clang API Documentation
00001 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements semantic analysis for declarations. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "clang/Sema/SemaInternal.h" 00015 #include "TypeLocBuilder.h" 00016 #include "clang/AST/ASTConsumer.h" 00017 #include "clang/AST/ASTContext.h" 00018 #include "clang/AST/ASTLambda.h" 00019 #include "clang/AST/CXXInheritance.h" 00020 #include "clang/AST/CharUnits.h" 00021 #include "clang/AST/CommentDiagnostic.h" 00022 #include "clang/AST/DeclCXX.h" 00023 #include "clang/AST/DeclObjC.h" 00024 #include "clang/AST/DeclTemplate.h" 00025 #include "clang/AST/EvaluatedExprVisitor.h" 00026 #include "clang/AST/ExprCXX.h" 00027 #include "clang/AST/StmtCXX.h" 00028 #include "clang/Basic/Builtins.h" 00029 #include "clang/Basic/PartialDiagnostic.h" 00030 #include "clang/Basic/SourceManager.h" 00031 #include "clang/Basic/TargetInfo.h" 00032 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex 00033 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 00034 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex 00035 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled() 00036 #include "clang/Parse/ParseDiagnostic.h" 00037 #include "clang/Sema/CXXFieldCollector.h" 00038 #include "clang/Sema/DeclSpec.h" 00039 #include "clang/Sema/DelayedDiagnostic.h" 00040 #include "clang/Sema/Initialization.h" 00041 #include "clang/Sema/Lookup.h" 00042 #include "clang/Sema/ParsedTemplate.h" 00043 #include "clang/Sema/Scope.h" 00044 #include "clang/Sema/ScopeInfo.h" 00045 #include "clang/Sema/Template.h" 00046 #include "llvm/ADT/SmallString.h" 00047 #include "llvm/ADT/Triple.h" 00048 #include <algorithm> 00049 #include <cstring> 00050 #include <functional> 00051 using namespace clang; 00052 using namespace sema; 00053 00054 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { 00055 if (OwnedType) { 00056 Decl *Group[2] = { OwnedType, Ptr }; 00057 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2)); 00058 } 00059 00060 return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); 00061 } 00062 00063 namespace { 00064 00065 class TypeNameValidatorCCC : public CorrectionCandidateCallback { 00066 public: 00067 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false, 00068 bool AllowTemplates=false) 00069 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass), 00070 AllowClassTemplates(AllowTemplates) { 00071 WantExpressionKeywords = false; 00072 WantCXXNamedCasts = false; 00073 WantRemainingKeywords = false; 00074 } 00075 00076 bool ValidateCandidate(const TypoCorrection &candidate) override { 00077 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 00078 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND); 00079 bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND); 00080 return (IsType || AllowedTemplate) && 00081 (AllowInvalidDecl || !ND->isInvalidDecl()); 00082 } 00083 return !WantClassName && candidate.isKeyword(); 00084 } 00085 00086 private: 00087 bool AllowInvalidDecl; 00088 bool WantClassName; 00089 bool AllowClassTemplates; 00090 }; 00091 00092 } 00093 00094 /// \brief Determine whether the token kind starts a simple-type-specifier. 00095 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const { 00096 switch (Kind) { 00097 // FIXME: Take into account the current language when deciding whether a 00098 // token kind is a valid type specifier 00099 case tok::kw_short: 00100 case tok::kw_long: 00101 case tok::kw___int64: 00102 case tok::kw___int128: 00103 case tok::kw_signed: 00104 case tok::kw_unsigned: 00105 case tok::kw_void: 00106 case tok::kw_char: 00107 case tok::kw_int: 00108 case tok::kw_half: 00109 case tok::kw_float: 00110 case tok::kw_double: 00111 case tok::kw_wchar_t: 00112 case tok::kw_bool: 00113 case tok::kw___underlying_type: 00114 return true; 00115 00116 case tok::annot_typename: 00117 case tok::kw_char16_t: 00118 case tok::kw_char32_t: 00119 case tok::kw_typeof: 00120 case tok::annot_decltype: 00121 case tok::kw_decltype: 00122 return getLangOpts().CPlusPlus; 00123 00124 default: 00125 break; 00126 } 00127 00128 return false; 00129 } 00130 00131 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, 00132 const IdentifierInfo &II, 00133 SourceLocation NameLoc) { 00134 // Find the first parent class template context, if any. 00135 // FIXME: Perform the lookup in all enclosing class templates. 00136 const CXXRecordDecl *RD = nullptr; 00137 for (DeclContext *DC = S.CurContext; DC; DC = DC->getParent()) { 00138 RD = dyn_cast<CXXRecordDecl>(DC); 00139 if (RD && RD->getDescribedClassTemplate()) 00140 break; 00141 } 00142 if (!RD) 00143 return ParsedType(); 00144 00145 // Look for type decls in dependent base classes that have known primary 00146 // templates. 00147 bool FoundTypeDecl = false; 00148 for (const auto &Base : RD->bases()) { 00149 auto *TST = Base.getType()->getAs<TemplateSpecializationType>(); 00150 if (!TST || !TST->isDependentType()) 00151 continue; 00152 auto *TD = TST->getTemplateName().getAsTemplateDecl(); 00153 if (!TD) 00154 continue; 00155 auto *BasePrimaryTemplate = 00156 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl()); 00157 if (!BasePrimaryTemplate) 00158 continue; 00159 // FIXME: Allow lookup into non-dependent bases of dependent bases, possibly 00160 // by calling or integrating with the main LookupQualifiedName mechanism. 00161 for (NamedDecl *ND : BasePrimaryTemplate->lookup(&II)) { 00162 if (FoundTypeDecl) 00163 return ParsedType(); 00164 FoundTypeDecl = isa<TypeDecl>(ND); 00165 if (!FoundTypeDecl) 00166 return ParsedType(); 00167 } 00168 } 00169 if (!FoundTypeDecl) 00170 return ParsedType(); 00171 00172 // We found some types in dependent base classes. Recover as if the user 00173 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the 00174 // lookup during template instantiation. 00175 S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II; 00176 00177 ASTContext &Context = S.Context; 00178 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false, 00179 cast<Type>(Context.getRecordType(RD))); 00180 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II); 00181 00182 CXXScopeSpec SS; 00183 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 00184 00185 TypeLocBuilder Builder; 00186 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); 00187 DepTL.setNameLoc(NameLoc); 00188 DepTL.setElaboratedKeywordLoc(SourceLocation()); 00189 DepTL.setQualifierLoc(SS.getWithLocInContext(Context)); 00190 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 00191 } 00192 00193 /// \brief If the identifier refers to a type name within this scope, 00194 /// return the declaration of that type. 00195 /// 00196 /// This routine performs ordinary name lookup of the identifier II 00197 /// within the given scope, with optional C++ scope specifier SS, to 00198 /// determine whether the name refers to a type. If so, returns an 00199 /// opaque pointer (actually a QualType) corresponding to that 00200 /// type. Otherwise, returns NULL. 00201 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, 00202 Scope *S, CXXScopeSpec *SS, 00203 bool isClassName, bool HasTrailingDot, 00204 ParsedType ObjectTypePtr, 00205 bool IsCtorOrDtorName, 00206 bool WantNontrivialTypeSourceInfo, 00207 IdentifierInfo **CorrectedII) { 00208 // Determine where we will perform name lookup. 00209 DeclContext *LookupCtx = nullptr; 00210 if (ObjectTypePtr) { 00211 QualType ObjectType = ObjectTypePtr.get(); 00212 if (ObjectType->isRecordType()) 00213 LookupCtx = computeDeclContext(ObjectType); 00214 } else if (SS && SS->isNotEmpty()) { 00215 LookupCtx = computeDeclContext(*SS, false); 00216 00217 if (!LookupCtx) { 00218 if (isDependentScopeSpecifier(*SS)) { 00219 // C++ [temp.res]p3: 00220 // A qualified-id that refers to a type and in which the 00221 // nested-name-specifier depends on a template-parameter (14.6.2) 00222 // shall be prefixed by the keyword typename to indicate that the 00223 // qualified-id denotes a type, forming an 00224 // elaborated-type-specifier (7.1.5.3). 00225 // 00226 // We therefore do not perform any name lookup if the result would 00227 // refer to a member of an unknown specialization. 00228 if (!isClassName && !IsCtorOrDtorName) 00229 return ParsedType(); 00230 00231 // We know from the grammar that this name refers to a type, 00232 // so build a dependent node to describe the type. 00233 if (WantNontrivialTypeSourceInfo) 00234 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get(); 00235 00236 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); 00237 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc, 00238 II, NameLoc); 00239 return ParsedType::make(T); 00240 } 00241 00242 return ParsedType(); 00243 } 00244 00245 if (!LookupCtx->isDependentContext() && 00246 RequireCompleteDeclContext(*SS, LookupCtx)) 00247 return ParsedType(); 00248 } 00249 00250 // FIXME: LookupNestedNameSpecifierName isn't the right kind of 00251 // lookup for class-names. 00252 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : 00253 LookupOrdinaryName; 00254 LookupResult Result(*this, &II, NameLoc, Kind); 00255 if (LookupCtx) { 00256 // Perform "qualified" name lookup into the declaration context we 00257 // computed, which is either the type of the base of a member access 00258 // expression or the declaration context associated with a prior 00259 // nested-name-specifier. 00260 LookupQualifiedName(Result, LookupCtx); 00261 00262 if (ObjectTypePtr && Result.empty()) { 00263 // C++ [basic.lookup.classref]p3: 00264 // If the unqualified-id is ~type-name, the type-name is looked up 00265 // in the context of the entire postfix-expression. If the type T of 00266 // the object expression is of a class type C, the type-name is also 00267 // looked up in the scope of class C. At least one of the lookups shall 00268 // find a name that refers to (possibly cv-qualified) T. 00269 LookupName(Result, S); 00270 } 00271 } else { 00272 // Perform unqualified name lookup. 00273 LookupName(Result, S); 00274 00275 // For unqualified lookup in a class template in MSVC mode, look into 00276 // dependent base classes where the primary class template is known. 00277 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) { 00278 if (ParsedType TypeInBase = 00279 recoverFromTypeInKnownDependentBase(*this, II, NameLoc)) 00280 return TypeInBase; 00281 } 00282 } 00283 00284 NamedDecl *IIDecl = nullptr; 00285 switch (Result.getResultKind()) { 00286 case LookupResult::NotFound: 00287 case LookupResult::NotFoundInCurrentInstantiation: 00288 if (CorrectedII) { 00289 TypoCorrection Correction = CorrectTypo( 00290 Result.getLookupNameInfo(), Kind, S, SS, 00291 llvm::make_unique<TypeNameValidatorCCC>(true, isClassName), 00292 CTK_ErrorRecovery); 00293 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo(); 00294 TemplateTy Template; 00295 bool MemberOfUnknownSpecialization; 00296 UnqualifiedId TemplateName; 00297 TemplateName.setIdentifier(NewII, NameLoc); 00298 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier(); 00299 CXXScopeSpec NewSS, *NewSSPtr = SS; 00300 if (SS && NNS) { 00301 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 00302 NewSSPtr = &NewSS; 00303 } 00304 if (Correction && (NNS || NewII != &II) && 00305 // Ignore a correction to a template type as the to-be-corrected 00306 // identifier is not a template (typo correction for template names 00307 // is handled elsewhere). 00308 !(getLangOpts().CPlusPlus && NewSSPtr && 00309 isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(), 00310 false, Template, MemberOfUnknownSpecialization))) { 00311 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr, 00312 isClassName, HasTrailingDot, ObjectTypePtr, 00313 IsCtorOrDtorName, 00314 WantNontrivialTypeSourceInfo); 00315 if (Ty) { 00316 diagnoseTypo(Correction, 00317 PDiag(diag::err_unknown_type_or_class_name_suggest) 00318 << Result.getLookupName() << isClassName); 00319 if (SS && NNS) 00320 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc)); 00321 *CorrectedII = NewII; 00322 return Ty; 00323 } 00324 } 00325 } 00326 // If typo correction failed or was not performed, fall through 00327 case LookupResult::FoundOverloaded: 00328 case LookupResult::FoundUnresolvedValue: 00329 Result.suppressDiagnostics(); 00330 return ParsedType(); 00331 00332 case LookupResult::Ambiguous: 00333 // Recover from type-hiding ambiguities by hiding the type. We'll 00334 // do the lookup again when looking for an object, and we can 00335 // diagnose the error then. If we don't do this, then the error 00336 // about hiding the type will be immediately followed by an error 00337 // that only makes sense if the identifier was treated like a type. 00338 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { 00339 Result.suppressDiagnostics(); 00340 return ParsedType(); 00341 } 00342 00343 // Look to see if we have a type anywhere in the list of results. 00344 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); 00345 Res != ResEnd; ++Res) { 00346 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) { 00347 if (!IIDecl || 00348 (*Res)->getLocation().getRawEncoding() < 00349 IIDecl->getLocation().getRawEncoding()) 00350 IIDecl = *Res; 00351 } 00352 } 00353 00354 if (!IIDecl) { 00355 // None of the entities we found is a type, so there is no way 00356 // to even assume that the result is a type. In this case, don't 00357 // complain about the ambiguity. The parser will either try to 00358 // perform this lookup again (e.g., as an object name), which 00359 // will produce the ambiguity, or will complain that it expected 00360 // a type name. 00361 Result.suppressDiagnostics(); 00362 return ParsedType(); 00363 } 00364 00365 // We found a type within the ambiguous lookup; diagnose the 00366 // ambiguity and then return that type. This might be the right 00367 // answer, or it might not be, but it suppresses any attempt to 00368 // perform the name lookup again. 00369 break; 00370 00371 case LookupResult::Found: 00372 IIDecl = Result.getFoundDecl(); 00373 break; 00374 } 00375 00376 assert(IIDecl && "Didn't find decl"); 00377 00378 QualType T; 00379 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { 00380 DiagnoseUseOfDecl(IIDecl, NameLoc); 00381 00382 T = Context.getTypeDeclType(TD); 00383 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 00384 00385 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a 00386 // constructor or destructor name (in such a case, the scope specifier 00387 // will be attached to the enclosing Expr or Decl node). 00388 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) { 00389 if (WantNontrivialTypeSourceInfo) { 00390 // Construct a type with type-source information. 00391 TypeLocBuilder Builder; 00392 Builder.pushTypeSpec(T).setNameLoc(NameLoc); 00393 00394 T = getElaboratedType(ETK_None, *SS, T); 00395 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); 00396 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 00397 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context)); 00398 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 00399 } else { 00400 T = getElaboratedType(ETK_None, *SS, T); 00401 } 00402 } 00403 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { 00404 (void)DiagnoseUseOfDecl(IDecl, NameLoc); 00405 if (!HasTrailingDot) 00406 T = Context.getObjCInterfaceType(IDecl); 00407 } 00408 00409 if (T.isNull()) { 00410 // If it's not plausibly a type, suppress diagnostics. 00411 Result.suppressDiagnostics(); 00412 return ParsedType(); 00413 } 00414 return ParsedType::make(T); 00415 } 00416 00417 // Builds a fake NNS for the given decl context. 00418 static NestedNameSpecifier * 00419 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) { 00420 for (;; DC = DC->getLookupParent()) { 00421 DC = DC->getPrimaryContext(); 00422 auto *ND = dyn_cast<NamespaceDecl>(DC); 00423 if (ND && !ND->isInline() && !ND->isAnonymousNamespace()) 00424 return NestedNameSpecifier::Create(Context, nullptr, ND); 00425 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) 00426 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), 00427 RD->getTypeForDecl()); 00428 else if (isa<TranslationUnitDecl>(DC)) 00429 return NestedNameSpecifier::GlobalSpecifier(Context); 00430 } 00431 llvm_unreachable("something isn't in TU scope?"); 00432 } 00433 00434 ParsedType Sema::ActOnDelayedDefaultTemplateArg(const IdentifierInfo &II, 00435 SourceLocation NameLoc) { 00436 // Accepting an undeclared identifier as a default argument for a template 00437 // type parameter is a Microsoft extension. 00438 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II; 00439 00440 // Build a fake DependentNameType that will perform lookup into CurContext at 00441 // instantiation time. The name specifier isn't dependent, so template 00442 // instantiation won't transform it. It will retry the lookup, however. 00443 NestedNameSpecifier *NNS = 00444 synthesizeCurrentNestedNameSpecifier(Context, CurContext); 00445 QualType T = Context.getDependentNameType(ETK_None, NNS, &II); 00446 00447 // Build type location information. We synthesized the qualifier, so we have 00448 // to build a fake NestedNameSpecifierLoc. 00449 NestedNameSpecifierLocBuilder NNSLocBuilder; 00450 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 00451 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context); 00452 00453 TypeLocBuilder Builder; 00454 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); 00455 DepTL.setNameLoc(NameLoc); 00456 DepTL.setElaboratedKeywordLoc(SourceLocation()); 00457 DepTL.setQualifierLoc(QualifierLoc); 00458 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 00459 } 00460 00461 /// isTagName() - This method is called *for error recovery purposes only* 00462 /// to determine if the specified name is a valid tag name ("struct foo"). If 00463 /// so, this returns the TST for the tag corresponding to it (TST_enum, 00464 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose 00465 /// cases in C where the user forgot to specify the tag. 00466 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { 00467 // Do a tag name lookup in this scope. 00468 LookupResult R(*this, &II, SourceLocation(), LookupTagName); 00469 LookupName(R, S, false); 00470 R.suppressDiagnostics(); 00471 if (R.getResultKind() == LookupResult::Found) 00472 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { 00473 switch (TD->getTagKind()) { 00474 case TTK_Struct: return DeclSpec::TST_struct; 00475 case TTK_Interface: return DeclSpec::TST_interface; 00476 case TTK_Union: return DeclSpec::TST_union; 00477 case TTK_Class: return DeclSpec::TST_class; 00478 case TTK_Enum: return DeclSpec::TST_enum; 00479 } 00480 } 00481 00482 return DeclSpec::TST_unspecified; 00483 } 00484 00485 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope, 00486 /// if a CXXScopeSpec's type is equal to the type of one of the base classes 00487 /// then downgrade the missing typename error to a warning. 00488 /// This is needed for MSVC compatibility; Example: 00489 /// @code 00490 /// template<class T> class A { 00491 /// public: 00492 /// typedef int TYPE; 00493 /// }; 00494 /// template<class T> class B : public A<T> { 00495 /// public: 00496 /// A<T>::TYPE a; // no typename required because A<T> is a base class. 00497 /// }; 00498 /// @endcode 00499 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) { 00500 if (CurContext->isRecord()) { 00501 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super) 00502 return true; 00503 00504 const Type *Ty = SS->getScopeRep()->getAsType(); 00505 00506 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext); 00507 for (const auto &Base : RD->bases()) 00508 if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType())) 00509 return true; 00510 return S->isFunctionPrototypeScope(); 00511 } 00512 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope(); 00513 } 00514 00515 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II, 00516 SourceLocation IILoc, 00517 Scope *S, 00518 CXXScopeSpec *SS, 00519 ParsedType &SuggestedType, 00520 bool AllowClassTemplates) { 00521 // We don't have anything to suggest (yet). 00522 SuggestedType = ParsedType(); 00523 00524 // There may have been a typo in the name of the type. Look up typo 00525 // results, in case we have something that we can suggest. 00526 if (TypoCorrection Corrected = 00527 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS, 00528 llvm::make_unique<TypeNameValidatorCCC>( 00529 false, false, AllowClassTemplates), 00530 CTK_ErrorRecovery)) { 00531 if (Corrected.isKeyword()) { 00532 // We corrected to a keyword. 