00743           REVERTIBLE_TYPE_TRAIT(__is_class);
00744           REVERTIBLE_TYPE_TRAIT(__is_complete_type);
00745           REVERTIBLE_TYPE_TRAIT(__is_compound);
00746           REVERTIBLE_TYPE_TRAIT(__is_const);
00747           REVERTIBLE_TYPE_TRAIT(__is_constructible);
00748           REVERTIBLE_TYPE_TRAIT(__is_convertible);
00749           REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
00750           REVERTIBLE_TYPE_TRAIT(__is_destructible);
00751           REVERTIBLE_TYPE_TRAIT(__is_empty);
00752           REVERTIBLE_TYPE_TRAIT(__is_enum);
00753           REVERTIBLE_TYPE_TRAIT(__is_floating_point);
00754           REVERTIBLE_TYPE_TRAIT(__is_final);
00755           REVERTIBLE_TYPE_TRAIT(__is_function);
00756           REVERTIBLE_TYPE_TRAIT(__is_fundamental);
00757           REVERTIBLE_TYPE_TRAIT(__is_integral);
00758           REVERTIBLE_TYPE_TRAIT(__is_interface_class);
00759           REVERTIBLE_TYPE_TRAIT(__is_literal);
00760           REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
00761           REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
00762           REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
00763           REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
00764           REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
00765           REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
00766           REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
00767           REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
00768           REVERTIBLE_TYPE_TRAIT(__is_object);
00769           REVERTIBLE_TYPE_TRAIT(__is_pod);
00770           REVERTIBLE_TYPE_TRAIT(__is_pointer);
00771           REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
00772           REVERTIBLE_TYPE_TRAIT(__is_reference);
00773           REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
00774           REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
00775           REVERTIBLE_TYPE_TRAIT(__is_same);
00776           REVERTIBLE_TYPE_TRAIT(__is_scalar);
00777           REVERTIBLE_TYPE_TRAIT(__is_sealed);
00778           REVERTIBLE_TYPE_TRAIT(__is_signed);
00779           REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
00780           REVERTIBLE_TYPE_TRAIT(__is_trivial);
00781           REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
00782           REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
00783           REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
00784           REVERTIBLE_TYPE_TRAIT(__is_union);
00785           REVERTIBLE_TYPE_TRAIT(__is_unsigned);
00786           REVERTIBLE_TYPE_TRAIT(__is_void);
00787           REVERTIBLE_TYPE_TRAIT(__is_volatile);
00788 #undef REVERTIBLE_TYPE_TRAIT
00789 #undef RTT_JOIN
00790         }
00791 
00792         // If we find that this is in fact the name of a type trait,
00793         // update the token kind in place and parse again to treat it as
00794         // the appropriate kind of type trait.
00795         llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
00796           = RevertibleTypeTraits.find(II);
00797         if (Known != RevertibleTypeTraits.end()) {
00798           Tok.setKind(Known->second);
00799           return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
00800                                      NotCastExpr, isTypeCast);
00801         }
00802       }
00803 
00804       if (Next.is(tok::coloncolon) ||
00805           (!ColonIsSacred && Next.is(tok::colon)) ||
00806           Next.is(tok::less) ||
00807           Next.is(tok::l_paren) ||
00808           Next.is(tok::l_brace)) {
00809         // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
00810         if (TryAnnotateTypeOrScopeToken())
00811           return ExprError();
00812         if (!Tok.is(tok::identifier))
00813           return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
00814       }
00815     }
00816 
00817     // Consume the identifier so that we can see if it is followed by a '(' or
00818     // '.'.
00819     IdentifierInfo &II = *Tok.getIdentifierInfo();
00820     SourceLocation ILoc = ConsumeToken();
00821 
00822     // Support 'Class.property' and 'super.property' notation.
00823     if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
00824         (Actions.getTypeName(II, ILoc, getCurScope()) ||
00825          // Allow the base to be 'super' if in an objc-method.
00826          (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
00827       ConsumeToken();
00828       
00829       // Allow either an identifier or the keyword 'class' (in C++).
00830       if (Tok.isNot(tok::identifier) && 
00831           !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
00832         Diag(Tok, diag::err_expected_property_name);
00833         return ExprError();
00834       }
00835       IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
00836       SourceLocation PropertyLoc = ConsumeToken();
00837       
00838       Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
00839                                               ILoc, PropertyLoc);
00840       break;
00841     }
00842 
00843     // In an Objective-C method, if we have "super" followed by an identifier,
00844     // the token sequence is ill-formed. However, if there's a ':' or ']' after
00845     // that identifier, this is probably a message send with a missing open
00846     // bracket. Treat it as such. 
00847     if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
00848         getCurScope()->isInObjcMethodScope() &&
00849         ((Tok.is(tok::identifier) &&
00850          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
00851          Tok.is(tok::code_completion))) {
00852       Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, ParsedType(),
00853                                            nullptr);
00854       break;
00855     }
00856     
00857     // If we have an Objective-C class name followed by an identifier
00858     // and either ':' or ']', this is an Objective-C class message
00859     // send that's missing the opening '['. Recovery
00860     // appropriately. Also take this path if we're performing code
00861     // completion after an Objective-C class name.
00862     if (getLangOpts().ObjC1 && 
00863         ((Tok.is(tok::identifier) && !InMessageExpression) || 
00864          Tok.is(tok::code_completion))) {
00865       const Token& Next = NextToken();
00866       if (Tok.is(tok::code_completion) || 
00867           Next.is(tok::colon) || Next.is(tok::r_square))
00868         if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
00869           if (Typ.get()->isObjCObjectOrInterfaceType()) {
00870             // Fake up a Declarator to use with ActOnTypeName.
00871             DeclSpec DS(AttrFactory);
00872             DS.SetRangeStart(ILoc);
00873             DS.SetRangeEnd(ILoc);
00874             const char *PrevSpec = nullptr;
00875             unsigned DiagID;
00876             DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
00877                                Actions.getASTContext().getPrintingPolicy());
00878             
00879             Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
00880             TypeResult Ty = Actions.ActOnTypeName(getCurScope(), 
00881                                                   DeclaratorInfo);
00882             if (Ty.isInvalid())
00883               break;
00884 
00885             Res = ParseObjCMessageExpressionBody(SourceLocation(), 
00886                                                  SourceLocation(), 
00887                                                  Ty.get(), nullptr);
00888             break;
00889           }
00890     }
00891     
00892     // Make sure to pass down the right value for isAddressOfOperand.
00893     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
00894       isAddressOfOperand = false;
00895    
00896     // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
00897     // need to know whether or not this identifier is a function designator or
00898     // not.
00899     UnqualifiedId Name;
00900     CXXScopeSpec ScopeSpec;
00901     SourceLocation TemplateKWLoc;
00902     auto Validator = llvm::make_unique<CastExpressionIdValidator>(
00903         isTypeCast != NotTypeCast, isTypeCast != IsTypeCast);
00904     Validator->IsAddressOfOperand = isAddressOfOperand;
00905     Name.setIdentifier(&II, ILoc);
00906     Res = Actions.ActOnIdExpression(getCurScope(), ScopeSpec, TemplateKWLoc,
00907                                     Name, Tok.is(tok::l_paren),
00908                                     isAddressOfOperand, std::move(Validator));
00909     break;
00910   }
00911   case tok::char_constant:     // constant: character-constant
00912   case tok::wide_char_constant:
00913   case tok::utf8_char_constant:
00914   case tok::utf16_char_constant:
00915   case tok::utf32_char_constant:
00916     Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
00917     ConsumeToken();
00918     break;
00919   case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
00920   case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
00921   case tok::kw___FUNCDNAME__:   // primary-expression: __FUNCDNAME__ [MS]
00922   case tok::kw___FUNCSIG__:     // primary-expression: __FUNCSIG__ [MS]
00923   case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
00924   case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
00925     Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
00926     ConsumeToken();
00927     break;
00928   case tok::string_literal:    // primary-expression: string-literal
00929   case tok::wide_string_literal:
00930   case tok::utf8_string_literal:
00931   case tok::utf16_string_literal:
00932   case tok::utf32_string_literal:
00933     Res = ParseStringLiteralExpression(true);
00934     break;
00935   case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
00936     Res = ParseGenericSelectionExpression();
00937     break;
00938   case tok::kw___builtin_va_arg:
00939   case tok::kw___builtin_offsetof:
00940   case tok::kw___builtin_choose_expr:
00941   case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
00942   case tok::kw___builtin_convertvector:
00943     return ParseBuiltinPrimaryExpression();
00944   case tok::kw___null:
00945     return Actions.ActOnGNUNullExpr(ConsumeToken());
00946 
00947   case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
00948   case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
00949     // C++ [expr.unary] has:
00950     //   unary-expression:
00951     //     ++ cast-expression
00952     //     -- cast-expression
00953     SourceLocation SavedLoc = ConsumeToken();
00954     // One special case is implicitly handled here: if the preceding tokens are
00955     // an ambiguous cast expression, such as "(T())++", then we recurse to
00956     // determine whether the '++' is prefix or postfix.