00533 diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II); 00534 II = Corrected.getCorrectionAsIdentifierInfo(); 00535 } else { 00536 // We found a similarly-named type or interface; suggest that. 00537 if (!SS || !SS->isSet()) { 00538 diagnoseTypo(Corrected, 00539 PDiag(diag::err_unknown_typename_suggest) << II); 00540 } else if (DeclContext *DC = computeDeclContext(*SS, false)) { 00541 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 00542 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 00543 II->getName().equals(CorrectedStr); 00544 diagnoseTypo(Corrected, 00545 PDiag(diag::err_unknown_nested_typename_suggest) 00546 << II << DC << DroppedSpecifier << SS->getRange()); 00547 } else { 00548 llvm_unreachable("could not have corrected a typo here"); 00549 } 00550 00551 CXXScopeSpec tmpSS; 00552 if (Corrected.getCorrectionSpecifier()) 00553 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 00554 SourceRange(IILoc)); 00555 SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), 00556 IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false, 00557 false, ParsedType(), 00558 /*IsCtorOrDtorName=*/false, 00559 /*NonTrivialTypeSourceInfo=*/true); 00560 } 00561 return; 00562 } 00563 00564 if (getLangOpts().CPlusPlus) { 00565 // See if II is a class template that the user forgot to pass arguments to. 00566 UnqualifiedId Name; 00567 Name.setIdentifier(II, IILoc); 00568 CXXScopeSpec EmptySS; 00569 TemplateTy TemplateResult; 00570 bool MemberOfUnknownSpecialization; 00571 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, 00572 Name, ParsedType(), true, TemplateResult, 00573 MemberOfUnknownSpecialization) == TNK_Type_template) { 00574 TemplateName TplName = TemplateResult.get(); 00575 Diag(IILoc, diag::err_template_missing_args) << TplName; 00576 if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) { 00577 Diag(TplDecl->getLocation(), diag::note_template_decl_here) 00578 << TplDecl->getTemplateParameters()->getSourceRange(); 00579 } 00580 return; 00581 } 00582 } 00583 00584 // FIXME: Should we move the logic that tries to recover from a missing tag 00585 // (struct, union, enum) from Parser::ParseImplicitInt here, instead? 00586 00587 if (!SS || (!SS->isSet() && !SS->isInvalid())) 00588 Diag(IILoc, diag::err_unknown_typename) << II; 00589 else if (DeclContext *DC = computeDeclContext(*SS, false)) 00590 Diag(IILoc, diag::err_typename_nested_not_found) 00591 << II << DC << SS->getRange(); 00592 else if (isDependentScopeSpecifier(*SS)) { 00593 unsigned DiagID = diag::err_typename_missing; 00594 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S)) 00595 DiagID = diag::ext_typename_missing; 00596 00597 Diag(SS->getRange().getBegin(), DiagID) 00598 << SS->getScopeRep() << II->getName() 00599 << SourceRange(SS->getRange().getBegin(), IILoc) 00600 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); 00601 SuggestedType = ActOnTypenameType(S, SourceLocation(), 00602 *SS, *II, IILoc).get(); 00603 } else { 00604 assert(SS && SS->isInvalid() && 00605 "Invalid scope specifier has already been diagnosed"); 00606 } 00607 } 00608 00609 /// \brief Determine whether the given result set contains either a type name 00610 /// or 00611 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { 00612 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus && 00613 NextToken.is(tok::less); 00614 00615 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 00616 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I)) 00617 return true; 00618 00619 if (CheckTemplate && isa<TemplateDecl>(*I)) 00620 return true; 00621 } 00622 00623 return false; 00624 } 00625 00626 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, 00627 Scope *S, CXXScopeSpec &SS, 00628 IdentifierInfo *&Name, 00629 SourceLocation NameLoc) { 00630 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName); 00631 SemaRef.LookupParsedName(R, S, &SS); 00632 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) { 00633 StringRef FixItTagName; 00634 switch (Tag->getTagKind()) { 00635 case TTK_Class: 00636 FixItTagName = "class "; 00637 break; 00638 00639 case TTK_Enum: 00640 FixItTagName = "enum "; 00641 break; 00642 00643 case TTK_Struct: 00644 FixItTagName = "struct "; 00645 break; 00646 00647 case TTK_Interface: 00648 FixItTagName = "__interface "; 00649 break; 00650 00651 case TTK_Union: 00652 FixItTagName = "union "; 00653 break; 00654 } 00655 00656 StringRef TagName = FixItTagName.drop_back(); 00657 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag) 00658 << Name << TagName << SemaRef.getLangOpts().CPlusPlus 00659 << FixItHint::CreateInsertion(NameLoc, FixItTagName); 00660 00661 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end(); 00662 I != IEnd; ++I) 00663 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) 00664 << Name << TagName; 00665 00666 // Replace lookup results with just the tag decl. 00667 Result.clear(Sema::LookupTagName); 00668 SemaRef.LookupParsedName(Result, S, &SS); 00669 return true; 00670 } 00671 00672 return false; 00673 } 00674 00675 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier. 00676 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS, 00677 QualType T, SourceLocation NameLoc) { 00678 ASTContext &Context = S.Context; 00679 00680 TypeLocBuilder Builder; 00681 Builder.pushTypeSpec(T).setNameLoc(NameLoc); 00682 00683 T = S.getElaboratedType(ETK_None, SS, T); 00684 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); 00685 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 00686 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 00687 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 00688 } 00689 00690 Sema::NameClassification 00691 Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name, 00692 SourceLocation NameLoc, const Token &NextToken, 00693 bool IsAddressOfOperand, 00694 std::unique_ptr<CorrectionCandidateCallback> CCC) { 00695 DeclarationNameInfo NameInfo(Name, NameLoc); 00696 ObjCMethodDecl *CurMethod = getCurMethodDecl(); 00697 00698 if (NextToken.is(tok::coloncolon)) { 00699 BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(), 00700 QualType(), false, SS, nullptr, false); 00701 } 00702 00703 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 00704 LookupParsedName(Result, S, &SS, !CurMethod); 00705 00706 // For unqualified lookup in a class template in MSVC mode, look into 00707 // dependent base classes where the primary class template is known. 00708 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) { 00709 if (ParsedType TypeInBase = 00710 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc)) 00711 return TypeInBase; 00712 } 00713 00714 // Perform lookup for Objective-C instance variables (including automatically 00715 // synthesized instance variables), if we're in an Objective-C method. 00716 // FIXME: This lookup really, really needs to be folded in to the normal 00717 // unqualified lookup mechanism. 00718 if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) { 00719 ExprResult E = LookupInObjCMethod(Result, S, Name, true); 00720 if (E.get() || E.isInvalid()) 00721 return E; 00722 } 00723 00724 bool SecondTry = false; 00725 bool IsFilteredTemplateName = false; 00726 00727 Corrected: 00728 switch (Result.getResultKind()) { 00729 case LookupResult::NotFound: 00730 // If an unqualified-id is followed by a '(', then we have a function 00731 // call. 00732 if (!SS.isSet() && NextToken.is(tok::l_paren)) { 00733 // In C++, this is an ADL-only call. 00734 // FIXME: Reference? 00735 if (getLangOpts().CPlusPlus) 00736 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true); 00737 00738 // C90 6.3.2.2: 00739 // If the expression that precedes the parenthesized argument list in a 00740 // function call consists solely of an identifier, and if no 00741 // declaration is visible for this identifier, the identifier is 00742 // implicitly declared exactly as if, in the innermost block containing 00743 // the function call, the declaration 00744 // 00745 // extern int identifier (); 00746 // 00747 // appeared. 00748 // 00749 // We also allow this in C99 as an extension. 00750 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) { 00751 Result.addDecl(D); 00752 Result.resolveKind(); 00753 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false); 00754 } 00755 } 00756 00757 // In C, we first see whether there is a tag type by the same name, in 00758 // which case it's likely that the user just forget to write "enum", 00759 // "struct", or "union". 00760 if (!getLangOpts().CPlusPlus && !SecondTry && 00761 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { 00762 break; 00763 } 00764 00765 // Perform typo correction to determine if there is another name that is 00766 // close to this name. 00767 if (!SecondTry && CCC) { 00768 SecondTry = true; 00769 if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(), 00770 Result.getLookupKind(), S, 00771 &SS, std::move(CCC), 00772 CTK_ErrorRecovery)) { 00773 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; 00774 unsigned QualifiedDiag = diag::err_no_member_suggest; 00775 00776 NamedDecl *FirstDecl = Corrected.getCorrectionDecl(); 00777 NamedDecl *UnderlyingFirstDecl 00778 = FirstDecl? FirstDecl->getUnderlyingDecl() : nullptr; 00779 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 00780 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) { 00781 UnqualifiedDiag = diag::err_no_template_suggest; 00782 QualifiedDiag = diag::err_no_member_template_suggest; 00783 } else if (UnderlyingFirstDecl && 00784 (isa<TypeDecl>(UnderlyingFirstDecl) || 00785 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) || 00786 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) { 00787 UnqualifiedDiag = diag::err_unknown_typename_suggest; 00788 QualifiedDiag = diag::err_unknown_nested_typename_suggest; 00789 } 00790 00791 if (SS.isEmpty()) { 00792 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name); 00793 } else {// FIXME: is this even reachable? Test it. 00794 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 00795 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 00796 Name->getName().equals(CorrectedStr); 00797 diagnoseTypo(Corrected, PDiag(QualifiedDiag) 00798 << Name << computeDeclContext(SS, false) 00799 << DroppedSpecifier << SS.getRange()); 00800 } 00801 00802 // Update the name, so that the caller has the new name. 00803 Name = Corrected.getCorrectionAsIdentifierInfo(); 00804 00805 // Typo correction corrected to a keyword. 00806 if (Corrected.isKeyword()) 00807 return Name; 00808 00809 // Also update the LookupResult... 00810 // FIXME: This should probably go away at some point 00811 Result.clear(); 00812 Result.setLookupName(Corrected.getCorrection()); 00813 if (FirstDecl) 00814 Result.addDecl(FirstDecl); 00815 00816 // If we found an Objective-C instance variable, let 00817 // LookupInObjCMethod build the appropriate expression to 00818 // reference the ivar. 00819 // FIXME: This is a gross hack. 00820 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { 00821 Result.clear(); 00822 ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier())); 00823 return E; 00824 } 00825 00826 goto Corrected; 00827 } 00828 } 00829 00830 // We failed to correct; just fall through and let the parser deal with it. 00831 Result.suppressDiagnostics(); 00832 return NameClassification::Unknown(); 00833 00834 case LookupResult::NotFoundInCurrentInstantiation: { 00835 // We performed name lookup into the current instantiation, and there were 00836 // dependent bases, so we treat this result the same way as any other 00837 // dependent nested-name-specifier. 00838 00839 // C++ [temp.res]p2: 00840 // A name used in a template declaration or definition and that is 00841 // dependent on a template-parameter is assumed not to name a type 00842 // unless the applicable name lookup finds a type name or the name is 00843 // qualified by the keyword typename. 00844 // 00845 // FIXME: If the next token is '<', we might want to ask the parser to 00846 // perform some heroics to see if we actually have a 00847 // template-argument-list, which would indicate a missing 'template' 00848 // keyword here. 00849 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(), 00850 NameInfo, IsAddressOfOperand, 00851 /*TemplateArgs=*/nullptr); 00852 } 00853 00854 case LookupResult::Found: 00855 case LookupResult::FoundOverloaded: 00856 case LookupResult::FoundUnresolvedValue: 00857 break; 00858 00859 case LookupResult::Ambiguous: 00860 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 00861 hasAnyAcceptableTemplateNames(Result)) { 00862 // C++ [temp.local]p3: 00863 // A lookup that finds an injected-class-name (10.2) can result in an 00864 // ambiguity in certain cases (for example, if it is found in more than 00865 // one base class). If all of the injected-class-names that are found 00866 // refer to specializations of the same class template, and if the name 00867 // is followed by a template-argument-list, the reference refers to the 00868 // class template itself and not a specialization thereof, and is not 00869 // ambiguous. 00870 // 00871 // This filtering can make an ambiguous result into an unambiguous one, 00872 // so try again after filtering out template names. 00873 FilterAcceptableTemplateNames(Result); 00874 if (!Result.isAmbiguous()) { 00875 IsFilteredTemplateName = true; 00876 break; 00877 } 00878 } 00879 00880 // Diagnose the ambiguity and return an error. 00881 return NameClassification::Error(); 00882 } 00883 00884 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 00885 (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) { 00886 // C++ [temp.names]p3: 00887 // After name lookup (3.4) finds that a name is a template-name or that 00888 // an operator-function-id or a literal- operator-id refers to a set of 00889 // overloaded functions any member of which is a function template if 00890 // this is followed by a <, the < is always taken as the delimiter of a 00891 // template-argument-list and never as the less-than operator. 00892 if (!IsFilteredTemplateName) 00893 FilterAcceptableTemplateNames(Result); 00894 00895 if (!Result.empty()) { 00896 bool IsFunctionTemplate; 00897 bool IsVarTemplate; 00898 TemplateName Template; 00899 if (Result.end() - Result.begin() > 1) { 00900 IsFunctionTemplate = true; 00901 Template = Context.getOverloadedTemplateName(Result.begin(), 00902 Result.end()); 00903 } else { 00904 TemplateDecl *TD 00905 = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl()); 00906 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD); 00907 IsVarTemplate = isa<VarTemplateDecl>(TD); 00908 00909 if (SS.isSet() && !SS.isInvalid()) 00910 Template = Context.getQualifiedTemplateName(SS.getScopeRep(), 00911 /*TemplateKeyword=*/false, 00912 TD); 00913 else 00914 Template = TemplateName(TD); 00915 } 00916 00917 if (IsFunctionTemplate) { 00918 // Function templates always go through overload resolution, at which 00919 // point we'll perform the various checks (e.g., accessibility) we need 00920 // to based on which function we selected. 00921 Result.suppressDiagnostics(); 00922 00923 return NameClassification::FunctionTemplate(Template); 00924 } 00925 00926 return IsVarTemplate ? NameClassification::VarTemplate(Template) 00927 : NameClassification::TypeTemplate(Template); 00928 } 00929 } 00930 00931 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); 00932 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) { 00933 DiagnoseUseOfDecl(Type, NameLoc); 00934 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 00935 QualType T = Context.getTypeDeclType(Type); 00936 if (SS.isNotEmpty()) 00937 return buildNestedType(*this, SS, T, NameLoc); 00938 return ParsedType::make(T); 00939 } 00940 00941 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl); 00942 if (!Class) { 00943 // FIXME: It's unfortunate that we don't have a Type node for handling this. 00944 if (ObjCCompatibleAliasDecl *Alias = 00945 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl)) 00946 Class = Alias->getClassInterface(); 00947 } 00948 00949 if (Class) { 00950 DiagnoseUseOfDecl(Class, NameLoc); 00951 00952 if (NextToken.is(tok::period)) { 00953 // Interface. <something> is parsed as a property reference expression. 00954 // Just return "unknown" as a fall-through for now. 00955 Result.suppressDiagnostics(); 00956 return NameClassification::Unknown(); 00957 } 00958 00959 QualType T = Context.getObjCInterfaceType(Class); 00960 return ParsedType::make(T); 00961 } 00962 00963 // We can have a type template here if we're classifying a template argument. 00964 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl)) 00965 return NameClassification::TypeTemplate( 00966 TemplateName(cast<TemplateDecl>(FirstDecl))); 00967 00968 // Check for a tag type hidden by a non-type decl in a few cases where it 00969 // seems likely a type is wanted instead of the non-type that was found. 00970 bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star); 00971 if ((NextToken.is(tok::identifier) || 00972 (NextIsOp && 00973 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) && 00974 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { 00975 TypeDecl *Type = Result.getAsSingle<TypeDecl>(); 00976 DiagnoseUseOfDecl(Type, NameLoc); 00977 QualType T = Context.getTypeDeclType(Type); 00978 if (SS.isNotEmpty()) 00979 return buildNestedType(*this, SS, T, NameLoc); 00980 return ParsedType::make(T); 00981 } 00982 00983 if (FirstDecl->isCXXClassMember()) 00984 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 00985 nullptr); 00986 00987 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); 00988 return BuildDeclarationNameExpr(SS, Result, ADL); 00989 } 00990 00991 // Determines the context to return to after temporarily entering a 00992 // context. This depends in an unnecessarily complicated way on the 00993 // exact ordering of callbacks from the parser. 00994 DeclContext *Sema::getContainingDC(DeclContext *DC) { 00995 00996 // Functions defined inline within classes aren't parsed until we've 00997 // finished parsing the top-level class, so the top-level class is 00998 // the context we'll need to return to. 00999 // A Lambda call operator whose parent is a class must not be treated 01000 // as an inline member function. A Lambda can be used legally 01001 // either as an in-class member initializer or a default argument. These 01002 // are parsed once the class has been marked complete and so the containing 01003 // context would be the nested class (when the lambda is defined in one); 01004 // If the class is not complete, then the lambda is being used in an 01005 // ill-formed fashion (such as to specify the width of a bit-field, or 01006 // in an array-bound) - in which case we still want to return the 01007 // lexically containing DC (which could be a nested class). 01008 if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) { 01009 DC = DC->getLexicalParent(); 01010 01011 // A function not defined within a class will always return to its 01012 // lexical context. 01013 if (!isa<CXXRecordDecl>(DC)) 01014 return DC; 01015 01016 // A C++ inline method/friend is parsed *after* the topmost class 01017 // it was declared in is fully parsed ("complete"); the topmost 01018 // class is the context we need to return to. 01019 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent())) 01020 DC = RD; 01021 01022 // Return the declaration context of the topmost class the inline method is 01023 // declared in. 01024 return DC; 01025 } 01026 01027 return DC->getLexicalParent(); 01028 } 01029 01030 void Sema::PushDeclContext(Scope *S, DeclContext *DC) { 01031 assert(getContainingDC(DC) == CurContext && 01032 "The next DeclContext should be lexically contained in the current one."); 01033 CurContext = DC; 01034 S->setEntity(DC); 01035 } 01036 01037 void Sema::PopDeclContext() { 01038 assert(CurContext && "DeclContext imbalance!"); 01039 01040 CurContext = getContainingDC(CurContext); 01041 assert(CurContext && "Popped translation unit!"); 01042 } 01043 01044 /// EnterDeclaratorContext - Used when we must lookup names in the context 01045 /// of a declarator's nested name specifier. 01046 /// 01047 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { 01048 // C++0x [basic.lookup.unqual]p13: 01049 // A name used in the definition of a static data member of class 01050 // X (after the qualified-id of the static member) is looked up as 01051 // if the name was used in a member function of X. 01052 // C++0x [basic.lookup.unqual]p14: 01053 // If a variable member of a namespace is defined outside of the 01054 // scope of its namespace then any name used in the definition of 01055 // the variable member (after the declarator-id) is looked up as 01056 // if the definition of the variable member occurred in its 01057 // namespace. 01058 // Both of these imply that we should push a scope whose context 01059 // is the semantic context of the declaration. We can't use 01060 // PushDeclContext here because that context is not necessarily 01061 // lexically contained in the current context. Fortunately, 01062 // the containing scope should have the appropriate information. 01063 01064 assert(!S->getEntity() && "scope already has entity"); 01065 01066 #ifndef NDEBUG 01067 Scope *Ancestor = S->getParent(); 01068 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); 01069 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch"); 01070 #endif 01071 01072 CurContext = DC; 01073 S->setEntity(DC); 01074 } 01075 01076 void Sema::ExitDeclaratorContext(Scope *S) { 01077 assert(S->getEntity() == CurContext && "Context imbalance!"); 01078 01079 // Switch back to the lexical context. The safety of this is 01080 // enforced by an assert in EnterDeclaratorContext. 01081 Scope *Ancestor = S->getParent(); 01082 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); 01083 CurContext = Ancestor->getEntity(); 01084 01085 // We don't need to do anything with the scope, which is going to 01086 // disappear. 01087 } 01088 01089 01090 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { 01091 // We assume that the caller has already called 01092 // ActOnReenterTemplateScope so getTemplatedDecl() works. 01093 FunctionDecl *FD = D->getAsFunction(); 01094 if (!FD) 01095 return; 01096 01097 // Same implementation as PushDeclContext, but enters the context 01098 // from the lexical parent, rather than the top-level class. 01099 assert(CurContext == FD->getLexicalParent() && 01100 "The next DeclContext should be lexically contained in the current one."); 01101 CurContext = FD; 01102 S->setEntity(CurContext); 01103 01104 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { 01105 ParmVarDecl *Param = FD->getParamDecl(P); 01106 // If the parameter has an identifier, then add it to the scope 01107 if (Param->getIdentifier()) { 01108 S->AddDecl(Param); 01109 IdResolver.AddDecl(Param); 01110 } 01111 } 01112 } 01113 01114 01115 void Sema::ActOnExitFunctionContext() { 01116 // Same implementation as PopDeclContext, but returns to the lexical parent, 01117 // rather than the top-level class. 01118 assert(CurContext && "DeclContext imbalance!"); 01119 CurContext = CurContext->getLexicalParent(); 01120 assert(CurContext && "Popped translation unit!"); 01121 } 01122 01123 01124 /// \brief Determine whether we allow overloading of the function 01125 /// PrevDecl with another declaration. 01126 /// 01127 /// This routine determines whether overloading is possible, not 01128 /// whether some new function is actually an overload. It will return 01129 /// true in C++ (where we can always provide overloads) or, as an 01130 /// extension, in C when the previous function is already an 01131 /// overloaded function declaration or has the "overloadable" 01132 /// attribute. 01133 static bool AllowOverloadingOfFunction(LookupResult &Previous, 01134 ASTContext &Context) { 01135 if (Context.getLangOpts().CPlusPlus) 01136 return true; 01137 01138 if (Previous.getResultKind() == LookupResult::FoundOverloaded) 01139 return true; 01140 01141 return (Previous.getResultKind() == LookupResult::Found 01142 && Previous.getFoundDecl()->hasAttr<OverloadableAttr>()); 01143 } 01144 01145 /// Add this decl to the scope shadowed decl chains. 01146 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { 01147 // Move up the scope chain until we find the nearest enclosing 01148 // non-transparent context. The declaration will be introduced into this 01149 // scope. 01150 while (S->getEntity() && S->getEntity()->isTransparentContext()) 01151 S = S->getParent(); 01152 01153 // Add scoped declarations into their context, so that they can be 01154 // found later. Declarations without a context won't be inserted 01155 // into any context. 01156 if (AddToContext) 01157 CurContext->addDecl(D); 01158 01159 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they 01160 // are function-local declarations. 01161 if (getLangOpts().CPlusPlus && D->isOutOfLine() && 01162 !D->getDeclContext()->getRedeclContext()->Equals( 01163 D->getLexicalDeclContext()->getRedeclContext()) && 01164 !D->getLexicalDeclContext()->isFunctionOrMethod()) 01165 return; 01166 01167 // Template instantiations should also not be pushed into scope. 01168 if (isa<FunctionDecl>(D) && 01169 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) 01170 return; 01171 01172 // If this replaces anything in the current scope, 01173 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), 01174 IEnd = IdResolver.end(); 01175 for (; I != IEnd; ++I) { 01176 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { 01177 S->RemoveDecl(*I); 01178 IdResolver.RemoveDecl(*I); 01179 01180 // Should only need to replace one decl. 01181 break; 01182 } 01183 } 01184 01185 S->AddDecl(D); 01186 01187 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) { 01188 // Implicitly-generated labels may end up getting generated in an order that 01189 // isn't strictly lexical, which breaks name lookup. Be careful to insert 01190 // the label at the appropriate place in the identifier chain. 01191 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) { 01192 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); 01193 if (IDC == CurContext) { 01194 if (!S->isDeclScope(*I)) 01195 continue; 01196 } else if (IDC->Encloses(CurContext)) 01197 break; 01198 } 01199 01200 IdResolver.InsertDeclAfter(I, D); 01201 } else { 01202 IdResolver.AddDecl(D); 01203 } 01204 } 01205 01206 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) { 01207 if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope) 01208 TUScope->AddDecl(D); 01209 } 01210 01211 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S, 01212 bool AllowInlineNamespace) { 01213 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace); 01214 } 01215 01216 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { 01217 DeclContext *TargetDC = DC->getPrimaryContext(); 01218 do { 01219 if (DeclContext *ScopeDC = S->getEntity()) 01220 if (ScopeDC->getPrimaryContext() == TargetDC) 01221 return S; 01222 } while ((S = S->getParent())); 01223 01224 return nullptr; 01225 } 01226 01227 static bool isOutOfScopePreviousDeclaration(NamedDecl *, 01228 DeclContext*, 01229 ASTContext&); 01230 01231 /// Filters out lookup results that don't fall within the given scope 01232 /// as determined by isDeclInScope. 01233 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, 01234 bool ConsiderLinkage, 01235 bool AllowInlineNamespace) { 01236 LookupResult::Filter F = R.makeFilter(); 01237 while (F.hasNext()) { 01238 NamedDecl *D = F.next(); 01239 01240 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace)) 01241 continue; 01242 01243 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context)) 01244 continue; 01245 01246 F.erase(); 01247 } 01248 01249 F.done(); 01250 } 01251 01252 static bool isUsingDecl(NamedDecl *D) { 01253 return isa<UsingShadowDecl>(D) || 01254 isa<UnresolvedUsingTypenameDecl>(D) || 01255 isa<UnresolvedUsingValueDecl>(D); 01256 } 01257 01258 /// Removes using shadow declarations from the lookup results. 01259 static void RemoveUsingDecls(LookupResult &R) { 01260 LookupResult::Filter F = R.makeFilter(); 01261 while (F.hasNext()) 01262 if (isUsingDecl(F.next())) 01263 F.erase(); 01264 01265 F.done(); 01266 } 01267 01268 /// \brief Check for this common pattern: 01269 /// @code 01270 /// class S { 01271 /// S(const S&); // DO NOT IMPLEMENT 01272 /// void operator=(const S&); // DO NOT IMPLEMENT 01273 /// }; 01274 /// @endcode 01275 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { 01276 // FIXME: Should check for private access too but access is set after we get 01277 // the decl here. 01278 if (D->doesThisDeclarationHaveABody()) 01279 return false; 01280 01281 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 01282 return CD->isCopyConstructor(); 01283 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 01284 return Method->isCopyAssignmentOperator(); 01285 return false; 01286 } 01287 01288 // We need this to handle 01289 // 01290 // typedef struct { 01291 // void *foo() { return 0; } 01292 // } A; 01293 // 01294 // When we see foo we don't know if after the typedef we will get 'A' or '*A' 01295 // for example. If 'A', foo will have external linkage. If we have '*A', 01296 // foo will have no linkage. Since we can't know until we get to the end 01297 // of the typedef, this function finds out if D might have non-external linkage. 01298 // Callers should verify at the end of the TU if it D has external linkage or 01299 // not. 01300 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) { 01301 const DeclContext *DC = D->getDeclContext(); 01302 while (!DC->isTranslationUnit()) { 01303 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){ 01304 if (!RD->hasNameForLinkage()) 01305 return true; 01306 } 01307 DC = DC->getParent(); 01308 } 01309 01310 return !D->isExternallyVisible(); 01311 } 01312 01313 // FIXME: This needs to be refactored; some other isInMainFile users want 01314 // these semantics. 01315 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) { 01316 if (S.TUKind != TU_Complete) 01317 return false; 01318 return S.SourceMgr.isInMainFile(Loc); 01319 } 01320 01321 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { 01322 assert(D); 01323 01324 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) 01325 return false; 01326 01327 // Ignore all entities declared within templates, and out-of-line definitions 01328 // of members of class templates. 01329 if (D->getDeclContext()->isDependentContext() || 01330 D->getLexicalDeclContext()->isDependentContext()) 01331 return false; 01332 01333 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 01334 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 01335 return false; 01336 01337 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 01338 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) 01339 return false; 01340 } else { 01341 // 'static inline' functions are defined in headers; don't warn. 01342 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation())) 01343 return false; 01344 } 01345 01346 if (FD->doesThisDeclarationHaveABody() && 01347 Context.DeclMustBeEmitted(FD)) 01348 return false; 01349 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 01350 // Constants and utility variables are defined in headers with internal 01351 // linkage; don't warn. (Unlike functions, there isn't a convenient marker 01352 // like "inline".) 01353 if (!isMainFileLoc(*this, VD->getLocation())) 01354 return false; 01355 01356 if (Context.DeclMustBeEmitted(VD)) 01357 return false; 01358 01359 if (VD->isStaticDataMember() && 01360 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 01361 return false; 01362 } else { 01363 return false; 01364 } 01365 01366 // Only warn for unused decls internal to the translation unit. 01367 // FIXME: This seems like a bogus check; it suppresses -Wunused-function 01368 // for inline functions defined in the main source file, for instance. 01369 return mightHaveNonExternalLinkage(D); 01370 } 01371 01372 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { 01373 if (!D) 01374 return; 01375 01376 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 01377 const FunctionDecl *First = FD->getFirstDecl(); 01378 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) 01379 return; // First should already be in the vector. 01380 } 01381 01382 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 01383 const VarDecl *First = VD->getFirstDecl(); 01384 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) 01385 return; // First should already be in the vector. 01386 } 01387 01388 if (ShouldWarnIfUnusedFileScopedDecl(D)) 01389 UnusedFileScopedDecls.push_back(D); 01390 } 01391 01392 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { 01393 if (D->isInvalidDecl()) 01394 return false; 01395 01396 if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() || 01397 D->hasAttr<ObjCPreciseLifetimeAttr>()) 01398 return false; 01399 01400 if (isa<LabelDecl>(D)) 01401 return true; 01402 01403 // Except for labels, we only care about unused decls that are local to 01404 // functions. 01405 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod(); 01406 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext())) 01407 // For dependent types, the diagnostic is deferred. 01408 WithinFunction = 01409 WithinFunction || (R->isLocalClass() && !R->isDependentType()); 01410 if (!WithinFunction) 01411 return false; 01412 01413 if (isa<TypedefNameDecl>(D)) 01414 return true; 01415 01416 // White-list anything that isn't a local variable. 01417 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) 01418 return false; 01419 01420 // Types of valid local variables should be complete, so this should succeed. 01421 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 01422 01423 // White-list anything with an __attribute__((unused)) type. 01424 QualType Ty = VD->getType(); 01425 01426 // Only look at the outermost level of typedef. 01427 if (const TypedefType *TT = Ty->getAs<TypedefType>()) { 01428 if (TT->getDecl()->hasAttr<UnusedAttr>()) 01429 return false; 01430 } 01431 01432 // If we failed to complete the type for some reason, or if the type is 01433 // dependent, don't diagnose the variable. 01434 if (Ty->isIncompleteType() || Ty->isDependentType()) 01435 return false; 01436 01437 if (const TagType *TT = Ty->getAs<TagType>()) { 01438 const TagDecl *Tag = TT->getDecl(); 01439 if (Tag->hasAttr<UnusedAttr>()) 01440 return false; 01441 01442 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { 01443 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>()) 01444 return false; 01445 01446 if (const Expr *Init = VD->getInit()) { 01447 if (const ExprWithCleanups *Cleanups = 01448 dyn_cast<ExprWithCleanups>(Init)) 01449 Init = Cleanups->getSubExpr(); 01450 const CXXConstructExpr *Construct = 01451 dyn_cast<CXXConstructExpr>(Init); 01452 if (Construct && !Construct->isElidable()) { 01453 CXXConstructorDecl *CD = Construct->getConstructor(); 01454 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>()) 01455 return false; 01456 } 01457 } 01458 } 01459 } 01460 01461 // TODO: __attribute__((unused)) templates? 01462 } 01463 01464 return true; 01465 } 01466 01467 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, 01468 FixItHint &Hint) { 01469 if (isa<LabelDecl>(D)) { 01470 SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(), 01471 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true); 01472 if (AfterColon.isInvalid()) 01473 return; 01474 Hint = FixItHint::CreateRemoval(CharSourceRange:: 01475 getCharRange(D->getLocStart(), AfterColon)); 01476 } 01477 return; 01478 } 01479 01480 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) { 01481 if (D->getTypeForDecl()->isDependentType()) 01482 return; 01483 01484 for (auto *TmpD : D->decls()) { 01485 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD)) 01486 DiagnoseUnusedDecl(T); 01487 else if(const auto *R = dyn_cast<RecordDecl>(TmpD)) 01488 DiagnoseUnusedNestedTypedefs(R); 01489 } 01490 } 01491 01492 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used 01493 /// unless they are marked attr(unused). 01494 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { 01495 if (!ShouldDiagnoseUnusedDecl(D)) 01496 return; 01497 01498 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 01499 // typedefs can be referenced later on, so the diagnostics are emitted 01500 // at end-of-translation-unit. 01501 UnusedLocalTypedefNameCandidates.insert(TD); 01502 return; 01503 } 01504 01505 FixItHint Hint; 01506 GenerateFixForUnusedDecl(D, Context, Hint); 01507 01508 unsigned DiagID; 01509 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) 01510 DiagID = diag::warn_unused_exception_param; 01511 else if (isa<LabelDecl>(D)) 01512 DiagID = diag::warn_unused_label; 01513 else 01514 DiagID = diag::warn_unused_variable; 01515 01516 Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint; 01517 } 01518 01519 static void CheckPoppedLabel(LabelDecl *L, Sema &S) { 01520 // Verify that we have no forward references left. If so, there was a goto 01521 // or address of a label taken, but no definition of it. Label fwd 01522 // definitions are indicated with a null substmt which is also not a resolved 01523 // MS inline assembly label name. 01524 bool Diagnose = false; 01525 if (L->isMSAsmLabel()) 01526 Diagnose = !L->isResolvedMSAsmLabel(); 01527 else 01528 Diagnose = L->getStmt() == nullptr; 01529 if (Diagnose) 01530 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName(); 01531 } 01532 01533 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { 01534 S->mergeNRVOIntoParent(); 01535 01536 if (S->decl_empty()) return; 01537 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && 01538 "Scope shouldn't contain decls!"); 01539 01540 for (auto *TmpD : S->decls()) { 01541 assert(TmpD && "This decl didn't get pushed??"); 01542 01543 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"); 01544 NamedDecl *D = cast<NamedDecl>(TmpD); 01545 01546 if (!D->getDeclName()) continue; 01547 01548 // Diagnose unused variables in this scope. 01549 if (!S->hasUnrecoverableErrorOccurred()) { 01550 DiagnoseUnusedDecl(D); 01551 if (const auto *RD = dyn_cast<RecordDecl>(D)) 01552 DiagnoseUnusedNestedTypedefs(RD); 01553 } 01554 01555 // If this was a forward reference to a label, verify it was defined. 01556 if (LabelDecl *LD = dyn_cast<LabelDecl>(D)) 01557 CheckPoppedLabel(LD, *this); 01558 01559 // Remove this name from our lexical scope. 01560 IdResolver.RemoveDecl(D); 01561 } 01562 } 01563 01564 /// \brief Look for an Objective-C class in the translation unit. 01565 /// 01566 /// \param Id The name of the Objective-C class we're looking for. If 01567 /// typo-correction fixes this name, the Id will be updated 01568 /// to the fixed name. 01569 /// 01570 /// \param IdLoc The location of the name in the translation unit. 01571 /// 01572 /// \param DoTypoCorrection If true, this routine will attempt typo correction 01573 /// if there is no class with the given name. 01574 /// 01575 /// \returns The declaration of the named Objective-C class, or NULL if the 01576 /// class could not be found. 01577 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, 01578 SourceLocation IdLoc, 01579 bool DoTypoCorrection) { 01580 // The third "scope" argument is 0 since we aren't enabling lazy built-in 01581 // creation from this context. 01582 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); 01583 01584 if (!IDecl && DoTypoCorrection) { 01585 // Perform typo correction at the given location, but only if we 01586 // find an Objective-C class name. 01587 if (TypoCorrection C = CorrectTypo( 01588 DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr, 01589 llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(), 01590 CTK_ErrorRecovery)) { 01591 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id); 01592 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); 01593 Id = IDecl->getIdentifier(); 01594 } 01595 } 01596 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); 01597 // This routine must always return a class definition, if any. 01598 if (Def && Def->getDefinition()) 01599 Def = Def->getDefinition(); 01600 return Def; 01601 } 01602 01603 /// getNonFieldDeclScope - Retrieves the innermost scope, starting 01604 /// from S, where a non-field would be declared. This routine copes 01605 /// with the difference between C and C++ scoping rules in structs and 01606 /// unions. For example, the following code is well-formed in C but 01607 /// ill-formed in C++: 01608 /// @code 01609 /// struct S6 { 01610 /// enum { BAR } e; 01611 /// }; 01612 /// 01613 /// void test_S6() { 01614 /// struct S6 a; 01615 /// a.e = BAR; 01616 /// } 01617 /// @endcode 01618 /// For the declaration of BAR, this routine will return a different 01619 /// scope. The scope S will be the scope of the unnamed enumeration 01620 /// within S6. In C++, this routine will return the scope associated 01621 /// with S6, because the enumeration's scope is a transparent 01622 /// context but structures can contain non-field names. In C, this 01623 /// routine will return the translation unit scope, since the 01624 /// enumeration's scope is a transparent context and structures cannot 01625 /// contain non-field names. 