00957     Res = ParseCastExpression(!getLangOpts().CPlusPlus,
00958                               /*isAddressOfOperand*/false, NotCastExpr,
00959                               NotTypeCast);
00960     if (!Res.isInvalid())
00961       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
00962     return Res;
00963   }
00964   case tok::amp: {         // unary-expression: '&' cast-expression
00965     // Special treatment because of member pointers
00966     SourceLocation SavedLoc = ConsumeToken();
00967     Res = ParseCastExpression(false, true);
00968     if (!Res.isInvalid())
00969       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
00970     return Res;
00971   }
00972 
00973   case tok::star:          // unary-expression: '*' cast-expression
00974   case tok::plus:          // unary-expression: '+' cast-expression
00975   case tok::minus:         // unary-expression: '-' cast-expression
00976   case tok::tilde:         // unary-expression: '~' cast-expression
00977   case tok::exclaim:       // unary-expression: '!' cast-expression
00978   case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
00979   case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
00980     SourceLocation SavedLoc = ConsumeToken();
00981     Res = ParseCastExpression(false);
00982     if (!Res.isInvalid())
00983       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
00984     return Res;
00985   }
00986 
00987   case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
00988     // __extension__ silences extension warnings in the subexpression.
00989     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
00990     SourceLocation SavedLoc = ConsumeToken();
00991     Res = ParseCastExpression(false);
00992     if (!Res.isInvalid())
00993       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
00994     return Res;
00995   }
00996   case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
00997     if (!getLangOpts().C11)
00998       Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
00999     // fallthrough
01000   case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
01001   case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
01002                            // unary-expression: '__alignof' '(' type-name ')'
01003   case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
01004                            // unary-expression: 'sizeof' '(' type-name ')'
01005   case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
01006     return ParseUnaryExprOrTypeTraitExpression();
01007   case tok::ampamp: {      // unary-expression: '&&' identifier
01008     SourceLocation AmpAmpLoc = ConsumeToken();
01009     if (Tok.isNot(tok::identifier))
01010       return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
01011 
01012     if (getCurScope()->getFnParent() == nullptr)
01013       return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
01014     
01015     Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
01016     LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
01017                                                 Tok.getLocation());
01018     Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
01019     ConsumeToken();
01020     return Res;
01021   }
01022   case tok::kw_const_cast:
01023   case tok::kw_dynamic_cast:
01024   case tok::kw_reinterpret_cast:
01025   case tok::kw_static_cast:
01026     Res = ParseCXXCasts();
01027     break;
01028   case tok::kw_typeid:
01029     Res = ParseCXXTypeid();
01030     break;
01031   case tok::kw___uuidof:
01032     Res = ParseCXXUuidof();
01033     break;
01034   case tok::kw_this:
01035     Res = ParseCXXThis();
01036     break;
01037 
01038   case tok::annot_typename:
01039     if (isStartOfObjCClassMessageMissingOpenBracket()) {
01040       ParsedType Type = getTypeAnnotation(Tok);
01041 
01042       // Fake up a Declarator to use with ActOnTypeName.
01043       DeclSpec DS(AttrFactory);
01044       DS.SetRangeStart(Tok.getLocation());
01045       DS.SetRangeEnd(Tok.getLastLoc());
01046 
01047       const char *PrevSpec = nullptr;
01048       unsigned DiagID;
01049       DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
01050                          PrevSpec, DiagID, Type,
01051                          Actions.getASTContext().getPrintingPolicy());
01052 
01053       Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
01054       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
01055       if (Ty.isInvalid())
01056         break;
01057 
01058       ConsumeToken();
01059       Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
01060                                            Ty.get(), nullptr);
01061       break;
01062     }
01063     // Fall through
01064 
01065   case tok::annot_decltype:
01066   case tok::kw_char:
01067   case tok::kw_wchar_t:
01068   case tok::kw_char16_t:
01069   case tok::kw_char32_t:
01070   case tok::kw_bool:
01071   case tok::kw_short:
01072   case tok::kw_int:
01073   case tok::kw_long:
01074   case tok::kw___int64:
01075   case tok::kw___int128:
01076   case tok::kw_signed:
01077   case tok::kw_unsigned:
01078   case tok::kw_half:
01079   case tok::kw_float:
01080   case tok::kw_double:
01081   case tok::kw_void:
01082   case tok::kw_typename:
01083   case tok::kw_typeof:
01084   case tok::kw___vector: {
01085     if (!getLangOpts().CPlusPlus) {
01086       Diag(Tok, diag::err_expected_expression);
01087       return ExprError();
01088     }
01089 
01090     if (SavedKind == tok::kw_typename) {
01091       // postfix-expression: typename-specifier '(' expression-list[opt] ')'
01092       //                     typename-specifier braced-init-list
01093       if (TryAnnotateTypeOrScopeToken())
01094         return ExprError();
01095 
01096       if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
01097         // We are trying to parse a simple-type-specifier but might not get such
01098         // a token after error recovery.
01099         return ExprError();
01100     }
01101 
01102     // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
01103     //                     simple-type-specifier braced-init-list
01104     //
01105     DeclSpec DS(AttrFactory);
01106 
01107     ParseCXXSimpleTypeSpecifier(DS);
01108     if (Tok.isNot(tok::l_paren) &&
01109         (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
01110       return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
01111                          << DS.getSourceRange());
01112 
01113     if (Tok.is(tok::l_brace))
01114       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
01115 
01116     Res = ParseCXXTypeConstructExpression(DS);
01117     break;
01118   }
01119 
01120   case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
01121     // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
01122     // (We can end up in this situation after tentative parsing.)
01123     if (TryAnnotateTypeOrScopeToken())
01124       return ExprError();
01125     if (!Tok.is(tok::annot_cxxscope))
01126       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
01127                                  NotCastExpr, isTypeCast);
01128 
01129     Token Next = NextToken();
01130     if (Next.is(tok::annot_template_id)) {
01131       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
01132       if (TemplateId->Kind == TNK_Type_template) {
01133         // We have a qualified template-id that we know refers to a
01134         // type, translate it into a type and continue parsing as a
01135         // cast expression.
01136         CXXScopeSpec SS;
01137         ParseOptionalCXXScopeSpecifier(SS, ParsedType(), 
01138                                        /*EnteringContext=*/false);
01139         AnnotateTemplateIdTokenAsType();
01140         return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
01141                                    NotCastExpr, isTypeCast);
01142       }
01143     }
01144 
01145     // Parse as an id-expression.
01146     Res = ParseCXXIdExpression(isAddressOfOperand);
01147     break;
01148   }
01149 
01150   case tok::annot_template_id: { // [C++]          template-id
01151     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
01152     if (TemplateId->Kind == TNK_Type_template) {
01153       // We have a template-id that we know refers to a type,
01154       // translate it into a type and continue parsing as a cast
01155       // expression.
01156       AnnotateTemplateIdTokenAsType();
01157       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
01158                                  NotCastExpr, isTypeCast);
01159     }
01160 
01161     // Fall through to treat the template-id as an id-expression.
01162   }
01163 
01164   case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
01165     Res = ParseCXXIdExpression(isAddressOfOperand);
01166     break;
01167 
01168   case tok::coloncolon: {
01169     // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
01170     // annotates the token, tail recurse.
01171     if (TryAnnotateTypeOrScopeToken())
01172       return ExprError();
01173     if (!Tok.is(tok::coloncolon))
01174       return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
01175 
01176     // ::new -> [C++] new-expression
01177     // ::delete -> [C++] delete-expression
01178     SourceLocation CCLoc = ConsumeToken();
01179     if (Tok.is(tok::kw_new))
01180       return ParseCXXNewExpression(true, CCLoc);
01181     if (Tok.is(tok::kw_delete))
01182       return ParseCXXDeleteExpression(true, CCLoc);
01183 
01184     // This is not a type name or scope specifier, it is an invalid expression.
01185     Diag(CCLoc, diag::err_expected_expression);
01186     return ExprError();
01187   }
01188 
01189   case tok::kw_new: // [C++] new-expression
01190     return ParseCXXNewExpression(false, Tok.getLocation());
01191 
01192   case tok::kw_delete: // [C++] delete-expression
01193     return ParseCXXDeleteExpression(false, Tok.getLocation());
01194 
01195   case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
01196     Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
01197     SourceLocation KeyLoc = ConsumeToken();
01198     BalancedDelimiterTracker T(*this, tok::l_paren);
01199 
01200     if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
01201       return ExprError();
01202     // C++11 [expr.unary.noexcept]p1:
01203     //   The noexcept operator determines whether the evaluation of its operand,
01204     //   which is an unevaluated operand, can throw an exception.