01626 Scope *Sema::getNonFieldDeclScope(Scope *S) { 01627 while (((S->getFlags() & Scope::DeclScope) == 0) || 01628 (S->getEntity() && S->getEntity()->isTransparentContext()) || 01629 (S->isClassScope() && !getLangOpts().CPlusPlus)) 01630 S = S->getParent(); 01631 return S; 01632 } 01633 01634 /// \brief Looks up the declaration of "struct objc_super" and 01635 /// saves it for later use in building builtin declaration of 01636 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such 01637 /// pre-existing declaration exists no action takes place. 01638 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S, 01639 IdentifierInfo *II) { 01640 if (!II->isStr("objc_msgSendSuper")) 01641 return; 01642 ASTContext &Context = ThisSema.Context; 01643 01644 LookupResult Result(ThisSema, &Context.Idents.get("objc_super"), 01645 SourceLocation(), Sema::LookupTagName); 01646 ThisSema.LookupName(Result, S); 01647 if (Result.getResultKind() == LookupResult::Found) 01648 if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) 01649 Context.setObjCSuperType(Context.getTagDeclType(TD)); 01650 } 01651 01652 static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) { 01653 switch (Error) { 01654 case ASTContext::GE_None: 01655 return ""; 01656 case ASTContext::GE_Missing_stdio: 01657 return "stdio.h"; 01658 case ASTContext::GE_Missing_setjmp: 01659 return "setjmp.h"; 01660 case ASTContext::GE_Missing_ucontext: 01661 return "ucontext.h"; 01662 } 01663 llvm_unreachable("unhandled error kind"); 01664 } 01665 01666 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at 01667 /// file scope. lazily create a decl for it. ForRedeclaration is true 01668 /// if we're creating this built-in in anticipation of redeclaring the 01669 /// built-in. 01670 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, 01671 Scope *S, bool ForRedeclaration, 01672 SourceLocation Loc) { 01673 LookupPredefedObjCSuperType(*this, S, II); 01674 01675 ASTContext::GetBuiltinTypeError Error; 01676 QualType R = Context.GetBuiltinType(ID, Error); 01677 if (Error) { 01678 if (ForRedeclaration) 01679 Diag(Loc, diag::warn_implicit_decl_requires_sysheader) 01680 << getHeaderName(Error) 01681 << Context.BuiltinInfo.GetName(ID); 01682 return nullptr; 01683 } 01684 01685 if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(ID)) { 01686 Diag(Loc, diag::ext_implicit_lib_function_decl) 01687 << Context.BuiltinInfo.GetName(ID) 01688 << R; 01689 if (Context.BuiltinInfo.getHeaderName(ID) && 01690 !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc)) 01691 Diag(Loc, diag::note_include_header_or_declare) 01692 << Context.BuiltinInfo.getHeaderName(ID) 01693 << Context.BuiltinInfo.GetName(ID); 01694 } 01695 01696 DeclContext *Parent = Context.getTranslationUnitDecl(); 01697 if (getLangOpts().CPlusPlus) { 01698 LinkageSpecDecl *CLinkageDecl = 01699 LinkageSpecDecl::Create(Context, Parent, Loc, Loc, 01700 LinkageSpecDecl::lang_c, false); 01701 CLinkageDecl->setImplicit(); 01702 Parent->addDecl(CLinkageDecl); 01703 Parent = CLinkageDecl; 01704 } 01705 01706 FunctionDecl *New = FunctionDecl::Create(Context, 01707 Parent, 01708 Loc, Loc, II, R, /*TInfo=*/nullptr, 01709 SC_Extern, 01710 false, 01711 /*hasPrototype=*/true); 01712 New->setImplicit(); 01713 01714 // Create Decl objects for each parameter, adding them to the 01715 // FunctionDecl. 01716 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) { 01717 SmallVector<ParmVarDecl*, 16> Params; 01718 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 01719 ParmVarDecl *parm = 01720 ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(), 01721 nullptr, FT->getParamType(i), /*TInfo=*/nullptr, 01722 SC_None, nullptr); 01723 parm->setScopeInfo(0, i); 01724 Params.push_back(parm); 01725 } 01726 New->setParams(Params); 01727 } 01728 01729 AddKnownFunctionAttributes(New); 01730 RegisterLocallyScopedExternCDecl(New, S); 01731 01732 // TUScope is the translation-unit scope to insert this function into. 01733 // FIXME: This is hideous. We need to teach PushOnScopeChains to 01734 // relate Scopes to DeclContexts, and probably eliminate CurContext 01735 // entirely, but we're not there yet. 01736 DeclContext *SavedContext = CurContext; 01737 CurContext = Parent; 01738 PushOnScopeChains(New, TUScope); 01739 CurContext = SavedContext; 01740 return New; 01741 } 01742 01743 /// \brief Filter out any previous declarations that the given declaration 01744 /// should not consider because they are not permitted to conflict, e.g., 01745 /// because they come from hidden sub-modules and do not refer to the same 01746 /// entity. 01747 static void filterNonConflictingPreviousDecls(ASTContext &context, 01748 NamedDecl *decl, 01749 LookupResult &previous){ 01750 // This is only interesting when modules are enabled. 01751 if (!context.getLangOpts().Modules) 01752 return; 01753 01754 // Empty sets are uninteresting. 01755 if (previous.empty()) 01756 return; 01757 01758 LookupResult::Filter filter = previous.makeFilter(); 01759 while (filter.hasNext()) { 01760 NamedDecl *old = filter.next(); 01761 01762 // Non-hidden declarations are never ignored. 01763 if (!old->isHidden()) 01764 continue; 01765 01766 if (!old->isExternallyVisible()) 01767 filter.erase(); 01768 } 01769 01770 filter.done(); 01771 } 01772 01773 /// Typedef declarations don't have linkage, but they still denote the same 01774 /// entity if their types are the same. 01775 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's 01776 /// isSameEntity. 01777 static void filterNonConflictingPreviousTypedefDecls(ASTContext &Context, 01778 TypedefNameDecl *Decl, 01779 LookupResult &Previous) { 01780 // This is only interesting when modules are enabled. 01781 if (!Context.getLangOpts().Modules) 01782 return; 01783 01784 // Empty sets are uninteresting. 01785 if (Previous.empty()) 01786 return; 01787 01788 LookupResult::Filter Filter = Previous.makeFilter(); 01789 while (Filter.hasNext()) { 01790 NamedDecl *Old = Filter.next(); 01791 01792 // Non-hidden declarations are never ignored. 01793 if (!Old->isHidden()) 01794 continue; 01795 01796 // Declarations of the same entity are not ignored, even if they have 01797 // different linkages. 01798 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) 01799 if (Context.hasSameType(OldTD->getUnderlyingType(), 01800 Decl->getUnderlyingType())) 01801 continue; 01802 01803 if (!Old->isExternallyVisible()) 01804 Filter.erase(); 01805 } 01806 01807 Filter.done(); 01808 } 01809 01810 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) { 01811 QualType OldType; 01812 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old)) 01813 OldType = OldTypedef->getUnderlyingType(); 01814 else 01815 OldType = Context.getTypeDeclType(Old); 01816 QualType NewType = New->getUnderlyingType(); 01817 01818 if (NewType->isVariablyModifiedType()) { 01819 // Must not redefine a typedef with a variably-modified type. 01820 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; 01821 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef) 01822 << Kind << NewType; 01823 if (Old->getLocation().isValid()) 01824 Diag(Old->getLocation(), diag::note_previous_definition); 01825 New->setInvalidDecl(); 01826 return true; 01827 } 01828 01829 if (OldType != NewType && 01830 !OldType->isDependentType() && 01831 !NewType->isDependentType() && 01832 !Context.hasSameType(OldType, NewType)) { 01833 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; 01834 Diag(New->getLocation(), diag::err_redefinition_different_typedef) 01835 << Kind << NewType << OldType; 01836 if (Old->getLocation().isValid()) 01837 Diag(Old->getLocation(), diag::note_previous_definition); 01838 New->setInvalidDecl(); 01839 return true; 01840 } 01841 return false; 01842 } 01843 01844 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the 01845 /// same name and scope as a previous declaration 'Old'. Figure out 01846 /// how to resolve this situation, merging decls or emitting 01847 /// diagnostics as appropriate. If there was an error, set New to be invalid. 01848 /// 01849 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) { 01850 // If the new decl is known invalid already, don't bother doing any 01851 // merging checks. 01852 if (New->isInvalidDecl()) return; 01853 01854 // Allow multiple definitions for ObjC built-in typedefs. 01855 // FIXME: Verify the underlying types are equivalent! 01856 if (getLangOpts().ObjC1) { 01857 const IdentifierInfo *TypeID = New->getIdentifier(); 01858 switch (TypeID->getLength()) { 01859 default: break; 01860 case 2: 01861 { 01862 if (!TypeID->isStr("id")) 01863 break; 01864 QualType T = New->getUnderlyingType(); 01865 if (!T->isPointerType()) 01866 break; 01867 if (!T->isVoidPointerType()) { 01868 QualType PT = T->getAs<PointerType>()->getPointeeType(); 01869 if (!PT->isStructureType()) 01870 break; 01871 } 01872 Context.setObjCIdRedefinitionType(T); 01873 // Install the built-in type for 'id', ignoring the current definition. 01874 New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); 01875 return; 01876 } 01877 case 5: 01878 if (!TypeID->isStr("Class")) 01879 break; 01880 Context.setObjCClassRedefinitionType(New->getUnderlyingType()); 01881 // Install the built-in type for 'Class', ignoring the current definition. 01882 New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); 01883 return; 01884 case 3: 01885 if (!TypeID->isStr("SEL")) 01886 break; 01887 Context.setObjCSelRedefinitionType(New->getUnderlyingType()); 01888 // Install the built-in type for 'SEL', ignoring the current definition. 01889 New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); 01890 return; 01891 } 01892 // Fall through - the typedef name was not a builtin type. 01893 } 01894 01895 // Verify the old decl was also a type. 01896 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); 01897 if (!Old) { 01898 Diag(New->getLocation(), diag::err_redefinition_different_kind) 01899 << New->getDeclName(); 01900 01901 NamedDecl *OldD = OldDecls.getRepresentativeDecl(); 01902 if (OldD->getLocation().isValid()) 01903 Diag(OldD->getLocation(), diag::note_previous_definition); 01904 01905 return New->setInvalidDecl(); 01906 } 01907 01908 // If the old declaration is invalid, just give up here. 01909 if (Old->isInvalidDecl()) 01910 return New->setInvalidDecl(); 01911 01912 // If the typedef types are not identical, reject them in all languages and 01913 // with any extensions enabled. 01914 if (isIncompatibleTypedef(Old, New)) 01915 return; 01916 01917 // The types match. Link up the redeclaration chain and merge attributes if 01918 // the old declaration was a typedef. 01919 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) { 01920 New->setPreviousDecl(Typedef); 01921 mergeDeclAttributes(New, Old); 01922 } 01923 01924 if (getLangOpts().MicrosoftExt) 01925 return; 01926 01927 if (getLangOpts().CPlusPlus) { 01928 // C++ [dcl.typedef]p2: 01929 // In a given non-class scope, a typedef specifier can be used to 01930 // redefine the name of any type declared in that scope to refer 01931 // to the type to which it already refers. 01932 if (!isa<CXXRecordDecl>(CurContext)) 01933 return; 01934 01935 // C++0x [dcl.typedef]p4: 01936 // In a given class scope, a typedef specifier can be used to redefine 01937 // any class-name declared in that scope that is not also a typedef-name 01938 // to refer to the type to which it already refers. 01939 // 01940 // This wording came in via DR424, which was a correction to the 01941 // wording in DR56, which accidentally banned code like: 01942 // 01943 // struct S { 01944 // typedef struct A { } A; 01945 // }; 01946 // 01947 // in the C++03 standard. We implement the C++0x semantics, which 01948 // allow the above but disallow 01949 // 01950 // struct S { 01951 // typedef int I; 01952 // typedef int I; 01953 // }; 01954 // 01955 // since that was the intent of DR56. 01956 if (!isa<TypedefNameDecl>(Old)) 01957 return; 01958 01959 Diag(New->getLocation(), diag::err_redefinition) 01960 << New->getDeclName(); 01961 Diag(Old->getLocation(), diag::note_previous_definition); 01962 return New->setInvalidDecl(); 01963 } 01964 01965 // Modules always permit redefinition of typedefs, as does C11. 01966 if (getLangOpts().Modules || getLangOpts().C11) 01967 return; 01968 01969 // If we have a redefinition of a typedef in C, emit a warning. This warning 01970 // is normally mapped to an error, but can be controlled with 01971 // -Wtypedef-redefinition. If either the original or the redefinition is 01972 // in a system header, don't emit this for compatibility with GCC. 01973 if (getDiagnostics().getSuppressSystemWarnings() && 01974 (Context.getSourceManager().isInSystemHeader(Old->getLocation()) || 01975 Context.getSourceManager().isInSystemHeader(New->getLocation()))) 01976 return; 01977 01978 Diag(New->getLocation(), diag::ext_redefinition_of_typedef) 01979 << New->getDeclName(); 01980 Diag(Old->getLocation(), diag::note_previous_definition); 01981 return; 01982 } 01983 01984 /// DeclhasAttr - returns true if decl Declaration already has the target 01985 /// attribute. 01986 static bool DeclHasAttr(const Decl *D, const Attr *A) { 01987 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); 01988 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); 01989 for (const auto *i : D->attrs()) 01990 if (i->getKind() == A->getKind()) { 01991 if (Ann) { 01992 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation()) 01993 return true; 01994 continue; 01995 } 01996 // FIXME: Don't hardcode this check 01997 if (OA && isa<OwnershipAttr>(i)) 01998 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind(); 01999 return true; 02000 } 02001 02002 return false; 02003 } 02004 02005 static bool isAttributeTargetADefinition(Decl *D) { 02006 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 02007 return VD->isThisDeclarationADefinition(); 02008 if (TagDecl *TD = dyn_cast<TagDecl>(D)) 02009 return TD->isCompleteDefinition() || TD->isBeingDefined(); 02010 return true; 02011 } 02012 02013 /// Merge alignment attributes from \p Old to \p New, taking into account the 02014 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute. 02015 /// 02016 /// \return \c true if any attributes were added to \p New. 02017 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) { 02018 // Look for alignas attributes on Old, and pick out whichever attribute 02019 // specifies the strictest alignment requirement. 02020 AlignedAttr *OldAlignasAttr = nullptr; 02021 AlignedAttr *OldStrictestAlignAttr = nullptr; 02022 unsigned OldAlign = 0; 02023 for (auto *I : Old->specific_attrs<AlignedAttr>()) { 02024 // FIXME: We have no way of representing inherited dependent alignments 02025 // in a case like: 02026 // template<int A, int B> struct alignas(A) X; 02027 // template<int A, int B> struct alignas(B) X {}; 02028 // For now, we just ignore any alignas attributes which are not on the 02029 // definition in such a case. 02030 if (I->isAlignmentDependent()) 02031 return false; 02032 02033 if (I->isAlignas()) 02034 OldAlignasAttr = I; 02035 02036 unsigned Align = I->getAlignment(S.Context); 02037 if (Align > OldAlign) { 02038 OldAlign = Align; 02039 OldStrictestAlignAttr = I; 02040 } 02041 } 02042 02043 // Look for alignas attributes on New. 02044 AlignedAttr *NewAlignasAttr = nullptr; 02045 unsigned NewAlign = 0; 02046 for (auto *I : New->specific_attrs<AlignedAttr>()) { 02047 if (I->isAlignmentDependent()) 02048 return false; 02049 02050 if (I->isAlignas()) 02051 NewAlignasAttr = I; 02052 02053 unsigned Align = I->getAlignment(S.Context); 02054 if (Align > NewAlign) 02055 NewAlign = Align; 02056 } 02057 02058 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) { 02059 // Both declarations have 'alignas' attributes. We require them to match. 02060 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but 02061 // fall short. (If two declarations both have alignas, they must both match 02062 // every definition, and so must match each other if there is a definition.) 02063 02064 // If either declaration only contains 'alignas(0)' specifiers, then it 02065 // specifies the natural alignment for the type. 02066 if (OldAlign == 0 || NewAlign == 0) { 02067 QualType Ty; 02068 if (ValueDecl *VD = dyn_cast<ValueDecl>(New)) 02069 Ty = VD->getType(); 02070 else 02071 Ty = S.Context.getTagDeclType(cast<TagDecl>(New)); 02072 02073 if (OldAlign == 0) 02074 OldAlign = S.Context.getTypeAlign(Ty); 02075 if (NewAlign == 0) 02076 NewAlign = S.Context.getTypeAlign(Ty); 02077 } 02078 02079 if (OldAlign != NewAlign) { 02080 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch) 02081 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity() 02082 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity(); 02083 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration); 02084 } 02085 } 02086 02087 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) { 02088 // C++11 [dcl.align]p6: 02089 // if any declaration of an entity has an alignment-specifier, 02090 // every defining declaration of that entity shall specify an 02091 // equivalent alignment. 02092 // C11 6.7.5/7: 02093 // If the definition of an object does not have an alignment 02094 // specifier, any other declaration of that object shall also 02095 // have no alignment specifier. 02096 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition) 02097 << OldAlignasAttr; 02098 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration) 02099 << OldAlignasAttr; 02100 } 02101 02102 bool AnyAdded = false; 02103 02104 // Ensure we have an attribute representing the strictest alignment. 02105 if (OldAlign > NewAlign) { 02106 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context); 02107 Clone->setInherited(true); 02108 New->addAttr(Clone); 02109 AnyAdded = true; 02110 } 02111 02112 // Ensure we have an alignas attribute if the old declaration had one. 02113 if (OldAlignasAttr && !NewAlignasAttr && 02114 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) { 02115 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context); 02116 Clone->setInherited(true); 02117 New->addAttr(Clone); 02118 AnyAdded = true; 02119 } 02120 02121 return AnyAdded; 02122 } 02123 02124 static bool mergeDeclAttribute(Sema &S, NamedDecl *D, 02125 const InheritableAttr *Attr, bool Override) { 02126 InheritableAttr *NewAttr = nullptr; 02127 unsigned AttrSpellingListIndex = Attr->getSpellingListIndex(); 02128 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr)) 02129 NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(), 02130 AA->getIntroduced(), AA->getDeprecated(), 02131 AA->getObsoleted(), AA->getUnavailable(), 02132 AA->getMessage(), Override, 02133 AttrSpellingListIndex); 02134 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr)) 02135 NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(), 02136 AttrSpellingListIndex); 02137 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr)) 02138 NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(), 02139 AttrSpellingListIndex); 02140 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr)) 02141 NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(), 02142 AttrSpellingListIndex); 02143 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr)) 02144 NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(), 02145 AttrSpellingListIndex); 02146 else if (const auto *FA = dyn_cast<FormatAttr>(Attr)) 02147 NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(), 02148 FA->getFormatIdx(), FA->getFirstArg(), 02149 AttrSpellingListIndex); 02150 else if (const auto *SA = dyn_cast<SectionAttr>(Attr)) 02151 NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(), 02152 AttrSpellingListIndex); 02153 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr)) 02154 NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(), 02155 AttrSpellingListIndex, 02156 IA->getSemanticSpelling()); 02157 else if (isa<AlignedAttr>(Attr)) 02158 // AlignedAttrs are handled separately, because we need to handle all 02159 // such attributes on a declaration at the same time. 02160 NewAttr = nullptr; 02161 else if (isa<DeprecatedAttr>(Attr) && Override) 02162 NewAttr = nullptr; 02163 else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr)) 02164 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context)); 02165 02166 if (NewAttr) { 02167 NewAttr->setInherited(true); 02168 D->addAttr(NewAttr); 02169 return true; 02170 } 02171 02172 return false; 02173 } 02174 02175 static const Decl *getDefinition(const Decl *D) { 02176 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) 02177 return TD->getDefinition(); 02178 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 02179 const VarDecl *Def = VD->getDefinition(); 02180 if (Def) 02181 return Def; 02182 return VD->getActingDefinition(); 02183 } 02184 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 02185 const FunctionDecl* Def; 02186 if (FD->isDefined(Def)) 02187 return Def; 02188 } 02189 return nullptr; 02190 } 02191 02192 static bool hasAttribute(const Decl *D, attr::Kind Kind) { 02193 for (const auto *Attribute : D->attrs()) 02194 if (Attribute->getKind() == Kind) 02195 return true; 02196 return false; 02197 } 02198 02199 /// checkNewAttributesAfterDef - If we already have a definition, check that 02200 /// there are no new attributes in this declaration. 02201 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) { 02202 if (!New->hasAttrs()) 02203 return; 02204 02205 const Decl *Def = getDefinition(Old); 02206 if (!Def || Def == New) 02207 return; 02208 02209 AttrVec &NewAttributes = New->getAttrs(); 02210 for (unsigned I = 0, E = NewAttributes.size(); I != E;) { 02211 const Attr *NewAttribute = NewAttributes[I]; 02212 02213 if (isa<AliasAttr>(NewAttribute)) { 02214 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) 02215 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def)); 02216 else { 02217 VarDecl *VD = cast<VarDecl>(New); 02218 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() == 02219 VarDecl::TentativeDefinition 02220 ? diag::err_alias_after_tentative 02221 : diag::err_redefinition; 02222 S.Diag(VD->getLocation(), Diag) << VD->getDeclName(); 02223 S.Diag(Def->getLocation(), diag::note_previous_definition); 02224 VD->setInvalidDecl(); 02225 } 02226 ++I; 02227 continue; 02228 } 02229 02230 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) { 02231 // Tentative definitions are only interesting for the alias check above. 02232 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) { 02233 ++I; 02234 continue; 02235 } 02236 } 02237 02238 if (hasAttribute(Def, NewAttribute->getKind())) { 02239 ++I; 02240 continue; // regular attr merging will take care of validating this. 02241 } 02242 02243 if (isa<C11NoReturnAttr>(NewAttribute)) { 02244 // C's _Noreturn is allowed to be added to a function after it is defined. 02245 ++I; 02246 continue; 02247 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) { 02248 if (AA->isAlignas()) { 02249 // C++11 [dcl.align]p6: 02250 // if any declaration of an entity has an alignment-specifier, 02251 // every defining declaration of that entity shall specify an 02252 // equivalent alignment. 02253 // C11 6.7.5/7: 02254 // If the definition of an object does not have an alignment 02255 // specifier, any other declaration of that object shall also 02256 // have no alignment specifier. 02257 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition) 02258 << AA; 02259 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration) 02260 << AA; 02261 NewAttributes.erase(NewAttributes.begin() + I); 02262 --E; 02263 continue; 02264 } 02265 } 02266 02267 S.Diag(NewAttribute->getLocation(), 02268 diag::warn_attribute_precede_definition); 02269 S.Diag(Def->getLocation(), diag::note_previous_definition); 02270 NewAttributes.erase(NewAttributes.begin() + I); 02271 --E; 02272 } 02273 } 02274 02275 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one. 02276 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old, 02277 AvailabilityMergeKind AMK) { 02278 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) { 02279 UsedAttr *NewAttr = OldAttr->clone(Context); 02280 NewAttr->setInherited(true); 02281 New->addAttr(NewAttr); 02282 } 02283 02284 if (!Old->hasAttrs() && !New->hasAttrs()) 02285 return; 02286 02287 // attributes declared post-definition are currently ignored 02288 checkNewAttributesAfterDef(*this, New, Old); 02289 02290 if (!Old->hasAttrs()) 02291 return; 02292 02293 bool foundAny = New->hasAttrs(); 02294 02295 // Ensure that any moving of objects within the allocated map is done before 02296 // we process them. 02297 if (!foundAny) New->setAttrs(AttrVec()); 02298 02299 for (auto *I : Old->specific_attrs<InheritableAttr>()) { 02300 bool Override = false; 02301 // Ignore deprecated/unavailable/availability attributes if requested. 02302 if (isa<DeprecatedAttr>(I) || 02303 isa<UnavailableAttr>(I) || 02304 isa<AvailabilityAttr>(I)) { 02305 switch (AMK) { 02306 case AMK_None: 02307 continue; 02308 02309 case AMK_Redeclaration: 02310 break; 02311 02312 case AMK_Override: 02313 Override = true; 02314 break; 02315 } 02316 } 02317 02318 // Already handled. 02319 if (isa<UsedAttr>(I)) 02320 continue; 02321 02322 if (mergeDeclAttribute(*this, New, I, Override)) 02323 foundAny = true; 02324 } 02325 02326 if (mergeAlignedAttrs(*this, New, Old)) 02327 foundAny = true; 02328 02329 if (!foundAny) New->dropAttrs(); 02330 } 02331 02332 /// mergeParamDeclAttributes - Copy attributes from the old parameter 02333 /// to the new one. 02334 static void mergeParamDeclAttributes(ParmVarDecl *newDecl, 02335 const ParmVarDecl *oldDecl, 02336 Sema &S) { 02337 // C++11 [dcl.attr.depend]p2: 02338 // The first declaration of a function shall specify the 02339 // carries_dependency attribute for its declarator-id if any declaration 02340 // of the function specifies the carries_dependency attribute. 02341 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>(); 02342 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) { 02343 S.Diag(CDA->getLocation(), 02344 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/; 02345 // Find the first declaration of the parameter. 02346 // FIXME: Should we build redeclaration chains for function parameters? 02347 const FunctionDecl *FirstFD = 02348 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl(); 02349 const ParmVarDecl *FirstVD = 02350 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex()); 02351 S.Diag(FirstVD->getLocation(), 02352 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/; 02353 } 02354 02355 if (!oldDecl->hasAttrs()) 02356 return; 02357 02358 bool foundAny = newDecl->hasAttrs(); 02359 02360 // Ensure that any moving of objects within the allocated map is 02361 // done before we process them. 02362 if (!foundAny) newDecl->setAttrs(AttrVec()); 02363 02364 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) { 02365 if (!DeclHasAttr(newDecl, I)) { 02366 InheritableAttr *newAttr = 02367 cast<InheritableParamAttr>(I->clone(S.Context)); 02368 newAttr->setInherited(true); 02369 newDecl->addAttr(newAttr); 02370 foundAny = true; 02371 } 02372 } 02373 02374 if (!foundAny) newDecl->dropAttrs(); 02375 } 02376 02377 namespace { 02378 02379 /// Used in MergeFunctionDecl to keep track of function parameters in 02380 /// C. 02381 struct GNUCompatibleParamWarning { 02382 ParmVarDecl *OldParm; 02383 ParmVarDecl *NewParm; 02384 QualType PromotedType; 02385 }; 02386 02387 } 02388 02389 /// getSpecialMember - get the special member enum for a method. 02390 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) { 02391 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 02392 if (Ctor->isDefaultConstructor()) 02393 return Sema::CXXDefaultConstructor; 02394 02395 if (Ctor->isCopyConstructor()) 02396 return Sema::CXXCopyConstructor; 02397 02398 if (Ctor->isMoveConstructor()) 02399 return Sema::CXXMoveConstructor; 02400 } else if (isa<CXXDestructorDecl>(MD)) { 02401 return Sema::CXXDestructor; 02402 } else if (MD->isCopyAssignmentOperator()) { 02403 return Sema::CXXCopyAssignment; 02404 } else if (MD->isMoveAssignmentOperator()) { 02405 return Sema::CXXMoveAssignment; 02406 } 02407 02408 return Sema::CXXInvalid; 02409 } 02410 02411 // Determine whether the previous declaration was a definition, implicit 02412 // declaration, or a declaration. 02413 template <typename T> 02414 static std::pair<diag::kind, SourceLocation> 02415 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { 02416 diag::kind PrevDiag; 02417 SourceLocation OldLocation = Old->getLocation(); 02418 if (Old->isThisDeclarationADefinition()) 02419 PrevDiag = diag::note_previous_definition; 02420 else if (Old->isImplicit()) { 02421 PrevDiag = diag::note_previous_implicit_declaration; 02422 if (OldLocation.isInvalid()) 02423 OldLocation = New->getLocation(); 02424 } else 02425 PrevDiag = diag::note_previous_declaration; 02426 return std::make_pair(PrevDiag, OldLocation); 02427 } 02428 02429 /// canRedefineFunction - checks if a function can be redefined. Currently, 02430 /// only extern inline functions can be redefined, and even then only in 02431 /// GNU89 mode. 02432 static bool canRedefineFunction(const FunctionDecl *FD, 02433 const LangOptions& LangOpts) { 02434 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && 02435 !LangOpts.CPlusPlus && 02436 FD->isInlineSpecified() && 02437 FD->getStorageClass() == SC_Extern); 02438 } 02439 02440 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const { 02441 const AttributedType *AT = T->getAs<AttributedType>(); 02442 while (AT && !AT->isCallingConv()) 02443 AT = AT->getModifiedType()->getAs<AttributedType>(); 02444 return AT; 02445 } 02446 02447 template <typename T> 02448 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { 02449 const DeclContext *DC = Old->getDeclContext(); 02450 if (DC->isRecord()) 02451 return false; 02452 02453 LanguageLinkage OldLinkage = Old->getLanguageLinkage(); 02454 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) 02455 return true; 02456 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) 02457 return true; 02458 return false; 02459 } 02460 02461 /// MergeFunctionDecl - We just parsed a function 'New' from 02462 /// declarator D which has the same name and scope as a previous 02463 /// declaration 'Old'. Figure out how to resolve this situation, 02464 /// merging decls or emitting diagnostics as appropriate. 02465 /// 02466 /// In C++, New and Old must be declarations that are not 02467 /// overloaded. Use IsOverload to determine whether New and Old are 02468 /// overloaded, and to select the Old declaration that New should be 02469 /// merged with. 02470 /// 02471 /// Returns true if there was an error, false otherwise. 02472 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, 02473 Scope *S, bool MergeTypeWithOld) { 02474 // Verify the old decl was also a function. 02475 FunctionDecl *Old = OldD->getAsFunction(); 02476 if (!Old) { 02477 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { 02478 if (New->getFriendObjectKind()) { 02479 Diag(New->getLocation(), diag::err_using_decl_friend); 02480 Diag(Shadow->getTargetDecl()->getLocation(), 02481 diag::note_using_decl_target); 02482 Diag(Shadow->getUsingDecl()->getLocation(), 02483 diag::note_using_decl) << 0; 02484 return true; 02485 } 02486 02487 // C++11 [namespace.udecl]p14: 02488 // If a function declaration in namespace scope or block scope has the 02489 // same name and the same parameter-type-list as a function introduced 02490 // by a using-declaration, and the declarations do not declare the same 02491 // function, the program is ill-formed. 02492 02493 // Check whether the two declarations might declare the same function. 02494 Old = dyn_cast<FunctionDecl>(Shadow->getTargetDecl()); 02495 if (Old && 02496 !Old->getDeclContext()->getRedeclContext()->Equals( 02497 New->getDeclContext()->getRedeclContext()) && 02498 !(Old->isExternC() && New->isExternC())) 02499 Old = nullptr; 02500 02501 if (!Old) { 02502 Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); 02503 Diag(Shadow->getTargetDecl()->getLocation(), 02504 diag::note_using_decl_target); 02505 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0; 02506 return true; 02507 } 02508 OldD = Old; 02509 } else { 02510 Diag(New->getLocation(), diag::err_redefinition_different_kind) 02511 << New->getDeclName(); 02512 Diag(OldD->getLocation(), diag::note_previous_definition); 02513 return true; 02514 } 02515 } 02516 02517 // If the old declaration is invalid, just give up here. 02518 if (Old->isInvalidDecl()) 02519 return true; 02520 02521 diag::kind PrevDiag; 02522 SourceLocation OldLocation; 02523 std::tie(PrevDiag, OldLocation) = 02524 getNoteDiagForInvalidRedeclaration(Old, New); 02525 02526 // Don't complain about this if we're in GNU89 mode and the old function 02527 // is an extern inline function. 02528 // Don't complain about specializations. They are not supposed to have 02529 // storage classes. 02530 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && 02531 New->getStorageClass() == SC_Static && 02532 Old->hasExternalFormalLinkage() && 02533 !New->getTemplateSpecializationInfo() && 02534 !canRedefineFunction(Old, getLangOpts())) { 02535 if (getLangOpts().MicrosoftExt) { 02536 Diag(New->getLocation(), diag::ext_static_non_static) << New; 02537 Diag(OldLocation, PrevDiag); 02538 } else { 02539 Diag(New->getLocation(), diag::err_static_non_static) << New; 02540 Diag(OldLocation, PrevDiag); 02541 return true; 02542 } 02543 } 02544 02545 02546 // If a function is first declared with a calling convention, but is later 02547 // declared or defined without one, all following decls assume the calling 02548 // convention of the first. 02549 // 02550 // It's OK if a function is first declared without a calling convention, 02551 // but is later declared or defined with the default calling convention. 02552 // 02553 // To test if either decl has an explicit calling convention, we look for 02554 // AttributedType sugar nodes on the type as written. If they are missing or 02555 // were canonicalized away, we assume the calling convention was implicit. 02556 // 02557 // Note also that we DO NOT return at this point, because we still have 02558 // other tests to run. 02559 QualType OldQType = Context.getCanonicalType(Old->getType()); 02560 QualType NewQType = Context.getCanonicalType(New->getType()); 02561 const FunctionType *OldType = cast<FunctionType>(OldQType); 02562 const FunctionType *NewType = cast<FunctionType>(NewQType); 02563 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); 02564 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); 02565 bool RequiresAdjustment = false; 02566 02567 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) { 02568 FunctionDecl *First = Old->getFirstDecl(); 02569 const FunctionType *FT = 02570 First->getType().getCanonicalType()->castAs<FunctionType>(); 02571 FunctionType::ExtInfo FI = FT->getExtInfo(); 02572 bool NewCCExplicit = getCallingConvAttributedType(New->getType()); 02573 if (!NewCCExplicit) { 02574 // Inherit the CC from the previous declaration if it was specified 02575 // there but not here. 02576 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); 02577 RequiresAdjustment = true; 02578 } else { 02579 // Calling conventions aren't compatible, so complain. 02580 bool FirstCCExplicit = getCallingConvAttributedType(First->getType()); 02581 Diag(New->getLocation(), diag::err_cconv_change) 02582 << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) 02583 << !FirstCCExplicit 02584 << (!FirstCCExplicit ? "" : 02585 FunctionType::getNameForCallConv(FI.getCC())); 02586 02587 // Put the note on the first decl, since it is the one that matters. 02588 Diag(First->getLocation(), diag::note_previous_declaration); 02589 return true; 02590 } 02591 } 02592 02593 // FIXME: diagnose the other way around? 02594 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { 02595 NewTypeInfo = NewTypeInfo.withNoReturn(true); 02596 RequiresAdjustment = true; 02597 } 02598 02599 // Merge regparm attribute. 02600 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || 02601 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { 02602 if (NewTypeInfo.getHasRegParm()) { 02603 Diag(New->getLocation(), diag::err_regparm_mismatch) 02604 << NewType->getRegParmType() 02605 << OldType->getRegParmType(); 02606 Diag(OldLocation, diag::note_previous_declaration); 02607 return true; 02608 } 02609 02610 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); 02611 RequiresAdjustment = true; 02612 } 02613 02614 // Merge ns_returns_retained attribute. 02615 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) { 02616 if (NewTypeInfo.getProducesResult()) { 02617 Diag(New->getLocation(), diag::err_returns_retained_mismatch); 02618 Diag(OldLocation, diag::note_previous_declaration); 02619 return true; 02620 } 02621 02622 NewTypeInfo = NewTypeInfo.withProducesResult(true); 02623 RequiresAdjustment = true; 02624 } 02625 02626 if (RequiresAdjustment) { 02627 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>(); 02628 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo); 02629 New->setType(QualType(AdjustedType, 0)); 02630 NewQType = Context.getCanonicalType(New->getType()); 02631 NewType = cast<FunctionType>(NewQType); 02632 } 02633 02634 // If this redeclaration makes the function inline, we may need to add it to 02635 // UndefinedButUsed. 02636 if (!Old->isInlined() && New->isInlined() && 02637 !New->hasAttr<GNUInlineAttr>() && 02638 (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) && 02639 Old->isUsed(false) && 02640 !Old->isDefined() && !New->isThisDeclarationADefinition()) 02641 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), 02642 SourceLocation())); 02643 02644 // If this redeclaration makes it newly gnu_inline, we don't want to warn 02645 // about it. 02646 if (New->hasAttr<GNUInlineAttr>() && 02647 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) { 02648 UndefinedButUsed.erase(Old->getCanonicalDecl()); 02649 } 02650 02651 if (getLangOpts().CPlusPlus) { 02652 // (C++98 13.1p2): 02653 // Certain function declarations cannot be overloaded: 02654 // -- Function declarations that differ only in the return type 02655 // cannot be overloaded. 02656 02657 // Go back to the type source info to compare the declared return types, 02658 // per C++1y [dcl.type.auto]p13: 02659 // Redeclarations or specializations of a function or function template 02660 // with a declared return type that uses a placeholder type shall also 02661 // use that placeholder, not a deduced type. 02662 QualType OldDeclaredReturnType = 02663 (Old->getTypeSourceInfo() 02664 ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>() 02665 : OldType)->getReturnType(); 02666 QualType NewDeclaredReturnType = 02667 (New->getTypeSourceInfo() 02668 ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>() 02669 : NewType)->getReturnType(); 02670 QualType ResQT; 02671 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) && 02672 !((NewQType->isDependentType() || OldQType->isDependentType()) && 02673 New->isLocalExternDecl())) { 02674 if (NewDeclaredReturnType->isObjCObjectPointerType() && 02675 OldDeclaredReturnType->isObjCObjectPointerType()) 02676 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); 02677 if (ResQT.isNull()) { 02678 if (New->isCXXClassMember() && New->isOutOfLine()) 02679 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type) 02680 << New << New->getReturnTypeSourceRange(); 02681 else 02682 Diag(New->getLocation(), diag::err_ovl_diff_return_type) 02683 << New->getReturnTypeSourceRange(); 02684 Diag(OldLocation, PrevDiag) << Old << Old->getType() 02685 << Old->getReturnTypeSourceRange(); 02686 return true; 02687 } 02688 else 02689 NewQType = ResQT; 02690 } 02691 02692 QualType OldReturnType = OldType->getReturnType(); 02693 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType(); 02694 if (OldReturnType != NewReturnType) { 02695 // If this function has a deduced return type and has already been 02696 // defined, copy the deduced value from the old declaration. 02697 AutoType *OldAT = Old->getReturnType()->getContainedAutoType(); 02698 if (OldAT && OldAT->isDeduced()) { 02699 New->setType( 02700 SubstAutoType(New->getType(), 02701 OldAT->isDependentType() ? Context.DependentTy 02702 : OldAT->getDeducedType())); 02703 NewQType = Context.getCanonicalType( 02704 SubstAutoType(NewQType, 02705 OldAT->isDependentType() ? Context.DependentTy 02706 : OldAT->getDeducedType())); 02707 } 02708 } 02709 02710 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); 02711 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); 02712 if (OldMethod && NewMethod) { 02713 // Preserve triviality. 02714 NewMethod->setTrivial(OldMethod->isTrivial()); 02715 02716 // MSVC allows explicit template specialization at class scope: 02717 // 2 CXXMethodDecls referring to the same function will be injected. 