01205     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
01206     ExprResult Result = ParseExpression();
01207 
01208     T.consumeClose();
01209 
01210     if (!Result.isInvalid())
01211       Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), 
01212                                          Result.get(), T.getCloseLocation());
01213     return Result;
01214   }
01215 
01216 #define TYPE_TRAIT(N,Spelling,K) \
01217   case tok::kw_##Spelling:
01218 #include "clang/Basic/TokenKinds.def"
01219     return ParseTypeTrait();
01220       
01221   case tok::kw___array_rank:
01222   case tok::kw___array_extent:
01223     return ParseArrayTypeTrait();
01224 
01225   case tok::kw___is_lvalue_expr:
01226   case tok::kw___is_rvalue_expr:
01227     return ParseExpressionTrait();
01228       
01229   case tok::at: {
01230     SourceLocation AtLoc = ConsumeToken();
01231     return ParseObjCAtExpression(AtLoc);
01232   }
01233   case tok::caret:
01234     Res = ParseBlockLiteralExpression();
01235     break;
01236   case tok::code_completion: {
01237     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
01238     cutOffParsing();
01239     return ExprError();
01240   }
01241   case tok::l_square:
01242     if (getLangOpts().CPlusPlus11) {
01243       if (getLangOpts().ObjC1) {
01244         // C++11 lambda expressions and Objective-C message sends both start with a
01245         // square bracket.  There are three possibilities here:
01246         // we have a valid lambda expression, we have an invalid lambda
01247         // expression, or we have something that doesn't appear to be a lambda.
01248         // If we're in the last case, we fall back to ParseObjCMessageExpression.
01249         Res = TryParseLambdaExpression();
01250         if (!Res.isInvalid() && !Res.get())
01251           Res = ParseObjCMessageExpression();
01252         break;
01253       }
01254       Res = ParseLambdaExpression();
01255       break;
01256     }
01257     if (getLangOpts().ObjC1) {
01258       Res = ParseObjCMessageExpression();
01259       break;
01260     }
01261     // FALL THROUGH.
01262   default:
01263     NotCastExpr = true;
01264     return ExprError();
01265   }
01266 
01267   // These can be followed by postfix-expr pieces.
01268   return ParsePostfixExpressionSuffix(Res);
01269 }
01270 
01271 /// \brief Once the leading part of a postfix-expression is parsed, this
01272 /// method parses any suffixes that apply.
01273 ///
01274 /// \verbatim
01275 ///       postfix-expression: [C99 6.5.2]
01276 ///         primary-expression
01277 ///         postfix-expression '[' expression ']'
01278 ///         postfix-expression '[' braced-init-list ']'
01279 ///         postfix-expression '(' argument-expression-list[opt] ')'
01280 ///         postfix-expression '.' identifier
01281 ///         postfix-expression '->' identifier
01282 ///         postfix-expression '++'
01283 ///         postfix-expression '--'
01284 ///         '(' type-name ')' '{' initializer-list '}'
01285 ///         '(' type-name ')' '{' initializer-list ',' '}'
01286 ///
01287 ///       argument-expression-list: [C99 6.5.2]
01288 ///         argument-expression ...[opt]
01289 ///         argument-expression-list ',' assignment-expression ...[opt]
01290 /// \endverbatim
01291 ExprResult
01292 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
01293   // Now that the primary-expression piece of the postfix-expression has been
01294   // parsed, see if there are any postfix-expression pieces here.
01295   SourceLocation Loc;
01296   while (1) {
01297     switch (Tok.getKind()) {
01298     case tok::code_completion:
01299       if (InMessageExpression)
01300         return LHS;
01301         
01302       Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
01303       cutOffParsing();
01304       return ExprError();
01305         
01306     case tok::identifier:
01307       // If we see identifier: after an expression, and we're not already in a
01308       // message send, then this is probably a message send with a missing
01309       // opening bracket '['.
01310       if (getLangOpts().ObjC1 && !InMessageExpression && 
01311           (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
01312         LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
01313                                              ParsedType(), LHS.get());
01314         break;
01315       }
01316         
01317       // Fall through; this isn't a message send.
01318                 
01319     default:  // Not a postfix-expression suffix.
01320       return LHS;
01321     case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
01322       // If we have a array postfix expression that starts on a new line and
01323       // Objective-C is enabled, it is highly likely that the user forgot a
01324       // semicolon after the base expression and that the array postfix-expr is
01325       // actually another message send.  In this case, do some look-ahead to see
01326       // if the contents of the square brackets are obviously not a valid
01327       // expression and recover by pretending there is no suffix.
01328       if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
01329           isSimpleObjCMessageExpression())
01330         return LHS;
01331 
01332       // Reject array indices starting with a lambda-expression. '[[' is
01333       // reserved for attributes.
01334       if (CheckProhibitedCXX11Attribute())
01335         return ExprError();
01336 
01337       BalancedDelimiterTracker T(*this, tok::l_square);
01338       T.consumeOpen();
01339       Loc = T.getOpenLocation();
01340       ExprResult Idx;
01341       if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
01342         Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
01343         Idx = ParseBraceInitializer();
01344       } else
01345         Idx = ParseExpression();
01346 
01347       SourceLocation RLoc = Tok.getLocation();
01348 
01349       if (!LHS.isInvalid() && !Idx.isInvalid() && Tok.is(tok::r_square)) {
01350         LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
01351                                               Idx.get(), RLoc);
01352       } else
01353         LHS = ExprError();
01354 
01355       // Match the ']'.
01356       T.consumeClose();
01357       break;
01358     }
01359 
01360     case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
01361     case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
01362                                //   '(' argument-expression-list[opt] ')'
01363       tok::TokenKind OpKind = Tok.getKind();
01364       InMessageExpressionRAIIObject InMessage(*this, false);
01365 
01366       Expr *ExecConfig = nullptr;
01367 
01368       BalancedDelimiterTracker PT(*this, tok::l_paren);
01369 
01370       if (OpKind == tok::lesslessless) {
01371         ExprVector ExecConfigExprs;
01372         CommaLocsTy ExecConfigCommaLocs;
01373         SourceLocation OpenLoc = ConsumeToken();
01374 
01375         if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
01376           LHS = ExprError();
01377         }
01378 
01379         SourceLocation CloseLoc;
01380         if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
01381         } else if (LHS.isInvalid()) {
01382           SkipUntil(tok::greatergreatergreater, StopAtSemi);
01383         } else {
01384           // There was an error closing the brackets
01385           Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
01386           Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
01387           SkipUntil(tok::greatergreatergreater, StopAtSemi);
01388           LHS = ExprError();
01389         }
01390 
01391         if (!LHS.isInvalid()) {
01392           if (ExpectAndConsume(tok::l_paren))
01393             LHS = ExprError();
01394           else
01395             Loc = PrevTokLocation;
01396         }
01397 
01398         if (!LHS.isInvalid()) {
01399           ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
01400                                     OpenLoc, 
01401                                     ExecConfigExprs, 
01402                                     CloseLoc);
01403           if (ECResult.isInvalid())
01404             LHS = ExprError();
01405           else
01406             ExecConfig = ECResult.get();
01407         }
01408       } else {
01409         PT.consumeOpen();
01410         Loc = PT.getOpenLocation();
01411       }
01412 
01413       ExprVector ArgExprs;
01414       CommaLocsTy CommaLocs;
01415       
01416       if (Tok.is(tok::code_completion)) {
01417         Actions.CodeCompleteCall(getCurScope(), LHS.get(), None);
01418         cutOffParsing();
01419         return ExprError();
01420       }
01421 
01422       if (OpKind == tok::l_paren || !LHS.isInvalid()) {
01423         if (Tok.isNot(tok::r_paren)) {
01424           if (ParseExpressionList(ArgExprs, CommaLocs, &Sema::CodeCompleteCall,
01425                                   LHS.get())) {
01426             LHS = ExprError();
01427           }
01428         }
01429       }
01430 
01431       // Match the ')'.
01432       if (LHS.isInvalid()) {
01433         SkipUntil(tok::r_paren, StopAtSemi);
01434       } else if (Tok.isNot(tok::r_paren)) {
01435         PT.consumeClose();
01436         LHS = ExprError();
01437       } else {
01438         assert((ArgExprs.size() == 0 || 
01439                 ArgExprs.size()-1 == CommaLocs.size())&&
01440                "Unexpected number of commas!");
01441         LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc,
01442                                     ArgExprs, Tok.getLocation(),
01443                                     ExecConfig);
01444         PT.consumeClose();
01445       }
01446 
01447       break;
01448     }
01449     case tok::arrow:
01450     case tok::period: {
01451       // postfix-expression: p-e '->' template[opt] id-expression
01452       // postfix-expression: p-e '.' template[opt] id-expression
01453       tok::TokenKind OpKind = Tok.getKind();
01454       SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
01455 
01456       CXXScopeSpec SS;
01457       ParsedType ObjectType;
01458       bool MayBePseudoDestructor = false;
01459       if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
01460         Expr *Base = LHS.get();
01461         const Type* BaseType = Base->getType().getTypePtrOrNull();
01462         if (BaseType && Tok.is(tok::l_paren) &&
01463             (BaseType->isFunctionType() ||
01464              BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
01465           Diag(OpLoc, diag::err_function_is_not_record)
01466               << OpKind << Base->getSourceRange()
01467               << FixItHint::CreateRemoval(OpLoc);
01468           return ParsePostfixExpressionSuffix(Base);
01469         }
01470 
01471         LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
01472                                                    OpLoc, OpKind, ObjectType,
01473                                                    MayBePseudoDestructor);
01474         if (LHS.isInvalid())
01475           break;
01476 
01477         ParseOptionalCXXScopeSpecifier(SS, ObjectType, 
01478                                        /*EnteringContext=*/false,
01479                                        &MayBePseudoDestructor);
01480         if (SS.isNotEmpty())
01481           ObjectType = ParsedType();
01482       }
01483 
01484       if (Tok.is(tok::code_completion)) {
01485         // Code completion for a member access expression.