02718 // We don't want a redeclaration error. 02719 bool IsClassScopeExplicitSpecialization = 02720 OldMethod->isFunctionTemplateSpecialization() && 02721 NewMethod->isFunctionTemplateSpecialization(); 02722 bool isFriend = NewMethod->getFriendObjectKind(); 02723 02724 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && 02725 !IsClassScopeExplicitSpecialization) { 02726 // -- Member function declarations with the same name and the 02727 // same parameter types cannot be overloaded if any of them 02728 // is a static member function declaration. 02729 if (OldMethod->isStatic() != NewMethod->isStatic()) { 02730 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); 02731 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 02732 return true; 02733 } 02734 02735 // C++ [class.mem]p1: 02736 // [...] A member shall not be declared twice in the 02737 // member-specification, except that a nested class or member 02738 // class template can be declared and then later defined. 02739 if (ActiveTemplateInstantiations.empty()) { 02740 unsigned NewDiag; 02741 if (isa<CXXConstructorDecl>(OldMethod)) 02742 NewDiag = diag::err_constructor_redeclared; 02743 else if (isa<CXXDestructorDecl>(NewMethod)) 02744 NewDiag = diag::err_destructor_redeclared; 02745 else if (isa<CXXConversionDecl>(NewMethod)) 02746 NewDiag = diag::err_conv_function_redeclared; 02747 else 02748 NewDiag = diag::err_member_redeclared; 02749 02750 Diag(New->getLocation(), NewDiag); 02751 } else { 02752 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation) 02753 << New << New->getType(); 02754 } 02755 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 02756 02757 // Complain if this is an explicit declaration of a special 02758 // member that was initially declared implicitly. 02759 // 02760 // As an exception, it's okay to befriend such methods in order 02761 // to permit the implicit constructor/destructor/operator calls. 02762 } else if (OldMethod->isImplicit()) { 02763 if (isFriend) { 02764 NewMethod->setImplicit(); 02765 } else { 02766 Diag(NewMethod->getLocation(), 02767 diag::err_definition_of_implicitly_declared_member) 02768 << New << getSpecialMember(OldMethod); 02769 return true; 02770 } 02771 } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) { 02772 Diag(NewMethod->getLocation(), 02773 diag::err_definition_of_explicitly_defaulted_member) 02774 << getSpecialMember(OldMethod); 02775 return true; 02776 } 02777 } 02778 02779 // C++11 [dcl.attr.noreturn]p1: 02780 // The first declaration of a function shall specify the noreturn 02781 // attribute if any declaration of that function specifies the noreturn 02782 // attribute. 02783 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>(); 02784 if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) { 02785 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl); 02786 Diag(Old->getFirstDecl()->getLocation(), 02787 diag::note_noreturn_missing_first_decl); 02788 } 02789 02790 // C++11 [dcl.attr.depend]p2: 02791 // The first declaration of a function shall specify the 02792 // carries_dependency attribute for its declarator-id if any declaration 02793 // of the function specifies the carries_dependency attribute. 02794 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>(); 02795 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) { 02796 Diag(CDA->getLocation(), 02797 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/; 02798 Diag(Old->getFirstDecl()->getLocation(), 02799 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/; 02800 } 02801 02802 // (C++98 8.3.5p3): 02803 // All declarations for a function shall agree exactly in both the 02804 // return type and the parameter-type-list. 02805 // We also want to respect all the extended bits except noreturn. 02806 02807 // noreturn should now match unless the old type info didn't have it. 02808 QualType OldQTypeForComparison = OldQType; 02809 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { 02810 assert(OldQType == QualType(OldType, 0)); 02811 const FunctionType *OldTypeForComparison 02812 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); 02813 OldQTypeForComparison = QualType(OldTypeForComparison, 0); 02814 assert(OldQTypeForComparison.isCanonical()); 02815 } 02816 02817 if (haveIncompatibleLanguageLinkages(Old, New)) { 02818 // As a special case, retain the language linkage from previous 02819 // declarations of a friend function as an extension. 02820 // 02821 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC 02822 // and is useful because there's otherwise no way to specify language 02823 // linkage within class scope. 02824 // 02825 // Check cautiously as the friend object kind isn't yet complete. 02826 if (New->getFriendObjectKind() != Decl::FOK_None) { 02827 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New; 02828 Diag(OldLocation, PrevDiag); 02829 } else { 02830 Diag(New->getLocation(), diag::err_different_language_linkage) << New; 02831 Diag(OldLocation, PrevDiag); 02832 return true; 02833 } 02834 } 02835 02836 if (OldQTypeForComparison == NewQType) 02837 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 02838 02839 if ((NewQType->isDependentType() || OldQType->isDependentType()) && 02840 New->isLocalExternDecl()) { 02841 // It's OK if we couldn't merge types for a local function declaraton 02842 // if either the old or new type is dependent. We'll merge the types 02843 // when we instantiate the function. 02844 return false; 02845 } 02846 02847 // Fall through for conflicting redeclarations and redefinitions. 02848 } 02849 02850 // C: Function types need to be compatible, not identical. This handles 02851 // duplicate function decls like "void f(int); void f(enum X);" properly. 02852 if (!getLangOpts().CPlusPlus && 02853 Context.typesAreCompatible(OldQType, NewQType)) { 02854 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); 02855 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); 02856 const FunctionProtoType *OldProto = nullptr; 02857 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) && 02858 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { 02859 // The old declaration provided a function prototype, but the 02860 // new declaration does not. Merge in the prototype. 02861 assert(!OldProto->hasExceptionSpec() && "Exception spec in C"); 02862 SmallVector<QualType, 16> ParamTypes(OldProto->param_types()); 02863 NewQType = 02864 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes, 02865 OldProto->getExtProtoInfo()); 02866 New->setType(NewQType); 02867 New->setHasInheritedPrototype(); 02868 02869 // Synthesize parameters with the same types. 02870 SmallVector<ParmVarDecl*, 16> Params; 02871 for (const auto &ParamType : OldProto->param_types()) { 02872 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(), 02873 SourceLocation(), nullptr, 02874 ParamType, /*TInfo=*/nullptr, 02875 SC_None, nullptr); 02876 Param->setScopeInfo(0, Params.size()); 02877 Param->setImplicit(); 02878 Params.push_back(Param); 02879 } 02880 02881 New->setParams(Params); 02882 } 02883 02884 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 02885 } 02886 02887 // GNU C permits a K&R definition to follow a prototype declaration 02888 // if the declared types of the parameters in the K&R definition 02889 // match the types in the prototype declaration, even when the 02890 // promoted types of the parameters from the K&R definition differ 02891 // from the types in the prototype. GCC then keeps the types from 02892 // the prototype. 02893 // 02894 // If a variadic prototype is followed by a non-variadic K&R definition, 02895 // the K&R definition becomes variadic. This is sort of an edge case, but 02896 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and 02897 // C99 6.9.1p8. 02898 if (!getLangOpts().CPlusPlus && 02899 Old->hasPrototype() && !New->hasPrototype() && 02900 New->getType()->getAs<FunctionProtoType>() && 02901 Old->getNumParams() == New->getNumParams()) { 02902 SmallVector<QualType, 16> ArgTypes; 02903 SmallVector<GNUCompatibleParamWarning, 16> Warnings; 02904 const FunctionProtoType *OldProto 02905 = Old->getType()->getAs<FunctionProtoType>(); 02906 const FunctionProtoType *NewProto 02907 = New->getType()->getAs<FunctionProtoType>(); 02908 02909 // Determine whether this is the GNU C extension. 02910 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(), 02911 NewProto->getReturnType()); 02912 bool LooseCompatible = !MergedReturn.isNull(); 02913 for (unsigned Idx = 0, End = Old->getNumParams(); 02914 LooseCompatible && Idx != End; ++Idx) { 02915 ParmVarDecl *OldParm = Old->getParamDecl(Idx); 02916 ParmVarDecl *NewParm = New->getParamDecl(Idx); 02917 if (Context.typesAreCompatible(OldParm->getType(), 02918 NewProto->getParamType(Idx))) { 02919 ArgTypes.push_back(NewParm->getType()); 02920 } else if (Context.typesAreCompatible(OldParm->getType(), 02921 NewParm->getType(), 02922 /*CompareUnqualified=*/true)) { 02923 GNUCompatibleParamWarning Warn = { OldParm, NewParm, 02924 NewProto->getParamType(Idx) }; 02925 Warnings.push_back(Warn); 02926 ArgTypes.push_back(NewParm->getType()); 02927 } else 02928 LooseCompatible = false; 02929 } 02930 02931 if (LooseCompatible) { 02932 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { 02933 Diag(Warnings[Warn].NewParm->getLocation(), 02934 diag::ext_param_promoted_not_compatible_with_prototype) 02935 << Warnings[Warn].PromotedType 02936 << Warnings[Warn].OldParm->getType(); 02937 if (Warnings[Warn].OldParm->getLocation().isValid()) 02938 Diag(Warnings[Warn].OldParm->getLocation(), 02939 diag::note_previous_declaration); 02940 } 02941 02942 if (MergeTypeWithOld) 02943 New->setType(Context.getFunctionType(MergedReturn, ArgTypes, 02944 OldProto->getExtProtoInfo())); 02945 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 02946 } 02947 02948 // Fall through to diagnose conflicting types. 02949 } 02950 02951 // A function that has already been declared has been redeclared or 02952 // defined with a different type; show an appropriate diagnostic. 02953 02954 // If the previous declaration was an implicitly-generated builtin 02955 // declaration, then at the very least we should use a specialized note. 02956 unsigned BuiltinID; 02957 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) { 02958 // If it's actually a library-defined builtin function like 'malloc' 02959 // or 'printf', just warn about the incompatible redeclaration. 02960 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { 02961 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; 02962 Diag(OldLocation, diag::note_previous_builtin_declaration) 02963 << Old << Old->getType(); 02964 02965 // If this is a global redeclaration, just forget hereafter 02966 // about the "builtin-ness" of the function. 02967 // 02968 // Doing this for local extern declarations is problematic. If 02969 // the builtin declaration remains visible, a second invalid 02970 // local declaration will produce a hard error; if it doesn't 02971 // remain visible, a single bogus local redeclaration (which is 02972 // actually only a warning) could break all the downstream code. 02973 if (!New->getLexicalDeclContext()->isFunctionOrMethod()) 02974 New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin); 02975 02976 return false; 02977 } 02978 02979 PrevDiag = diag::note_previous_builtin_declaration; 02980 } 02981 02982 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); 02983 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 02984 return true; 02985 } 02986 02987 /// \brief Completes the merge of two function declarations that are 02988 /// known to be compatible. 02989 /// 02990 /// This routine handles the merging of attributes and other 02991 /// properties of function declarations from the old declaration to 02992 /// the new declaration, once we know that New is in fact a 02993 /// redeclaration of Old. 02994 /// 02995 /// \returns false 02996 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, 02997 Scope *S, bool MergeTypeWithOld) { 02998 // Merge the attributes 02999 mergeDeclAttributes(New, Old); 03000 03001 // Merge "pure" flag. 03002 if (Old->isPure()) 03003 New->setPure(); 03004 03005 // Merge "used" flag. 03006 if (Old->getMostRecentDecl()->isUsed(false)) 03007 New->setIsUsed(); 03008 03009 // Merge attributes from the parameters. These can mismatch with K&R 03010 // declarations. 03011 if (New->getNumParams() == Old->getNumParams()) 03012 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) 03013 mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i), 03014 *this); 03015 03016 if (getLangOpts().CPlusPlus) 03017 return MergeCXXFunctionDecl(New, Old, S); 03018 03019 // Merge the function types so the we get the composite types for the return 03020 // and argument types. Per C11 6.2.7/4, only update the type if the old decl 03021 // was visible. 03022 QualType Merged = Context.mergeTypes(Old->getType(), New->getType()); 03023 if (!Merged.isNull() && MergeTypeWithOld) 03024 New->setType(Merged); 03025 03026 return false; 03027 } 03028 03029 03030 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, 03031 ObjCMethodDecl *oldMethod) { 03032 03033 // Merge the attributes, including deprecated/unavailable 03034 AvailabilityMergeKind MergeKind = 03035 isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration 03036 : AMK_Override; 03037 mergeDeclAttributes(newMethod, oldMethod, MergeKind); 03038 03039 // Merge attributes from the parameters. 03040 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(), 03041 oe = oldMethod->param_end(); 03042 for (ObjCMethodDecl::param_iterator 03043 ni = newMethod->param_begin(), ne = newMethod->param_end(); 03044 ni != ne && oi != oe; ++ni, ++oi) 03045 mergeParamDeclAttributes(*ni, *oi, *this); 03046 03047 CheckObjCMethodOverride(newMethod, oldMethod); 03048 } 03049 03050 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and 03051 /// scope as a previous declaration 'Old'. Figure out how to merge their types, 03052 /// emitting diagnostics as appropriate. 03053 /// 03054 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back 03055 /// to here in AddInitializerToDecl. We can't check them before the initializer 03056 /// is attached. 03057 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, 03058 bool MergeTypeWithOld) { 03059 if (New->isInvalidDecl() || Old->isInvalidDecl()) 03060 return; 03061 03062 QualType MergedT; 03063 if (getLangOpts().CPlusPlus) { 03064 if (New->getType()->isUndeducedType()) { 03065 // We don't know what the new type is until the initializer is attached. 03066 return; 03067 } else if (Context.hasSameType(New->getType(), Old->getType())) { 03068 // These could still be something that needs exception specs checked. 03069 return MergeVarDeclExceptionSpecs(New, Old); 03070 } 03071 // C++ [basic.link]p10: 03072 // [...] the types specified by all declarations referring to a given 03073 // object or function shall be identical, except that declarations for an 03074 // array object can specify array types that differ by the presence or 03075 // absence of a major array bound (8.3.4). 03076 else if (Old->getType()->isIncompleteArrayType() && 03077 New->getType()->isArrayType()) { 03078 const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); 03079 const ArrayType *NewArray = Context.getAsArrayType(New->getType()); 03080 if (Context.hasSameType(OldArray->getElementType(), 03081 NewArray->getElementType())) 03082 MergedT = New->getType(); 03083 } else if (Old->getType()->isArrayType() && 03084 New->getType()->isIncompleteArrayType()) { 03085 const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); 03086 const ArrayType *NewArray = Context.getAsArrayType(New->getType()); 03087 if (Context.hasSameType(OldArray->getElementType(), 03088 NewArray->getElementType())) 03089 MergedT = Old->getType(); 03090 } else if (New->getType()->isObjCObjectPointerType() && 03091 Old->getType()->isObjCObjectPointerType()) { 03092 MergedT = Context.mergeObjCGCQualifiers(New->getType(), 03093 Old->getType()); 03094 } 03095 } else { 03096 // C 6.2.7p2: 03097 // All declarations that refer to the same object or function shall have 03098 // compatible type. 03099 MergedT = Context.mergeTypes(New->getType(), Old->getType()); 03100 } 03101 if (MergedT.isNull()) { 03102 // It's OK if we couldn't merge types if either type is dependent, for a 03103 // block-scope variable. In other cases (static data members of class 03104 // templates, variable templates, ...), we require the types to be 03105 // equivalent. 03106 // FIXME: The C++ standard doesn't say anything about this. 03107 if ((New->getType()->isDependentType() || 03108 Old->getType()->isDependentType()) && New->isLocalVarDecl()) { 03109 // If the old type was dependent, we can't merge with it, so the new type 03110 // becomes dependent for now. We'll reproduce the original type when we 03111 // instantiate the TypeSourceInfo for the variable. 03112 if (!New->getType()->isDependentType() && MergeTypeWithOld) 03113 New->setType(Context.DependentTy); 03114 return; 03115 } 03116 03117 // FIXME: Even if this merging succeeds, some other non-visible declaration 03118 // of this variable might have an incompatible type. For instance: 03119 // 03120 // extern int arr[]; 03121 // void f() { extern int arr[2]; } 03122 // void g() { extern int arr[3]; } 03123 // 03124 // Neither C nor C++ requires a diagnostic for this, but we should still try 03125 // to diagnose it. 03126 Diag(New->getLocation(), diag::err_redefinition_different_type) 03127 << New->getDeclName() << New->getType() << Old->getType(); 03128 Diag(Old->getLocation(), diag::note_previous_definition); 03129 return New->setInvalidDecl(); 03130 } 03131 03132 // Don't actually update the type on the new declaration if the old 03133 // declaration was an extern declaration in a different scope. 03134 if (MergeTypeWithOld) 03135 New->setType(MergedT); 03136 } 03137 03138 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, 03139 LookupResult &Previous) { 03140 // C11 6.2.7p4: 03141 // For an identifier with internal or external linkage declared 03142 // in a scope in which a prior declaration of that identifier is 03143 // visible, if the prior declaration specifies internal or 03144 // external linkage, the type of the identifier at the later 03145 // declaration becomes the composite type. 03146 // 03147 // If the variable isn't visible, we do not merge with its type. 03148 if (Previous.isShadowed()) 03149 return false; 03150 03151 if (S.getLangOpts().CPlusPlus) { 03152 // C++11 [dcl.array]p3: 03153 // If there is a preceding declaration of the entity in the same 03154 // scope in which the bound was specified, an omitted array bound 03155 // is taken to be the same as in that earlier declaration. 03156 return NewVD->isPreviousDeclInSameBlockScope() || 03157 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() && 03158 !NewVD->getLexicalDeclContext()->isFunctionOrMethod()); 03159 } else { 03160 // If the old declaration was function-local, don't merge with its 03161 // type unless we're in the same function. 03162 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() || 03163 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext(); 03164 } 03165 } 03166 03167 /// MergeVarDecl - We just parsed a variable 'New' which has the same name 03168 /// and scope as a previous declaration 'Old'. Figure out how to resolve this 03169 /// situation, merging decls or emitting diagnostics as appropriate. 03170 /// 03171 /// Tentative definition rules (C99 6.9.2p2) are checked by 03172 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative 03173 /// definitions here, since the initializer hasn't been attached. 03174 /// 03175 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { 03176 // If the new decl is already invalid, don't do any other checking. 03177 if (New->isInvalidDecl()) 03178 return; 03179 03180 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate(); 03181 03182 // Verify the old decl was also a variable or variable template. 03183 VarDecl *Old = nullptr; 03184 VarTemplateDecl *OldTemplate = nullptr; 03185 if (Previous.isSingleResult()) { 03186 if (NewTemplate) { 03187 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl()); 03188 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr; 03189 } else 03190 Old = dyn_cast<VarDecl>(Previous.getFoundDecl()); 03191 } 03192 if (!Old) { 03193 Diag(New->getLocation(), diag::err_redefinition_different_kind) 03194 << New->getDeclName(); 03195 Diag(Previous.getRepresentativeDecl()->getLocation(), 03196 diag::note_previous_definition); 03197 return New->setInvalidDecl(); 03198 } 03199 03200 if (!shouldLinkPossiblyHiddenDecl(Old, New)) 03201 return; 03202 03203 // Ensure the template parameters are compatible. 