01486         Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(),
01487                                                 OpLoc, OpKind == tok::arrow);
01488         
01489         cutOffParsing();
01490         return ExprError();
01491       }
01492       
01493       if (MayBePseudoDestructor && !LHS.isInvalid()) {
01494         LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS, 
01495                                        ObjectType);
01496         break;
01497       }
01498 
01499       // Either the action has told is that this cannot be a
01500       // pseudo-destructor expression (based on the type of base
01501       // expression), or we didn't see a '~' in the right place. We
01502       // can still parse a destructor name here, but in that case it
01503       // names a real destructor.
01504       // Allow explicit constructor calls in Microsoft mode.
01505       // FIXME: Add support for explicit call of template constructor.
01506       SourceLocation TemplateKWLoc;
01507       UnqualifiedId Name;
01508       if (getLangOpts().ObjC2 && OpKind == tok::period && Tok.is(tok::kw_class)) {
01509         // Objective-C++:
01510         //   After a '.' in a member access expression, treat the keyword
01511         //   'class' as if it were an identifier.
01512         //
01513         // This hack allows property access to the 'class' method because it is
01514         // such a common method name. For other C++ keywords that are 
01515         // Objective-C method names, one must use the message send syntax.
01516         IdentifierInfo *Id = Tok.getIdentifierInfo();
01517         SourceLocation Loc = ConsumeToken();
01518         Name.setIdentifier(Id, Loc);
01519       } else if (ParseUnqualifiedId(SS, 
01520                                     /*EnteringContext=*/false, 
01521                                     /*AllowDestructorName=*/true,
01522                                     /*AllowConstructorName=*/
01523                                       getLangOpts().MicrosoftExt, 
01524                                     ObjectType, TemplateKWLoc, Name))
01525         LHS = ExprError();
01526       
01527       if (!LHS.isInvalid())
01528         LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc, 
01529                                             OpKind, SS, TemplateKWLoc, Name,
01530                                  CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
01531                                                    : nullptr,
01532                                             Tok.is(tok::l_paren));
01533       break;
01534     }
01535     case tok::plusplus:    // postfix-expression: postfix-expression '++'
01536     case tok::minusminus:  // postfix-expression: postfix-expression '--'
01537       if (!LHS.isInvalid()) {
01538         LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
01539                                           Tok.getKind(), LHS.get());
01540       }
01541       ConsumeToken();
01542       break;
01543     }
01544   }
01545 }
01546 
01547 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
01548 /// vec_step and we are at the start of an expression or a parenthesized
01549 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
01550 /// expression (isCastExpr == false) or the type (isCastExpr == true).
01551 ///
01552 /// \verbatim
01553 ///       unary-expression:  [C99 6.5.3]
01554 ///         'sizeof' unary-expression
01555 ///         'sizeof' '(' type-name ')'
01556 /// [GNU]   '__alignof' unary-expression
01557 /// [GNU]   '__alignof' '(' type-name ')'
01558 /// [C11]   '_Alignof' '(' type-name ')'
01559 /// [C++0x] 'alignof' '(' type-id ')'
01560 ///
01561 /// [GNU]   typeof-specifier:
01562 ///           typeof ( expressions )
01563 ///           typeof ( type-name )
01564 /// [GNU/C++] typeof unary-expression
01565 ///
01566 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
01567 ///           vec_step ( expressions )
01568 ///           vec_step ( type-name )
01569 /// \endverbatim
01570 ExprResult
01571 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
01572                                            bool &isCastExpr,
01573                                            ParsedType &CastTy,
01574                                            SourceRange &CastRange) {
01575 
01576   assert((OpTok.is(tok::kw_typeof)    || OpTok.is(tok::kw_sizeof) ||
01577           OpTok.is(tok::kw___alignof) || OpTok.is(tok::kw_alignof) ||
01578           OpTok.is(tok::kw__Alignof)  || OpTok.is(tok::kw_vec_step)) &&
01579           "Not a typeof/sizeof/alignof/vec_step expression!");
01580 
01581   ExprResult Operand;
01582 
01583   // If the operand doesn't start with an '(', it must be an expression.
01584   if (Tok.isNot(tok::l_paren)) {
01585     // If construct allows a form without parenthesis, user may forget to put
01586     // pathenthesis around type name.
01587     if (OpTok.is(tok::kw_sizeof)  || OpTok.is(tok::kw___alignof) ||
01588         OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof)) {
01589       if (isTypeIdUnambiguously()) {
01590         DeclSpec DS(AttrFactory);
01591         ParseSpecifierQualifierList(DS);
01592         Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
01593         ParseDeclarator(DeclaratorInfo);
01594 
01595         SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
01596         SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
01597         Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
01598           << OpTok.getName()
01599           << FixItHint::CreateInsertion(LParenLoc, "(")
01600           << FixItHint::CreateInsertion(RParenLoc, ")");
01601         isCastExpr = true;
01602         return ExprEmpty();
01603       }
01604     }
01605 
01606     isCastExpr = false;
01607     if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
01608       Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
01609                                           << tok::l_paren;
01610       return ExprError();
01611     }
01612 
01613     Operand = ParseCastExpression(true/*isUnaryExpression*/);
01614   } else {
01615     // If it starts with a '(', we know that it is either a parenthesized
01616     // type-name, or it is a unary-expression that starts with a compound
01617     // literal, or starts with a primary-expression that is a parenthesized
01618     // expression.
01619     ParenParseOption ExprType = CastExpr;
01620     SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
01621 
01622     Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/, 
01623                                    false, CastTy, RParenLoc);
01624     CastRange = SourceRange(LParenLoc, RParenLoc);
01625 
01626     // If ParseParenExpression parsed a '(typename)' sequence only, then this is
01627     // a type.
01628     if (ExprType == CastExpr) {
01629       isCastExpr = true;
01630       return ExprEmpty();
01631     }
01632 
01633     if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
01634       // GNU typeof in C requires the expression to be parenthesized. Not so for
01635       // sizeof/alignof or in C++. Therefore, the parenthesized expression is
01636       // the start of a unary-expression, but doesn't include any postfix 
01637       // pieces. Parse these now if present.
01638       if (!Operand.isInvalid())
01639         Operand = ParsePostfixExpressionSuffix(Operand.get());
01640     }
01641   }
01642 
01643   // If we get here, the operand to the typeof/sizeof/alignof was an expresion.
01644   isCastExpr = false;
01645   return Operand;
01646 }
01647 
01648 
01649 /// \brief Parse a sizeof or alignof expression.
01650 ///
01651 /// \verbatim
01652 ///       unary-expression:  [C99 6.5.3]
01653 ///         'sizeof' unary-expression
01654 ///         'sizeof' '(' type-name ')'
01655 /// [C++11] 'sizeof' '...' '(' identifier ')'
01656 /// [GNU]   '__alignof' unary-expression
01657 /// [GNU]   '__alignof' '(' type-name ')'
01658 /// [C11]   '_Alignof' '(' type-name ')'
01659 /// [C++11] 'alignof' '(' type-id ')'
01660 /// \endverbatim
01661 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
01662   assert((Tok.is(tok::kw_sizeof) || Tok.is(tok::kw___alignof) ||
01663           Tok.is(tok::kw_alignof) || Tok.is(tok::kw__Alignof) ||
01664           Tok.is(tok::kw_vec_step)) &&
01665          "Not a sizeof/alignof/vec_step expression!");
01666   Token OpTok = Tok;
01667   ConsumeToken();
01668 
01669   // [C++11] 'sizeof' '...' '(' identifier ')'
01670   if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
01671     SourceLocation EllipsisLoc = ConsumeToken();
01672     SourceLocation LParenLoc, RParenLoc;
01673     IdentifierInfo *Name = nullptr;
01674     SourceLocation NameLoc;
01675     if (Tok.is(tok::l_paren)) {
01676       BalancedDelimiterTracker T(*this, tok::l_paren);
01677       T.consumeOpen();
01678       LParenLoc = T.getOpenLocation();
01679       if (Tok.is(tok::identifier)) {
01680         Name = Tok.getIdentifierInfo();
01681         NameLoc = ConsumeToken();
01682         T.consumeClose();
01683         RParenLoc = T.getCloseLocation();
01684         if (RParenLoc.isInvalid())
01685           RParenLoc = PP.getLocForEndOfToken(NameLoc);
01686       } else {
01687         Diag(Tok, diag::err_expected_parameter_pack);
01688         SkipUntil(tok::r_paren, StopAtSemi);
01689       }
01690     } else if (Tok.is(tok::identifier)) {
01691       Name = Tok.getIdentifierInfo();
01692       NameLoc = ConsumeToken();
01693       LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
01694       RParenLoc = PP.getLocForEndOfToken(NameLoc);
01695       Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
01696         << Name
01697         << FixItHint::CreateInsertion(LParenLoc, "(")
01698         << FixItHint::CreateInsertion(RParenLoc, ")");
01699     } else {
01700       Diag(Tok, diag::err_sizeof_parameter_pack);
01701     }
01702     
01703     if (!Name)
01704       return ExprError();
01705     
01706     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
01707                                                  Sema::ReuseLambdaContextDecl);
01708 
01709     return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
01710                                                 OpTok.getLocation(), 
01711                                                 *Name, NameLoc,
01712                                                 RParenLoc);
01713   }
01714 
01715   if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
01716     Diag(OpTok, diag::warn_cxx98_compat_alignof);
01717 
01718   EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
01719                                                Sema::ReuseLambdaContextDecl);
01720 
01721   bool isCastExpr;
01722   ParsedType CastTy;
01723   SourceRange CastRange;
01724   ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
01725                                                           isCastExpr,
01726                                                           CastTy,
01727                                                           CastRange);
01728 
01729   UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
01730   if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw___alignof) ||
01731       OpTok.is(tok::kw__Alignof))
01732     ExprKind = UETT_AlignOf;
01733   else if (OpTok.is(tok::kw_vec_step))
01734     ExprKind = UETT_VecStep;
01735 
01736   if (isCastExpr)
01737     return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
01738                                                  ExprKind,
01739                                                  /*isType=*/true,
01740                                                  CastTy.getAsOpaquePtr(),
01741                                                  CastRange);
01742 
01743   if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
01744     Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
01745 
01746   // If we get here, the operand to the sizeof/alignof was an expresion.