03204 if (NewTemplate && 03205 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 03206 OldTemplate->getTemplateParameters(), 03207 /*Complain=*/true, TPL_TemplateMatch)) 03208 return; 03209 03210 // C++ [class.mem]p1: 03211 // A member shall not be declared twice in the member-specification [...] 03212 // 03213 // Here, we need only consider static data members. 03214 if (Old->isStaticDataMember() && !New->isOutOfLine()) { 03215 Diag(New->getLocation(), diag::err_duplicate_member) 03216 << New->getIdentifier(); 03217 Diag(Old->getLocation(), diag::note_previous_declaration); 03218 New->setInvalidDecl(); 03219 } 03220 03221 mergeDeclAttributes(New, Old); 03222 // Warn if an already-declared variable is made a weak_import in a subsequent 03223 // declaration 03224 if (New->hasAttr<WeakImportAttr>() && 03225 Old->getStorageClass() == SC_None && 03226 !Old->hasAttr<WeakImportAttr>()) { 03227 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); 03228 Diag(Old->getLocation(), diag::note_previous_definition); 03229 // Remove weak_import attribute on new declaration. 03230 New->dropAttr<WeakImportAttr>(); 03231 } 03232 03233 // Merge the types. 03234 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous)); 03235 03236 if (New->isInvalidDecl()) 03237 return; 03238 03239 diag::kind PrevDiag; 03240 SourceLocation OldLocation; 03241 std::tie(PrevDiag, OldLocation) = 03242 getNoteDiagForInvalidRedeclaration(Old, New); 03243 03244 // [dcl.stc]p8: Check if we have a non-static decl followed by a static. 03245 if (New->getStorageClass() == SC_Static && 03246 !New->isStaticDataMember() && 03247 Old->hasExternalFormalLinkage()) { 03248 if (getLangOpts().MicrosoftExt) { 03249 Diag(New->getLocation(), diag::ext_static_non_static) 03250 << New->getDeclName(); 03251 Diag(OldLocation, PrevDiag); 03252 } else { 03253 Diag(New->getLocation(), diag::err_static_non_static) 03254 << New->getDeclName(); 03255 Diag(OldLocation, PrevDiag); 03256 return New->setInvalidDecl(); 03257 } 03258 } 03259 // C99 6.2.2p4: 03260 // For an identifier declared with the storage-class specifier 03261 // extern in a scope in which a prior declaration of that 03262 // identifier is visible,23) if the prior declaration specifies 03263 // internal or external linkage, the linkage of the identifier at 03264 // the later declaration is the same as the linkage specified at 03265 // the prior declaration. If no prior declaration is visible, or 03266 // if the prior declaration specifies no linkage, then the 03267 // identifier has external linkage. 03268 if (New->hasExternalStorage() && Old->hasLinkage()) 03269 /* Okay */; 03270 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static && 03271 !New->isStaticDataMember() && 03272 Old->getCanonicalDecl()->getStorageClass() == SC_Static) { 03273 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); 03274 Diag(OldLocation, PrevDiag); 03275 return New->setInvalidDecl(); 03276 } 03277 03278 // Check if extern is followed by non-extern and vice-versa. 03279 if (New->hasExternalStorage() && 03280 !Old->hasLinkage() && Old->isLocalVarDecl()) { 03281 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); 03282 Diag(OldLocation, PrevDiag); 03283 return New->setInvalidDecl(); 03284 } 03285 if (Old->hasLinkage() && New->isLocalVarDecl() && 03286 !New->hasExternalStorage()) { 03287 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); 03288 Diag(OldLocation, PrevDiag); 03289 return New->setInvalidDecl(); 03290 } 03291 03292 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. 03293 03294 // FIXME: The test for external storage here seems wrong? We still 03295 // need to check for mismatches. 03296 if (!New->hasExternalStorage() && !New->isFileVarDecl() && 03297 // Don't complain about out-of-line definitions of static members. 03298 !(Old->getLexicalDeclContext()->isRecord() && 03299 !New->getLexicalDeclContext()->isRecord())) { 03300 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); 03301 Diag(OldLocation, PrevDiag); 03302 return New->setInvalidDecl(); 03303 } 03304 03305 if (New->getTLSKind() != Old->getTLSKind()) { 03306 if (!Old->getTLSKind()) { 03307 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); 03308 Diag(OldLocation, PrevDiag); 03309 } else if (!New->getTLSKind()) { 03310 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); 03311 Diag(OldLocation, PrevDiag); 03312 } else { 03313 // Do not allow redeclaration to change the variable between requiring 03314 // static and dynamic initialization. 03315 // FIXME: GCC allows this, but uses the TLS keyword on the first 03316 // declaration to determine the kind. Do we need to be compatible here? 03317 Diag(New->getLocation(), diag::err_thread_thread_different_kind) 03318 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic); 03319 Diag(OldLocation, PrevDiag); 03320 } 03321 } 03322 03323 // C++ doesn't have tentative definitions, so go right ahead and check here. 03324 const VarDecl *Def; 03325 if (getLangOpts().CPlusPlus && 03326 New->isThisDeclarationADefinition() == VarDecl::Definition && 03327 (Def = Old->getDefinition())) { 03328 Diag(New->getLocation(), diag::err_redefinition) << New; 03329 Diag(Def->getLocation(), diag::note_previous_definition); 03330 New->setInvalidDecl(); 03331 return; 03332 } 03333 03334 if (haveIncompatibleLanguageLinkages(Old, New)) { 03335 Diag(New->getLocation(), diag::err_different_language_linkage) << New; 03336 Diag(OldLocation, PrevDiag); 03337 New->setInvalidDecl(); 03338 return; 03339 } 03340 03341 // Merge "used" flag. 03342 if (Old->getMostRecentDecl()->isUsed(false)) 03343 New->setIsUsed(); 03344 03345 // Keep a chain of previous declarations. 03346 New->setPreviousDecl(Old); 03347 if (NewTemplate) 03348 NewTemplate->setPreviousDecl(OldTemplate); 03349 03350 // Inherit access appropriately. 03351 New->setAccess(Old->getAccess()); 03352 if (NewTemplate) 03353 NewTemplate->setAccess(New->getAccess()); 03354 } 03355 03356 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with 03357 /// no declarator (e.g. "struct foo;") is parsed. 03358 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, 03359 DeclSpec &DS) { 03360 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg()); 03361 } 03362 03363 static void HandleTagNumbering(Sema &S, const TagDecl *Tag, Scope *TagScope) { 03364 if (!S.Context.getLangOpts().CPlusPlus) 03365 return; 03366 03367 if (isa<CXXRecordDecl>(Tag->getParent())) { 03368 // If this tag is the direct child of a class, number it if 03369 // it is anonymous. 03370 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl()) 03371 return; 03372 MangleNumberingContext &MCtx = 03373 S.Context.getManglingNumberContext(Tag->getParent()); 03374 S.Context.setManglingNumber( 03375 Tag, MCtx.getManglingNumber(Tag, TagScope->getMSLocalManglingNumber())); 03376 return; 03377 } 03378 03379 // If this tag isn't a direct child of a class, number it if it is local. 03380 Decl *ManglingContextDecl; 03381 if (MangleNumberingContext *MCtx = 03382 S.getCurrentMangleNumberContext(Tag->getDeclContext(), 03383 ManglingContextDecl)) { 03384 S.Context.setManglingNumber( 03385 Tag, 03386 MCtx->getManglingNumber(Tag, TagScope->getMSLocalManglingNumber())); 03387 } 03388 } 03389 03390 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with 03391 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template 03392 /// parameters to cope with template friend declarations. 03393 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, 03394 DeclSpec &DS, 03395 MultiTemplateParamsArg TemplateParams, 03396 bool IsExplicitInstantiation) { 03397 Decl *TagD = nullptr; 03398 TagDecl *Tag = nullptr; 03399 if (DS.getTypeSpecType() == DeclSpec::TST_class || 03400 DS.getTypeSpecType() == DeclSpec::TST_struct || 03401 DS.getTypeSpecType() == DeclSpec::TST_interface || 03402 DS.getTypeSpecType() == DeclSpec::TST_union || 03403 DS.getTypeSpecType() == DeclSpec::TST_enum) { 03404 TagD = DS.getRepAsDecl(); 03405 03406 if (!TagD) // We probably had an error 03407 return nullptr; 03408 03409 // Note that the above type specs guarantee that the 03410 // type rep is a Decl, whereas in many of the others 03411 // it's a Type. 03412 if (isa<TagDecl>(TagD)) 03413 Tag = cast<TagDecl>(TagD); 03414 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD)) 03415 Tag = CTD->getTemplatedDecl(); 03416 } 03417 03418 if (Tag) { 03419 HandleTagNumbering(*this, Tag, S); 03420 Tag->setFreeStanding(); 03421 if (Tag->isInvalidDecl()) 03422 return Tag; 03423 } 03424 03425 if (unsigned TypeQuals = DS.getTypeQualifiers()) { 03426 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object 03427 // or incomplete types shall not be restrict-qualified." 03428 if (TypeQuals & DeclSpec::TQ_restrict) 03429 Diag(DS.getRestrictSpecLoc(), 03430 diag::err_typecheck_invalid_restrict_not_pointer_noarg) 03431 << DS.getSourceRange(); 03432 } 03433 03434 if (DS.isConstexprSpecified()) { 03435 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations 03436 // and definitions of functions and variables. 03437 if (Tag) 03438 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) 03439 << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 : 03440 DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 : 03441 DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 : 03442 DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4); 03443 else 03444 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators); 03445 // Don't emit warnings after this error. 03446 return TagD; 03447 } 03448 03449 DiagnoseFunctionSpecifiers(DS); 03450 03451 if (DS.isFriendSpecified()) { 03452 // If we're dealing with a decl but not a TagDecl, assume that 03453 // whatever routines created it handled the friendship aspect. 03454 if (TagD && !Tag) 03455 return nullptr; 03456 return ActOnFriendTypeDecl(S, DS, TemplateParams); 03457 } 03458 03459 CXXScopeSpec &SS = DS.getTypeSpecScope(); 03460 bool IsExplicitSpecialization = 03461 !TemplateParams.empty() && TemplateParams.back()->size() == 0; 03462 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() && 03463 !IsExplicitInstantiation && !IsExplicitSpecialization) { 03464 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a 03465 // nested-name-specifier unless it is an explicit instantiation 03466 // or an explicit specialization. 03467 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either. 03468 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier) 03469 << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 : 03470 DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 : 03471 DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 : 03472 DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4) 03473 << SS.getRange(); 03474 return nullptr; 03475 } 03476 03477 // Track whether this decl-specifier declares anything. 03478 bool DeclaresAnything = true; 03479 03480 // Handle anonymous struct definitions. 03481 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { 03482 if (!Record->getDeclName() && Record->isCompleteDefinition() && 03483 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { 03484 if (getLangOpts().CPlusPlus || 03485 Record->getDeclContext()->isRecord()) 03486 return BuildAnonymousStructOrUnion(S, DS, AS, Record, Context.getPrintingPolicy()); 03487 03488 DeclaresAnything = false; 03489 } 03490 } 03491 03492 // C11 6.7.2.1p2: 03493 // A struct-declaration that does not declare an anonymous structure or 03494 // anonymous union shall contain a struct-declarator-list. 03495 // 03496 // This rule also existed in C89 and C99; the grammar for struct-declaration 03497 // did not permit a struct-declaration without a struct-declarator-list. 03498 if (!getLangOpts().CPlusPlus && CurContext->isRecord() && 03499 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { 03500 // Check for Microsoft C extension: anonymous struct/union member. 03501 // Handle 2 kinds of anonymous struct/union: 03502 // struct STRUCT; 03503 // union UNION; 03504 // and 03505 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct. 03506 // UNION_TYPE; <- where UNION_TYPE is a typedef union. 03507 if ((Tag && Tag->getDeclName()) || 03508 DS.getTypeSpecType() == DeclSpec::TST_typename) { 03509 RecordDecl *Record = nullptr; 03510 if (Tag) 03511 Record = dyn_cast<RecordDecl>(Tag); 03512 else if (const RecordType *RT = 03513 DS.getRepAsType().get()->getAsStructureType()) 03514 Record = RT->getDecl(); 03515 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType()) 03516 Record = UT->getDecl(); 03517 03518 if (Record && getLangOpts().MicrosoftExt) { 03519 Diag(DS.getLocStart(), diag::ext_ms_anonymous_record) 03520 << Record->isUnion() << DS.getSourceRange(); 03521 return BuildMicrosoftCAnonymousStruct(S, DS, Record); 03522 } 03523 03524 DeclaresAnything = false; 03525 } 03526 } 03527 03528 // Skip all the checks below if we have a type error. 03529 if (DS.getTypeSpecType() == DeclSpec::TST_error || 03530 (TagD && TagD->isInvalidDecl())) 03531 return TagD; 03532 03533 if (getLangOpts().CPlusPlus && 03534 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) 03535 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) 03536 if (Enum->enumerator_begin() == Enum->enumerator_end() && 03537 !Enum->getIdentifier() && !Enum->isInvalidDecl()) 03538 DeclaresAnything = false; 03539 03540 if (!DS.isMissingDeclaratorOk()) { 03541 // Customize diagnostic for a typedef missing a name. 03542 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 03543 Diag(DS.getLocStart(), diag::ext_typedef_without_a_name) 03544 << DS.getSourceRange(); 03545 else 03546 DeclaresAnything = false; 03547 } 03548 03549 if (DS.isModulePrivateSpecified() && 03550 Tag && Tag->getDeclContext()->isFunctionOrMethod()) 03551 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) 03552 << Tag->getTagKind() 03553 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); 03554 03555 ActOnDocumentableDecl(TagD); 03556 03557 // C 6.7/2: 03558 // A declaration [...] shall declare at least a declarator [...], a tag, 03559 // or the members of an enumeration. 03560 // C++ [dcl.dcl]p3: 03561 // [If there are no declarators], and except for the declaration of an 03562 // unnamed bit-field, the decl-specifier-seq shall introduce one or more 03563 // names into the program, or shall redeclare a name introduced by a 03564 // previous declaration. 03565 if (!DeclaresAnything) { 03566 // In C, we allow this as a (popular) extension / bug. Don't bother 03567 // producing further diagnostics for redundant qualifiers after this. 03568 Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange(); 03569 return TagD; 03570 } 03571 03572 // C++ [dcl.stc]p1: 03573 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the 03574 // init-declarator-list of the declaration shall not be empty. 03575 // C++ [dcl.fct.spec]p1: 03576 // If a cv-qualifier appears in a decl-specifier-seq, the 03577 // init-declarator-list of the declaration shall not be empty. 03578 // 03579 // Spurious qualifiers here appear to be valid in C. 03580 unsigned DiagID = diag::warn_standalone_specifier; 03581 if (getLangOpts().CPlusPlus) 03582 DiagID = diag::ext_standalone_specifier; 03583 03584 // Note that a linkage-specification sets a storage class, but 03585 // 'extern "C" struct foo;' is actually valid and not theoretically 03586 // useless. 03587 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { 03588 if (SCS == DeclSpec::SCS_mutable) 03589 // Since mutable is not a viable storage class specifier in C, there is 03590 // no reason to treat it as an extension. Instead, diagnose as an error. 03591 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember); 03592 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef) 03593 Diag(DS.getStorageClassSpecLoc(), DiagID) 03594 << DeclSpec::getSpecifierName(SCS); 03595 } 03596 03597 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) 03598 Diag(DS.getThreadStorageClassSpecLoc(), DiagID) 03599 << DeclSpec::getSpecifierName(TSCS); 03600 if (DS.getTypeQualifiers()) { 03601 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 03602 Diag(DS.getConstSpecLoc(), DiagID) << "const"; 03603 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 03604 Diag(DS.getConstSpecLoc(), DiagID) << "volatile"; 03605 // Restrict is covered above. 03606 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 03607 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic"; 03608 } 03609 03610 // Warn about ignored type attributes, for example: 03611 // __attribute__((aligned)) struct A; 03612 // Attributes should be placed after tag to apply to type declaration. 03613 if (!DS.getAttributes().empty()) { 03614 DeclSpec::TST TypeSpecType = DS.getTypeSpecType(); 03615 if (TypeSpecType == DeclSpec::TST_class || 03616 TypeSpecType == DeclSpec::TST_struct || 03617 TypeSpecType == DeclSpec::TST_interface || 03618 TypeSpecType == DeclSpec::TST_union || 03619 TypeSpecType == DeclSpec::TST_enum) { 03620 AttributeList* attrs = DS.getAttributes().getList(); 03621 while (attrs) { 03622 Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored) 03623 << attrs->getName() 03624 << (TypeSpecType == DeclSpec::TST_class ? 0 : 03625 TypeSpecType == DeclSpec::TST_struct ? 1 : 03626 TypeSpecType == DeclSpec::TST_union ? 2 : 03627 TypeSpecType == DeclSpec::TST_interface ? 3 : 4); 03628 attrs = attrs->getNext(); 03629 } 03630 } 03631 } 03632 03633 return TagD; 03634 } 03635 03636 /// We are trying to inject an anonymous member into the given scope; 03637 /// check if there's an existing declaration that can't be overloaded. 03638 /// 03639 /// \return true if this is a forbidden redeclaration 03640 static bool CheckAnonMemberRedeclaration(Sema &SemaRef, 03641 Scope *S, 03642 DeclContext *Owner, 03643 DeclarationName Name, 03644 SourceLocation NameLoc, 03645 unsigned diagnostic) { 03646 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, 03647 Sema::ForRedeclaration); 03648 if (!SemaRef.LookupName(R, S)) return false; 03649 03650 if (R.getAsSingle<TagDecl>()) 03651 return false; 03652 03653 // Pick a representative declaration. 03654 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); 03655 assert(PrevDecl && "Expected a non-null Decl"); 03656 03657 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) 03658 return false; 03659 03660 SemaRef.Diag(NameLoc, diagnostic) << Name; 03661 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 03662 03663 return true; 03664 } 03665 03666 /// InjectAnonymousStructOrUnionMembers - Inject the members of the 03667 /// anonymous struct or union AnonRecord into the owning context Owner 03668 /// and scope S. This routine will be invoked just after we realize 03669 /// that an unnamed union or struct is actually an anonymous union or 03670 /// struct, e.g., 03671 /// 03672 /// @code 03673 /// union { 03674 /// int i; 03675 /// float f; 03676 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and 03677 /// // f into the surrounding scope.x 03678 /// @endcode 03679 /// 03680 /// This routine is recursive, injecting the names of nested anonymous 03681 /// structs/unions into the owning context and scope as well. 03682 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, 03683 DeclContext *Owner, 03684 RecordDecl *AnonRecord, 03685 AccessSpecifier AS, 03686 SmallVectorImpl<NamedDecl *> &Chaining, 03687 bool MSAnonStruct) { 03688 unsigned diagKind 03689 = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl 03690 : diag::err_anonymous_struct_member_redecl; 03691 03692 bool Invalid = false; 03693 03694 // Look every FieldDecl and IndirectFieldDecl with a name. 03695 for (auto *D : AnonRecord->decls()) { 03696 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) && 03697 cast<NamedDecl>(D)->getDeclName()) { 03698 ValueDecl *VD = cast<ValueDecl>(D); 03699 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), 03700 VD->getLocation(), diagKind)) { 03701 // C++ [class.union]p2: 03702 // The names of the members of an anonymous union shall be 03703 // distinct from the names of any other entity in the 03704 // scope in which the anonymous union is declared. 03705 Invalid = true; 03706 } else { 03707 // C++ [class.union]p2: 03708 // For the purpose of name lookup, after the anonymous union 03709 // definition, the members of the anonymous union are 03710 // considered to have been defined in the scope in which the 03711 // anonymous union is declared. 