01747   if (!Operand.isInvalid())
01748     Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
01749                                                     ExprKind,
01750                                                     /*isType=*/false,
01751                                                     Operand.get(),
01752                                                     CastRange);
01753   return Operand;
01754 }
01755 
01756 /// ParseBuiltinPrimaryExpression
01757 ///
01758 /// \verbatim
01759 ///       primary-expression: [C99 6.5.1]
01760 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
01761 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
01762 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
01763 ///                                     assign-expr ')'
01764 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
01765 /// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
01766 ///
01767 /// [GNU] offsetof-member-designator:
01768 /// [GNU]   identifier
01769 /// [GNU]   offsetof-member-designator '.' identifier
01770 /// [GNU]   offsetof-member-designator '[' expression ']'
01771 /// \endverbatim
01772 ExprResult Parser::ParseBuiltinPrimaryExpression() {
01773   ExprResult Res;
01774   const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
01775 
01776   tok::TokenKind T = Tok.getKind();
01777   SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
01778 
01779   // All of these start with an open paren.
01780   if (Tok.isNot(tok::l_paren))
01781     return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
01782                                                          << tok::l_paren);
01783 
01784   BalancedDelimiterTracker PT(*this, tok::l_paren);
01785   PT.consumeOpen();
01786 
01787   // TODO: Build AST.
01788 
01789   switch (T) {
01790   default: llvm_unreachable("Not a builtin primary expression!");
01791   case tok::kw___builtin_va_arg: {
01792     ExprResult Expr(ParseAssignmentExpression());
01793 
01794     if (ExpectAndConsume(tok::comma)) {
01795       SkipUntil(tok::r_paren, StopAtSemi);
01796       Expr = ExprError();
01797     }
01798 
01799     TypeResult Ty = ParseTypeName();
01800 
01801     if (Tok.isNot(tok::r_paren)) {
01802       Diag(Tok, diag::err_expected) << tok::r_paren;
01803       Expr = ExprError();
01804     }
01805 
01806     if (Expr.isInvalid() || Ty.isInvalid())
01807       Res = ExprError();
01808     else
01809       Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
01810     break;
01811   }
01812   case tok::kw___builtin_offsetof: {
01813     SourceLocation TypeLoc = Tok.getLocation();
01814     TypeResult Ty = ParseTypeName();
01815     if (Ty.isInvalid()) {
01816       SkipUntil(tok::r_paren, StopAtSemi);
01817       return ExprError();
01818     }
01819 
01820     if (ExpectAndConsume(tok::comma)) {
01821       SkipUntil(tok::r_paren, StopAtSemi);
01822       return ExprError();
01823     }
01824 
01825     // We must have at least one identifier here.
01826     if (Tok.isNot(tok::identifier)) {
01827       Diag(Tok, diag::err_expected) << tok::identifier;
01828       SkipUntil(tok::r_paren, StopAtSemi);
01829       return ExprError();
01830     }
01831 
01832     // Keep track of the various subcomponents we see.
01833     SmallVector<Sema::OffsetOfComponent, 4> Comps;
01834 
01835     Comps.push_back(Sema::OffsetOfComponent());
01836     Comps.back().isBrackets = false;
01837     Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
01838     Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
01839 
01840     // FIXME: This loop leaks the index expressions on error.
01841     while (1) {
01842       if (Tok.is(tok::period)) {
01843         // offsetof-member-designator: offsetof-member-designator '.' identifier
01844         Comps.push_back(Sema::OffsetOfComponent());
01845         Comps.back().isBrackets = false;
01846         Comps.back().LocStart = ConsumeToken();
01847 
01848         if (Tok.isNot(tok::identifier)) {
01849           Diag(Tok, diag::err_expected) << tok::identifier;
01850           SkipUntil(tok::r_paren, StopAtSemi);
01851           return ExprError();
01852         }
01853         Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
01854         Comps.back().LocEnd = ConsumeToken();
01855 
01856       } else if (Tok.is(tok::l_square)) {
01857         if (CheckProhibitedCXX11Attribute())
01858           return ExprError();
01859 
01860         // offsetof-member-designator: offsetof-member-design '[' expression ']'
01861         Comps.push_back(Sema::OffsetOfComponent());
01862         Comps.back().isBrackets = true;
01863         BalancedDelimiterTracker ST(*this, tok::l_square);
01864         ST.consumeOpen();
01865         Comps.back().LocStart = ST.getOpenLocation();
01866         Res = ParseExpression();
01867         if (Res.isInvalid()) {
01868           SkipUntil(tok::r_paren, StopAtSemi);
01869           return Res;
01870         }
01871         Comps.back().U.E = Res.get();
01872 
01873         ST.consumeClose();
01874         Comps.back().LocEnd = ST.getCloseLocation();
01875       } else {
01876         if (Tok.isNot(tok::r_paren)) {
01877           PT.consumeClose();
01878           Res = ExprError();
01879         } else if (Ty.isInvalid()) {
01880           Res = ExprError();
01881         } else {
01882           PT.consumeClose();
01883           Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
01884                                              Ty.get(), &Comps[0], Comps.size(),
01885                                              PT.getCloseLocation());
01886         }
01887         break;
01888       }
01889     }
01890     break;
01891   }
01892   case tok::kw___builtin_choose_expr: {
01893     ExprResult Cond(ParseAssignmentExpression());
01894     if (Cond.isInvalid()) {
01895       SkipUntil(tok::r_paren, StopAtSemi);
01896       return Cond;
01897     }
01898     if (ExpectAndConsume(tok::comma)) {
01899       SkipUntil(tok::r_paren, StopAtSemi);
01900       return ExprError();
01901     }
01902 
01903     ExprResult Expr1(ParseAssignmentExpression());
01904     if (Expr1.isInvalid()) {
01905       SkipUntil(tok::r_paren, StopAtSemi);
01906       return Expr1;
01907     }
01908     if (ExpectAndConsume(tok::comma)) {
01909       SkipUntil(tok::r_paren, StopAtSemi);
01910       return ExprError();
01911     }
01912 
01913     ExprResult Expr2(ParseAssignmentExpression());
01914     if (Expr2.isInvalid()) {
01915       SkipUntil(tok::r_paren, StopAtSemi);
01916       return Expr2;
01917     }
01918     if (Tok.isNot(tok::r_paren)) {
01919       Diag(Tok, diag::err_expected) << tok::r_paren;
01920       return ExprError();
01921     }
01922     Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
01923                                   Expr2.get(), ConsumeParen());
01924     break;
01925   }
01926   case tok::kw___builtin_astype: {
01927     // The first argument is an expression to be converted, followed by a comma.
01928     ExprResult Expr(ParseAssignmentExpression());
01929     if (Expr.isInvalid()) {
01930       SkipUntil(tok::r_paren, StopAtSemi);
01931       return ExprError();
01932     }
01933 
01934     if (ExpectAndConsume(tok::comma)) {
01935       SkipUntil(tok::r_paren, StopAtSemi);
01936       return ExprError();
01937     }
01938 
01939     // Second argument is the type to bitcast to.
01940     TypeResult DestTy = ParseTypeName();
01941     if (DestTy.isInvalid())
01942       return ExprError();
01943     
01944     // Attempt to consume the r-paren.
01945     if (Tok.isNot(tok::r_paren)) {
01946       Diag(Tok, diag::err_expected) << tok::r_paren;
01947       SkipUntil(tok::r_paren, StopAtSemi);
01948       return ExprError();
01949     }
01950     
01951     Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc, 
01952                                   ConsumeParen());
01953     break;
01954   }
01955   case tok::kw___builtin_convertvector: {
01956     // The first argument is an expression to be converted, followed by a comma.
01957     ExprResult Expr(ParseAssignmentExpression());
01958     if (Expr.isInvalid()) {
01959       SkipUntil(tok::r_paren, StopAtSemi);
01960       return ExprError();
01961     }
01962 
01963     if (ExpectAndConsume(tok::comma)) {
01964       SkipUntil(tok::r_paren, StopAtSemi);
01965       return ExprError();
01966     }
01967 
01968     // Second argument is the type to bitcast to.
01969     TypeResult DestTy = ParseTypeName();
01970     if (DestTy.isInvalid())
01971       return ExprError();
01972     
01973     // Attempt to consume the r-paren.
01974     if (Tok.isNot(tok::r_paren)) {
01975       Diag(Tok, diag::err_expected) << tok::r_paren;
01976       SkipUntil(tok::r_paren, StopAtSemi);
01977       return ExprError();
01978     }
01979     
01980     Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc, 
01981                                          ConsumeParen());
01982     break;
01983   }
01984   }
01985 
01986   if (Res.isInvalid())
01987     return ExprError();
01988 
01989   // These can be followed by postfix-expr pieces because they are
01990   // primary-expressions.
01991   return ParsePostfixExpressionSuffix(Res.get());
01992 }
01993 
01994 /// ParseParenExpression - This parses the unit that starts with a '(' token,
01995 /// based on what is allowed by ExprType.  The actual thing parsed is returned
01996 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
01997 /// not the parsed cast-expression.
01998 ///
01999 /// \verbatim
02000 ///       primary-expression: [C99 6.5.1]
02001 ///         '(' expression ')'
02002 /// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
02003 ///       postfix-expression: [C99 6.5.2]
02004 ///         '(' type-name ')' '{' initializer-list '}'
02005 ///         '(' type-name ')' '{' initializer-list ',' '}'
02006 ///       cast-expression: [C99 6.5.4]
02007 ///         '(' type-name ')' cast-expression
02008 /// [ARC]   bridged-cast-expression
02009 /// [ARC] bridged-cast-expression:
02010 ///         (__bridge type-name) cast-expression
02011 ///         (__bridge_transfer type-name) cast-expression
02012 ///         (__bridge_retained type-name) cast-expression
02013 ///       fold-expression: [C++1z]
02014 ///         '(' cast-expression fold-operator '...' ')'
02015 ///         '(' '...' fold-operator cast-expression ')'
02016 ///         '(' cast-expression fold-operator '...'
02017 ///                 fold-operator cast-expression ')'
02018 /// \endverbatim
02019 ExprResult
02020 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
02021                              bool isTypeCast, ParsedType &CastTy,
02022                              SourceLocation &RParenLoc) {
02023   assert(Tok.is(tok::l_paren) && "Not a paren expr!");
02024   ColonProtectionRAIIObject ColonProtection(*this, false);
02025   BalancedDelimiterTracker T(*this, tok::l_paren);
02026   if (T.consumeOpen())
02027     return ExprError();
02028   SourceLocation OpenLoc = T.getOpenLocation();
02029 
02030   ExprResult Result(true);
02031   bool isAmbiguousTypeId;
02032   CastTy = ParsedType();
02033 
02034   if (Tok.is(tok::code_completion)) {
02035     Actions.CodeCompleteOrdinaryName(getCurScope(), 
02036                  ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
02037                                             : Sema::PCC_Expression);
02038     cutOffParsing();
02039     return ExprError();
02040   }
02041 
02042   // Diagnose use of bridge casts in non-arc mode.
02043   bool BridgeCast = (getLangOpts().ObjC2 &&
02044                      (Tok.is(tok::kw___bridge) || 
02045                       Tok.is(tok::kw___bridge_transfer) ||
02046                       Tok.is(tok::kw___bridge_retained) ||
02047                       Tok.is(tok::kw___bridge_retain)));
02048   if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
02049     if (!TryConsumeToken(tok::kw___bridge)) {
02050       StringRef BridgeCastName = Tok.getName();
02051       SourceLocation BridgeKeywordLoc = ConsumeToken();
02052       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
02053         Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
02054           << BridgeCastName
02055           << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
02056     }
02057     BridgeCast = false;
02058   }
02059   
02060   // None of these cases should fall through with an invalid Result
02061   // unless they've already reported an error.
02062   if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
02063     Diag(Tok, diag::ext_gnu_statement_expr);
02064     Actions.ActOnStartStmtExpr();
02065 
02066     StmtResult Stmt(ParseCompoundStatement(true));
02067     ExprType = CompoundStmt;
02068 
02069     // If the substmt parsed correctly, build the AST node.
02070     if (!Stmt.isInvalid()) {
02071       Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation());
02072     } else {
02073       Actions.ActOnStmtExprError();
02074     }
02075   } else if (ExprType >= CompoundLiteral && BridgeCast) {
02076     tok::TokenKind tokenKind = Tok.getKind();
02077     SourceLocation BridgeKeywordLoc = ConsumeToken();
02078 
02079     // Parse an Objective-C ARC ownership cast expression.
02080     ObjCBridgeCastKind Kind;
02081     if (tokenKind == tok::kw___bridge)
02082       Kind = OBC_Bridge;
02083     else if (tokenKind == tok::kw___bridge_transfer)
02084       Kind = OBC_BridgeTransfer;
02085     else if (tokenKind == tok::kw___bridge_retained)
02086       Kind = OBC_BridgeRetained;
02087     else {
02088       // As a hopefully temporary workaround, allow __bridge_retain as
02089       // a synonym for __bridge_retained, but only in system headers.
02090       assert(tokenKind == tok::kw___bridge_retain);
02091       Kind = OBC_BridgeRetained;
02092       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
02093         Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
02094           << FixItHint::CreateReplacement(BridgeKeywordLoc,
02095                                           "__bridge_retained");
02096     }
02097              
02098     TypeResult Ty = ParseTypeName();
02099     T.consumeClose();
02100     ColonProtection.restore();
02101     RParenLoc = T.getCloseLocation();
02102     ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
02103     
02104     if (Ty.isInvalid() || SubExpr.isInvalid())
02105       return ExprError();
02106     
02107     return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
02108                                         BridgeKeywordLoc, Ty.get(),
02109                                         RParenLoc, SubExpr.get());
02110   } else if (ExprType >= CompoundLiteral &&
02111              isTypeIdInParens(isAmbiguousTypeId)) {
02112 
02113     // Otherwise, this is a compound literal expression or cast expression.
02114 
02115     // In C++, if the type-id is ambiguous we disambiguate based on context.
02116     // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
02117     // in which case we should treat it as type-id.
02118     // if stopIfCastExpr is false, we need to determine the context past the
02119     // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
02120     if (isAmbiguousTypeId && !stopIfCastExpr) {
02121       ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
02122                                                         ColonProtection);
02123       RParenLoc = T.getCloseLocation();
02124       return res;
02125     }
02126 
02127     // Parse the type declarator.
02128     DeclSpec DS(AttrFactory);
02129     ParseSpecifierQualifierList(DS);
02130     Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
02131     ParseDeclarator(DeclaratorInfo);
02132     
02133     // If our type is followed by an identifier and either ':' or ']', then 
02134     // this is probably an Objective-C message send where the leading '[' is
02135     // missing. Recover as if that were the case.
02136     if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
02137         !InMessageExpression && getLangOpts().ObjC1 &&
02138         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
02139       TypeResult Ty;
02140       {
02141         InMessageExpressionRAIIObject InMessage(*this, false);
02142         Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
02143       }
02144       Result = ParseObjCMessageExpressionBody(SourceLocation(), 
02145                                               SourceLocation(), 
02146                                               Ty.get(), nullptr);
02147     } else {          
02148       // Match the ')'.
02149       T.consumeClose();
02150       ColonProtection.restore();
02151       RParenLoc = T.getCloseLocation();
02152       if (Tok.is(tok::l_brace)) {
02153         ExprType = CompoundLiteral;
02154         TypeResult Ty;
02155         {
02156           InMessageExpressionRAIIObject InMessage(*this, false);
02157           Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
02158         }
02159         return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
02160       }
02161 
02162       if (ExprType == CastExpr) {
02163         // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
02164 
02165         if (DeclaratorInfo.isInvalidType())
02166           return ExprError();
02167 
02168         // Note that this doesn't parse the subsequent cast-expression, it just
02169         // returns the parsed type to the callee.
02170         if (stopIfCastExpr) {
02171           TypeResult Ty;
02172           {
02173             InMessageExpressionRAIIObject InMessage(*this, false);
02174             Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
02175           }
02176           CastTy = Ty.get();
02177           return ExprResult();
02178         }
02179 
02180         // Reject the cast of super idiom in ObjC.
02181         if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
02182             Tok.getIdentifierInfo() == Ident_super && 
02183             getCurScope()->isInObjcMethodScope() &&
02184             GetLookAheadToken(1).isNot(tok::period)) {
02185           Diag(Tok.getLocation(), diag::err_illegal_super_cast)
02186             << SourceRange(OpenLoc, RParenLoc);
02187           return ExprError();
02188         }
02189 
02190         // Parse the cast-expression that follows it next.
02191         // TODO: For cast expression with CastTy.
02192         Result = ParseCastExpression(/*isUnaryExpression=*/false,
02193                                      /*isAddressOfOperand=*/false,
02194                                      /*isTypeCast=*/IsTypeCast);
02195         if (!Result.isInvalid()) {
02196           Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
02197                                          DeclaratorInfo, CastTy, 
02198                                          RParenLoc, Result.get());
02199         }
02200         return Result;
02201       }
02202 
02203       Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
02204       return ExprError();
02205     }
02206   } else if (Tok.is(tok::ellipsis) &&
02207              isFoldOperator(NextToken().getKind())) {
02208     return ParseFoldExpression(ExprResult(), T);
02209   } else if (isTypeCast) {
02210     // Parse the expression-list.
02211     InMessageExpressionRAIIObject InMessage(*this, false);
02212 
02213     ExprVector ArgExprs;
02214     CommaLocsTy CommaLocs;
02215 
02216     if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
02217       // FIXME: If we ever support comma expressions as operands to
02218       // fold-expressions, we'll need to allow multiple ArgExprs here.
02219       if (ArgExprs.size() == 1 && isFoldOperator(Tok.getKind()) &&
02220           NextToken().is(tok::ellipsis))
02221         return ParseFoldExpression(Result, T);
02222 
02223       ExprType = SimpleExpr;
02224       Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
02225                                           ArgExprs);
02226     }
02227   } else {
02228     InMessageExpressionRAIIObject InMessage(*this, false);
02229 
02230     Result = ParseExpression(MaybeTypeCast);
02231     ExprType = SimpleExpr;
02232 
02233     if (isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis))
02234       return ParseFoldExpression(Result, T);
02235 
02236     // Don't build a paren expression unless we actually match a ')'.
02237     if (!Result.isInvalid() && Tok.is(tok::r_paren))
02238       Result =
02239           Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
02240   }
02241 
02242   // Match the ')'.
02243   if (Result.isInvalid()) {
02244     SkipUntil(tok::r_paren, StopAtSemi);
02245     return ExprError();
02246   }
02247 
02248   T.consumeClose();
02249   RParenLoc = T.getCloseLocation();
02250   return Result;
02251 }
02252 
02253 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
02254 /// and we are at the left brace.
02255 ///
02256 /// \verbatim
02257 ///       postfix-expression: [C99 6.5.2]
02258 ///         '(' type-name ')' '{' initializer-list '}'
02259 ///         '(' type-name ')' '{' initializer-list ',' '}'
02260 /// \endverbatim
02261 ExprResult
02262 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
02263                                        SourceLocation LParenLoc,
02264                                        SourceLocation RParenLoc) {
02265   assert(Tok.is(tok::l_brace) && "Not a compound literal!");
02266   if (!getLangOpts().C99)   // Compound literals don't exist in C90.
02267     Diag(LParenLoc, diag::ext_c99_compound_literal);
02268   ExprResult Result = ParseInitializer();
02269   if (!Result.isInvalid() && Ty)
02270     return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
02271   return Result;
02272 }
02273 
02274 /// ParseStringLiteralExpression - This handles the various token types that
02275 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
02276 /// translation phase #6].
02277 ///
02278 /// \verbatim
02279 ///       primary-expression: [C99 6.5.1]
02280 ///         string-literal
02281 /// \verbatim
02282 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
02283   assert(isTokenStringLiteral() && "Not a string literal!");
02284 
02285   // String concat.  Note that keywords like __func__ and __FUNCTION__ are not
02286   // considered to be strings for concatenation purposes.
02287   SmallVector<Token, 4> StringToks;
02288 
02289   do {
02290     StringToks.push_back(Tok);
02291     ConsumeStringToken();
02292   } while (isTokenStringLiteral());
02293 
02294   // Pass the set of string tokens, ready for concatenation, to the actions.
02295   return Actions.ActOnStringLiteral(StringToks,
02296                                     AllowUserDefinedLiteral ? getCurScope()
02297                                                             : nullptr);
02298 }
02299 
02300 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
02301 /// [C11 6.5.1.1].
02302 ///
02303 /// \verbatim
02304 ///    generic-selection:
02305 ///           _Generic ( assignment-expression , generic-assoc-list )
02306 ///    generic-assoc-list:
02307 ///           generic-association
02308 ///           generic-assoc-list , generic-association
02309 ///    generic-association:
02310 ///           type-name : assignment-expression
02311 ///           default : assignment-expression
02312 /// \endverbatim
02313 ExprResult Parser::ParseGenericSelectionExpression() {
02314   assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
02315   SourceLocation KeyLoc = ConsumeToken();
02316 
02317   if (!getLangOpts().C11)
02318     Diag(KeyLoc, diag::ext_c11_generic_selection);
02319 
02320   BalancedDelimiterTracker T(*this, tok::l_paren);
02321   if (T.expectAndConsume())
02322     return ExprError();
02323 
02324   ExprResult ControllingExpr;
02325   {
02326     // C11 6.5.1.1p3 "The controlling expression of a generic selection is
02327     // not evaluated."
02328     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
02329     ControllingExpr = ParseAssignmentExpression();
02330     if (ControllingExpr.isInvalid()) {
02331       SkipUntil(tok::r_paren, StopAtSemi);
02332       return ExprError();
02333     }
02334   }
02335 
02336   if (ExpectAndConsume(tok::comma)) {
02337     SkipUntil(tok::r_paren, StopAtSemi);
02338     return ExprError();
02339   }
02340 
02341   SourceLocation DefaultLoc;
02342   TypeVector Types;
02343   ExprVector Exprs;
02344   do {
02345     ParsedType Ty;
02346     if (Tok.is(tok::kw_default)) {
02347       // C11 6.5.1.1p2 "A generic selection shall have no more than one default
02348       // generic association."
02349       if (!DefaultLoc.isInvalid()) {
02350         Diag(Tok, diag::err_duplicate_default_assoc);
02351         Diag(DefaultLoc, diag::note_previous_default_assoc);
02352         SkipUntil(tok::r_paren, StopAtSemi);
02353         return ExprError();
02354       }
02355       DefaultLoc = ConsumeToken();
02356       Ty = ParsedType();
02357     } else {
02358       ColonProtectionRAIIObject X(*this);
02359       TypeResult TR = ParseTypeName();
02360       if (TR.isInvalid()) {
02361         SkipUntil(tok::r_paren, StopAtSemi);
02362         return ExprError();
02363       }
02364       Ty = TR.get();
02365     }
02366     Types.push_back(Ty);
02367 
02368     if (ExpectAndConsume(tok::colon)) {
02369       SkipUntil(tok::r_paren, StopAtSemi);
02370       return ExprError();
02371     }
02372 
02373     // FIXME: These expressions should be parsed in a potentially potentially
02374     // evaluated context.
02375     ExprResult ER(ParseAssignmentExpression());
02376     if (ER.isInvalid()) {
02377       SkipUntil(tok::r_paren, StopAtSemi);
02378       return ExprError();
02379     }
02380     Exprs.push_back(ER.get());
02381   } while (TryConsumeToken(tok::comma));
02382 
02383   T.consumeClose();
02384   if (T.getCloseLocation().isInvalid())
02385     return ExprError();
02386 
02387   return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc, 
02388                                            T.getCloseLocation(),
02389                                            ControllingExpr.get(),
02390                                            Types, Exprs);
02391 }
02392 
02393 /// \brief Parse A C++1z fold-expression after the opening paren and optional
02394 /// left-hand-side expression.
02395 ///
02396 /// \verbatim
02397 ///   fold-expression:
02398 ///       ( cast-expression fold-operator ... )
02399 ///       ( ... fold-operator cast-expression )
02400 ///       ( cast-expression fold-operator ... fold-operator cast-expression )
02401 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
02402                                        BalancedDelimiterTracker &T) {
02403   if (LHS.isInvalid()) {
02404     T.skipToEnd();
02405     return true;
02406   }
02407 
02408   tok::TokenKind Kind = tok::unknown;
02409   SourceLocation FirstOpLoc;
02410   if (LHS.isUsable()) {
02411     Kind = Tok.getKind();
02412     assert(isFoldOperator(Kind) && "missing fold-operator");
02413     FirstOpLoc = ConsumeToken();
02414   }
02415 
02416   assert(Tok.is(tok::ellipsis) && "not a fold-expression");
02417   SourceLocation EllipsisLoc = ConsumeToken();
02418 
02419   ExprResult RHS;
02420   if (Tok.isNot(tok::r_paren)) {
02421     if (!isFoldOperator(Tok.getKind()))
02422       return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
02423 
02424     if (Kind != tok::unknown && Tok.getKind() != Kind)
02425       Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
02426         << SourceRange(FirstOpLoc);
02427     Kind = Tok.getKind();
02428     ConsumeToken();
02429 
02430     RHS = ParseExpression();
02431     if (RHS.isInvalid()) {
02432       T.skipToEnd();
02433       return true;
02434     }
02435   }
02436 
02437   Diag(EllipsisLoc, getLangOpts().CPlusPlus1z
02438                         ? diag::warn_cxx14_compat_fold_expression
02439                         : diag::ext_fold_expression);
02440 
02441   T.consumeClose();
02442   return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind,
02443                                   EllipsisLoc, RHS.get(), T.getCloseLocation());
02444 }
02445 
02446 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
02447 ///
02448 /// \verbatim
02449 ///       argument-expression-list:
02450 ///         assignment-expression
02451 ///         argument-expression-list , assignment-expression
02452 ///
02453 /// [C++] expression-list:
02454 /// [C++]   assignment-expression
02455 /// [C++]   expression-list , assignment-expression
02456 ///
02457 /// [C++0x] expression-list:
02458 /// [C++0x]   initializer-list
02459 ///
02460 /// [C++0x] initializer-list
02461 /// [C++0x]   initializer-clause ...[opt]
02462 /// [C++0x]   initializer-list , initializer-clause ...[opt]
02463 ///
02464 /// [C++0x] initializer-clause:
02465 /// [C++0x]   assignment-expression
02466 /// [C++0x]   braced-init-list
02467 /// \endverbatim
02468 bool Parser::ParseExpressionList(SmallVectorImpl<Expr*> &Exprs,
02469                                  SmallVectorImpl<SourceLocation> &CommaLocs,
02470                                  void (Sema::*Completer)(Scope *S,
02471                                                          Expr *Data,
02472                                                          ArrayRef<Expr *> Args),
02473                                  Expr *Data) {
02474   bool SawError = false;
02475   while (1) {
02476     if (Tok.is(tok::code_completion)) {
02477       if (Completer)
02478         (Actions.*Completer)(getCurScope(), Data, Exprs);
02479       else
02480         Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
02481       cutOffParsing();
02482       return true;
02483     }
02484 
02485     ExprResult Expr;
02486     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
02487       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
02488       Expr = ParseBraceInitializer();
02489     } else
02490       Expr = ParseAssignmentExpression();
02491 
02492     if (Tok.is(tok::ellipsis))
02493       Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());    
02494     if (Expr.isInvalid()) {
02495       SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
02496       SawError = true;
02497     } else {
02498       Exprs.push_back(Expr.get());
02499     }
02500 
02501     if (Tok.isNot(tok::comma))
02502       return SawError;
02503     // Move to the next argument, remember where the comma was.
02504     CommaLocs.push_back(ConsumeToken());
02505   }
02506 }
02507 
02508 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
02509 /// used for misc language extensions.
02510 ///
02511 /// \verbatim
02512 ///       simple-expression-list:
02513 ///         assignment-expression
02514 ///         simple-expression-list , assignment-expression
02515 /// \endverbatim
02516 bool
02517 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
02518                                   SmallVectorImpl<SourceLocation> &CommaLocs) {
02519   while (1) {
02520     ExprResult Expr = ParseAssignmentExpression();
02521     if (Expr.isInvalid())
02522       return true;
02523 
02524     Exprs.push_back(Expr.get());
02525 
02526     if (Tok.isNot(tok::comma))
02527       return false;
02528 
02529     // Move to the next argument, remember where the comma was.
02530     CommaLocs.push_back(ConsumeToken());
02531   }
02532 }
02533 
02534 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
02535 ///
02536 /// \verbatim
02537 /// [clang] block-id:
02538 /// [clang]   specifier-qualifier-list block-declarator
02539 /// \endverbatim
02540 void Parser::ParseBlockId(SourceLocation CaretLoc) {
02541   if (Tok.is(tok::code_completion)) {
02542     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
02543     return cutOffParsing();
02544   }
02545   
02546   // Parse the specifier-qualifier-list piece.
02547   DeclSpec DS(AttrFactory);
02548   ParseSpecifierQualifierList(DS);
02549 
02550   // Parse the block-declarator.
02551   Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext);
02552   ParseDeclarator(DeclaratorInfo);
02553 
02554   // We do this for: ^ __attribute__((noreturn)) {, as DS has the attributes.
02555   DeclaratorInfo.takeAttributes(DS.getAttributes(), SourceLocation());
02556 
02557   MaybeParseGNUAttributes(DeclaratorInfo);
02558 
02559   // Inform sema that we are starting a block.
02560   Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
02561 }
02562 
02563 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
02564 /// like ^(int x){ return x+1; }
02565 ///
02566 /// \verbatim
02567 ///         block-literal:
02568 /// [clang]   '^' block-args[opt] compound-statement
02569 /// [clang]   '^' block-id compound-statement
02570 /// [clang] block-args:
02571 /// [clang]   '(' parameter-list ')'
02572 /// \endverbatim
02573 ExprResult Parser::ParseBlockLiteralExpression() {
02574   assert(Tok.is(tok::caret) && "block literal starts with ^");
02575   SourceLocation CaretLoc = ConsumeToken();
02576 
02577   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
02578                                 "block literal parsing");
02579 
02580   // Enter a scope to hold everything within the block.  This includes the
02581   // argument decls, decls within the compound expression, etc.  This also
02582   // allows determining whether a variable reference inside the block is
02583   // within or outside of the block.
02584   ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
02585                               Scope::DeclScope);
02586 
02587   // Inform sema that we are starting a block.
02588   Actions.ActOnBlockStart(CaretLoc, getCurScope());
02589 
02590   // Parse the return type if present.
02591   DeclSpec DS(AttrFactory);
02592   Declarator ParamInfo(DS, Declarator::BlockLiteralContext);
02593   // FIXME: Since the return type isn't actually parsed, it can't be used to
02594   // fill ParamInfo with an initial valid range, so do it manually.
02595   ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
02596 
02597   // If this block has arguments, parse them.  There is no ambiguity here with
02598   // the expression case, because the expression case requires a parameter list.
02599   if (Tok.is(tok::l_paren)) {
02600     ParseParenDeclarator(ParamInfo);
02601     // Parse the pieces after the identifier as if we had "int(...)".
02602     // SetIdentifier sets the source range end, but in this case we're past
02603     // that location.
02604     SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
02605     ParamInfo.SetIdentifier(nullptr, CaretLoc);
02606     ParamInfo.SetRangeEnd(Tmp);
02607     if (ParamInfo.isInvalidType()) {
02608       // If there was an error parsing the arguments, they may have
02609       // tried to use ^(x+y) which requires an argument list.  Just
02610       // skip the whole block literal.
02611       Actions.ActOnBlockError(CaretLoc, getCurScope());
02612       return ExprError();
02613     }
02614 
02615     MaybeParseGNUAttributes(ParamInfo);
02616 
02617     // Inform sema that we are starting a block.
02618     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
02619   } else if (!Tok.is(tok::l_brace)) {
02620     ParseBlockId(CaretLoc);
02621   } else {
02622     // Otherwise, pretend we saw (void).
02623     ParsedAttributes attrs(AttrFactory);
02624     SourceLocation NoLoc;
02625     ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/true,
02626                                              /*IsAmbiguous=*/false,
02627                                              /*RParenLoc=*/NoLoc,
02628                                              /*ArgInfo=*/nullptr,
02629                                              /*NumArgs=*/0,
02630                                              /*EllipsisLoc=*/NoLoc,
02631                                              /*RParenLoc=*/NoLoc,
02632                                              /*TypeQuals=*/0,
02633                                              /*RefQualifierIsLvalueRef=*/true,
02634                                              /*RefQualifierLoc=*/NoLoc,
02635                                              /*ConstQualifierLoc=*/NoLoc,
02636                                              /*VolatileQualifierLoc=*/NoLoc,
02637                                              /*RestrictQualifierLoc=*/NoLoc,
02638                                              /*MutableLoc=*/NoLoc,
02639                                              EST_None,
02640                                              /*ESpecLoc=*/NoLoc,
02641                                              /*Exceptions=*/nullptr,
02642                                              /*ExceptionRanges=*/nullptr,
02643                                              /*NumExceptions=*/0,
02644                                              /*NoexceptExpr=*/nullptr,
02645                                              /*ExceptionSpecTokens=*/nullptr,
02646                                              CaretLoc, CaretLoc,
02647                                              ParamInfo),
02648                           attrs, CaretLoc);
02649 
02650     MaybeParseGNUAttributes(ParamInfo);
02651 
02652     // Inform sema that we are starting a block.
02653     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
02654   }
02655 
02656 
02657   ExprResult Result(true);
02658   if (!Tok.is(tok::l_brace)) {
02659     // Saw something like: ^expr
02660     Diag(Tok, diag::err_expected_expression);
02661     Actions.ActOnBlockError(CaretLoc, getCurScope());
02662     return ExprError();
02663   }
02664 
02665   StmtResult Stmt(ParseCompoundStatementBody());
02666   BlockScope.Exit();
02667   if (!Stmt.isInvalid())
02668     Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
02669   else
02670     Actions.ActOnBlockError(CaretLoc, getCurScope());
02671   return Result;
02672 }
02673 
02674 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
02675 ///
02676 ///         '__objc_yes'
02677 ///         '__objc_no'
02678 ExprResult Parser::ParseObjCBoolLiteral() {
02679   tok::TokenKind Kind = Tok.getKind();
02680   return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
02681 }