03712 unsigned OldChainingSize = Chaining.size(); 03713 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) 03714 for (auto *PI : IF->chain()) 03715 Chaining.push_back(PI); 03716 else 03717 Chaining.push_back(VD); 03718 03719 assert(Chaining.size() >= 2); 03720 NamedDecl **NamedChain = 03721 new (SemaRef.Context)NamedDecl*[Chaining.size()]; 03722 for (unsigned i = 0; i < Chaining.size(); i++) 03723 NamedChain[i] = Chaining[i]; 03724 03725 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( 03726 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(), 03727 VD->getType(), NamedChain, Chaining.size()); 03728 03729 for (const auto *Attr : VD->attrs()) 03730 IndirectField->addAttr(Attr->clone(SemaRef.Context)); 03731 03732 IndirectField->setAccess(AS); 03733 IndirectField->setImplicit(); 03734 SemaRef.PushOnScopeChains(IndirectField, S); 03735 03736 // That includes picking up the appropriate access specifier. 03737 if (AS != AS_none) IndirectField->setAccess(AS); 03738 03739 Chaining.resize(OldChainingSize); 03740 } 03741 } 03742 } 03743 03744 return Invalid; 03745 } 03746 03747 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to 03748 /// a VarDecl::StorageClass. Any error reporting is up to the caller: 03749 /// illegal input values are mapped to SC_None. 03750 static StorageClass 03751 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) { 03752 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec(); 03753 assert(StorageClassSpec != DeclSpec::SCS_typedef && 03754 "Parser allowed 'typedef' as storage class VarDecl."); 03755 switch (StorageClassSpec) { 03756 case DeclSpec::SCS_unspecified: return SC_None; 03757 case DeclSpec::SCS_extern: 03758 if (DS.isExternInLinkageSpec()) 03759 return SC_None; 03760 return SC_Extern; 03761 case DeclSpec::SCS_static: return SC_Static; 03762 case DeclSpec::SCS_auto: return SC_Auto; 03763 case DeclSpec::SCS_register: return SC_Register; 03764 case DeclSpec::SCS_private_extern: return SC_PrivateExtern; 03765 // Illegal SCSs map to None: error reporting is up to the caller. 03766 case DeclSpec::SCS_mutable: // Fall through. 03767 case DeclSpec::SCS_typedef: return SC_None; 03768 } 03769 llvm_unreachable("unknown storage class specifier"); 03770 } 03771 03772 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) { 03773 assert(Record->hasInClassInitializer()); 03774 03775 for (const auto *I : Record->decls()) { 03776 const auto *FD = dyn_cast<FieldDecl>(I); 03777 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) 03778 FD = IFD->getAnonField(); 03779 if (FD && FD->hasInClassInitializer()) 03780 return FD->getLocation(); 03781 } 03782 03783 llvm_unreachable("couldn't find in-class initializer"); 03784 } 03785 03786 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, 03787 SourceLocation DefaultInitLoc) { 03788 if (!Parent->isUnion() || !Parent->hasInClassInitializer()) 03789 return; 03790 03791 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization); 03792 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0; 03793 } 03794 03795 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, 03796 CXXRecordDecl *AnonUnion) { 03797 if (!Parent->isUnion() || !Parent->hasInClassInitializer()) 03798 return; 03799 03800 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion)); 03801 } 03802 03803 /// BuildAnonymousStructOrUnion - Handle the declaration of an 03804 /// anonymous structure or union. Anonymous unions are a C++ feature 03805 /// (C++ [class.union]) and a C11 feature; anonymous structures 03806 /// are a C11 feature and GNU C++ extension. 03807 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, 03808 AccessSpecifier AS, 03809 RecordDecl *Record, 03810 const PrintingPolicy &Policy) { 03811 DeclContext *Owner = Record->getDeclContext(); 03812 03813 // Diagnose whether this anonymous struct/union is an extension. 03814 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11) 03815 Diag(Record->getLocation(), diag::ext_anonymous_union); 03816 else if (!Record->isUnion() && getLangOpts().CPlusPlus) 03817 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct); 03818 else if (!Record->isUnion() && !getLangOpts().C11) 03819 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct); 03820 03821 // C and C++ require different kinds of checks for anonymous 03822 // structs/unions. 03823 bool Invalid = false; 03824 if (getLangOpts().CPlusPlus) { 03825 const char *PrevSpec = nullptr; 03826 unsigned DiagID; 03827 if (Record->isUnion()) { 03828 // C++ [class.union]p6: 03829 // Anonymous unions declared in a named namespace or in the 03830 // global namespace shall be declared static. 03831 if (DS.getStorageClassSpec() != DeclSpec::SCS_static && 03832 (isa<TranslationUnitDecl>(Owner) || 03833 (isa<NamespaceDecl>(Owner) && 03834 cast<NamespaceDecl>(Owner)->getDeclName()))) { 03835 Diag(Record->getLocation(), diag::err_anonymous_union_not_static) 03836 << FixItHint::CreateInsertion(Record->getLocation(), "static "); 03837 03838 // Recover by adding 'static'. 03839 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(), 03840 PrevSpec, DiagID, Policy); 03841 } 03842 // C++ [class.union]p6: 03843 // A storage class is not allowed in a declaration of an 03844 // anonymous union in a class scope. 03845 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && 03846 isa<RecordDecl>(Owner)) { 03847 Diag(DS.getStorageClassSpecLoc(), 03848 diag::err_anonymous_union_with_storage_spec) 03849 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 03850 03851 // Recover by removing the storage specifier. 03852 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, 03853 SourceLocation(), 03854 PrevSpec, DiagID, Context.getPrintingPolicy()); 03855 } 03856 } 03857 03858 // Ignore const/volatile/restrict qualifiers. 03859 if (DS.getTypeQualifiers()) { 03860 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 03861 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) 03862 << Record->isUnion() << "const" 03863 << FixItHint::CreateRemoval(DS.getConstSpecLoc()); 03864 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 03865 Diag(DS.getVolatileSpecLoc(), 03866 diag::ext_anonymous_struct_union_qualified) 03867 << Record->isUnion() << "volatile" 03868 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); 03869 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 03870 Diag(DS.getRestrictSpecLoc(), 03871 diag::ext_anonymous_struct_union_qualified) 03872 << Record->isUnion() << "restrict" 03873 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); 03874 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 03875 Diag(DS.getAtomicSpecLoc(), 03876 diag::ext_anonymous_struct_union_qualified) 03877 << Record->isUnion() << "_Atomic" 03878 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc()); 03879 03880 DS.ClearTypeQualifiers(); 03881 } 03882 03883 // C++ [class.union]p2: 03884 // The member-specification of an anonymous union shall only 03885 // define non-static data members. [Note: nested types and 03886 // functions cannot be declared within an anonymous union. ] 03887 for (auto *Mem : Record->decls()) { 03888 if (auto *FD = dyn_cast<FieldDecl>(Mem)) { 03889 // C++ [class.union]p3: 03890 // An anonymous union shall not have private or protected 03891 // members (clause 11). 03892 assert(FD->getAccess() != AS_none); 03893 if (FD->getAccess() != AS_public) { 03894 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) 03895 << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected); 03896 Invalid = true; 03897 } 03898 03899 // C++ [class.union]p1 03900 // An object of a class with a non-trivial constructor, a non-trivial 03901 // copy constructor, a non-trivial destructor, or a non-trivial copy 03902 // assignment operator cannot be a member of a union, nor can an 03903 // array of such objects. 03904 if (CheckNontrivialField(FD)) 03905 Invalid = true; 03906 } else if (Mem->isImplicit()) { 03907 // Any implicit members are fine. 03908 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) { 03909 // This is a type that showed up in an 03910 // elaborated-type-specifier inside the anonymous struct or 03911 // union, but which actually declares a type outside of the 03912 // anonymous struct or union. It's okay. 03913 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) { 03914 if (!MemRecord->isAnonymousStructOrUnion() && 03915 MemRecord->getDeclName()) { 03916 // Visual C++ allows type definition in anonymous struct or union. 03917 if (getLangOpts().MicrosoftExt) 03918 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) 03919 << (int)Record->isUnion(); 03920 else { 03921 // This is a nested type declaration. 03922 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) 03923 << (int)Record->isUnion(); 03924 Invalid = true; 03925 } 03926 } else { 03927 // This is an anonymous type definition within another anonymous type. 03928 // This is a popular extension, provided by Plan9, MSVC and GCC, but 03929 // not part of standard C++. 03930 Diag(MemRecord->getLocation(), 03931 diag::ext_anonymous_record_with_anonymous_type) 03932 << (int)Record->isUnion(); 03933 } 03934 } else if (isa<AccessSpecDecl>(Mem)) { 03935 // Any access specifier is fine. 03936 } else if (isa<StaticAssertDecl>(Mem)) { 03937 // In C++1z, static_assert declarations are also fine. 03938 } else { 03939 // We have something that isn't a non-static data 03940 // member. Complain about it. 03941 unsigned DK = diag::err_anonymous_record_bad_member; 03942 if (isa<TypeDecl>(Mem)) 03943 DK = diag::err_anonymous_record_with_type; 03944 else if (isa<FunctionDecl>(Mem)) 03945 DK = diag::err_anonymous_record_with_function; 03946 else if (isa<VarDecl>(Mem)) 03947 DK = diag::err_anonymous_record_with_static; 03948 03949 // Visual C++ allows type definition in anonymous struct or union. 03950 if (getLangOpts().MicrosoftExt && 03951 DK == diag::err_anonymous_record_with_type) 03952 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type) 03953 << (int)Record->isUnion(); 03954 else { 03955 Diag(Mem->getLocation(), DK) 03956 << (int)Record->isUnion(); 03957 Invalid = true; 03958 } 03959 } 03960 } 03961 03962 // C++11 [class.union]p8 (DR1460): 03963 // At most one variant member of a union may have a 03964 // brace-or-equal-initializer. 03965 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() && 03966 Owner->isRecord()) 03967 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner), 03968 cast<CXXRecordDecl>(Record)); 03969 } 03970 03971 if (!Record->isUnion() && !Owner->isRecord()) { 03972 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) 03973 << (int)getLangOpts().CPlusPlus; 03974 Invalid = true; 03975 } 03976 03977 // Mock up a declarator. 03978 Declarator Dc(DS, Declarator::MemberContext); 03979 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); 03980 assert(TInfo && "couldn't build declarator info for anonymous struct/union"); 03981 03982 // Create a declaration for this anonymous struct/union. 03983 NamedDecl *Anon = nullptr; 03984 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { 03985 Anon = FieldDecl::Create(Context, OwningClass, 03986 DS.getLocStart(), 03987 Record->getLocation(), 03988 /*IdentifierInfo=*/nullptr, 03989 Context.getTypeDeclType(Record), 03990 TInfo, 03991 /*BitWidth=*/nullptr, /*Mutable=*/false, 03992 /*InitStyle=*/ICIS_NoInit); 03993 Anon->setAccess(AS); 03994 if (getLangOpts().CPlusPlus) 03995 FieldCollector->Add(cast<FieldDecl>(Anon)); 03996 } else { 03997 DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); 03998 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS); 03999 if (SCSpec == DeclSpec::SCS_mutable) { 04000 // mutable can only appear on non-static class members, so it's always 04001 // an error here 04002 Diag(Record->getLocation(), diag::err_mutable_nonmember); 04003 Invalid = true; 04004 SC = SC_None; 04005 } 04006 04007 Anon = VarDecl::Create(Context, Owner, 04008 DS.getLocStart(), 04009 Record->getLocation(), /*IdentifierInfo=*/nullptr, 04010 Context.getTypeDeclType(Record), 04011 TInfo, SC); 04012 04013 // Default-initialize the implicit variable. This initialization will be 04014 // trivial in almost all cases, except if a union member has an in-class 04015 // initializer: 04016 // union { int n = 0; }; 04017 ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false); 04018 } 04019 Anon->setImplicit(); 04020 04021 // Mark this as an anonymous struct/union type. 04022 Record->setAnonymousStructOrUnion(true); 04023 04024 // Add the anonymous struct/union object to the current 04025 // context. We'll be referencing this object when we refer to one of 04026 // its members. 04027 Owner->addDecl(Anon); 04028 04029 // Inject the members of the anonymous struct/union into the owning 04030 // context and into the identifier resolver chain for name lookup 04031 // purposes. 04032 SmallVector<NamedDecl*, 2> Chain; 04033 Chain.push_back(Anon); 04034 04035 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, 04036 Chain, false)) 04037 Invalid = true; 04038 04039 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) { 04040 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { 04041 Decl *ManglingContextDecl; 04042 if (MangleNumberingContext *MCtx = 04043 getCurrentMangleNumberContext(NewVD->getDeclContext(), 04044 ManglingContextDecl)) { 04045 Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD, S->getMSLocalManglingNumber())); 04046 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); 04047 } 04048 } 04049 } 04050 04051 if (Invalid) 04052 Anon->setInvalidDecl(); 04053 04054 return Anon; 04055 } 04056 04057 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an 04058 /// Microsoft C anonymous structure. 04059 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx 04060 /// Example: 04061 /// 04062 /// struct A { int a; }; 04063 /// struct B { struct A; int b; }; 04064 /// 04065 /// void foo() { 04066 /// B var; 04067 /// var.a = 3; 04068 /// } 04069 /// 04070 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, 04071 RecordDecl *Record) { 04072 assert(Record && "expected a record!"); 04073 04074 // Mock up a declarator. 04075 Declarator Dc(DS, Declarator::TypeNameContext); 04076 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); 04077 assert(TInfo && "couldn't build declarator info for anonymous struct"); 04078 04079 auto *ParentDecl = cast<RecordDecl>(CurContext); 04080 QualType RecTy = Context.getTypeDeclType(Record); 04081 04082 // Create a declaration for this anonymous struct. 04083 NamedDecl *Anon = FieldDecl::Create(Context, 04084 ParentDecl, 04085 DS.getLocStart(), 04086 DS.getLocStart(), 04087 /*IdentifierInfo=*/nullptr, 04088 RecTy, 04089 TInfo, 04090 /*BitWidth=*/nullptr, /*Mutable=*/false, 04091 /*InitStyle=*/ICIS_NoInit); 04092 Anon->setImplicit(); 04093 04094 // Add the anonymous struct object to the current context. 04095 CurContext->addDecl(Anon); 04096 04097 // Inject the members of the anonymous struct into the current 04098 // context and into the identifier resolver chain for name lookup 04099 // purposes. 04100 SmallVector<NamedDecl*, 2> Chain; 04101 Chain.push_back(Anon); 04102 04103 RecordDecl *RecordDef = Record->getDefinition(); 04104 if (RequireCompleteType(Anon->getLocation(), RecTy, 04105 diag::err_field_incomplete) || 04106 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef, 04107 AS_none, Chain, true)) { 04108 Anon->setInvalidDecl(); 04109 ParentDecl->setInvalidDecl(); 04110 } 04111 04112 return Anon; 04113 } 04114 04115 /// GetNameForDeclarator - Determine the full declaration name for the 04116 /// given Declarator. 04117 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { 04118 return GetNameFromUnqualifiedId(D.getName()); 04119 } 04120 04121 /// \brief Retrieves the declaration name from a parsed unqualified-id. 04122 DeclarationNameInfo 04123 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { 04124 DeclarationNameInfo NameInfo; 04125 NameInfo.setLoc(Name.StartLocation); 04126 04127 switch (Name.getKind()) { 04128 04129 case UnqualifiedId::IK_ImplicitSelfParam: 04130 case UnqualifiedId::IK_Identifier: 04131 NameInfo.setName(Name.Identifier); 04132 NameInfo.setLoc(Name.StartLocation); 04133 return NameInfo; 04134 04135 case UnqualifiedId::IK_OperatorFunctionId: 04136 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( 04137 Name.OperatorFunctionId.Operator)); 04138 NameInfo.setLoc(Name.StartLocation); 04139 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc 04140 = Name.OperatorFunctionId.SymbolLocations[0]; 04141 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc 04142 = Name.EndLocation.getRawEncoding(); 04143 return NameInfo; 04144 04145 case UnqualifiedId::IK_LiteralOperatorId: 04146 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( 04147 Name.Identifier)); 04148 NameInfo.setLoc(Name.StartLocation); 04149 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); 04150 return NameInfo; 04151 04152 case UnqualifiedId::IK_ConversionFunctionId: { 04153 TypeSourceInfo *TInfo; 04154 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); 04155 if (Ty.isNull()) 04156 return DeclarationNameInfo(); 04157 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( 04158 Context.getCanonicalType(Ty))); 04159 NameInfo.setLoc(Name.StartLocation); 04160 NameInfo.setNamedTypeInfo(TInfo); 04161 return NameInfo; 04162 } 04163 04164 case UnqualifiedId::IK_ConstructorName: { 04165 TypeSourceInfo *TInfo; 04166 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); 04167 if (Ty.isNull()) 04168 return DeclarationNameInfo(); 04169 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 04170 Context.getCanonicalType(Ty))); 04171 NameInfo.setLoc(Name.StartLocation); 04172 NameInfo.setNamedTypeInfo(TInfo); 04173 return NameInfo; 04174 } 04175 04176 case UnqualifiedId::IK_ConstructorTemplateId: { 04177 // In well-formed code, we can only have a constructor 04178 // template-id that refers to the current context, so go there 04179 // to find the actual type being constructed. 04180 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); 04181 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) 04182 return DeclarationNameInfo(); 04183 04184 // Determine the type of the class being constructed. 04185 QualType CurClassType = Context.getTypeDeclType(CurClass); 04186 04187 // FIXME: Check two things: that the template-id names the same type as 04188 // CurClassType, and that the template-id does not occur when the name 04189 // was qualified. 04190 04191 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 04192 Context.getCanonicalType(CurClassType))); 04193 NameInfo.setLoc(Name.StartLocation); 04194 // FIXME: should we retrieve TypeSourceInfo? 04195 NameInfo.setNamedTypeInfo(nullptr); 04196 return NameInfo; 04197 } 04198 04199 case UnqualifiedId::IK_DestructorName: { 04200 TypeSourceInfo *TInfo; 04201 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo); 04202 if (Ty.isNull()) 04203 return DeclarationNameInfo(); 04204 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( 04205 Context.getCanonicalType(Ty))); 04206 NameInfo.setLoc(Name.StartLocation); 04207 NameInfo.setNamedTypeInfo(TInfo); 04208 return NameInfo; 04209 } 04210 04211 case UnqualifiedId::IK_TemplateId: { 04212 TemplateName TName = Name.TemplateId->Template.get(); 04213 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; 04214 return Context.getNameForTemplate(TName, TNameLoc); 04215 } 04216 04217 } // switch (Name.getKind()) 04218 04219 llvm_unreachable("Unknown name kind"); 04220 } 04221 04222 static QualType getCoreType(QualType Ty) { 04223 do { 04224 if (Ty->isPointerType() || Ty->isReferenceType()) 04225 Ty = Ty->getPointeeType(); 04226 else if (Ty->isArrayType()) 04227 Ty = Ty->castAsArrayTypeUnsafe()->getElementType(); 04228 else 04229 return Ty.withoutLocalFastQualifiers(); 04230 } while (true); 04231 } 04232 04233 /// hasSimilarParameters - Determine whether the C++ functions Declaration 04234 /// and Definition have "nearly" matching parameters. This heuristic is 04235 /// used to improve diagnostics in the case where an out-of-line function 04236 /// definition doesn't match any declaration within the class or namespace. 04237 /// Also sets Params to the list of indices to the parameters that differ 04238 /// between the declaration and the definition. If hasSimilarParameters 04239 /// returns true and Params is empty, then all of the parameters match. 04240 static bool hasSimilarParameters(ASTContext &Context, 04241 FunctionDecl *Declaration, 04242 FunctionDecl *Definition, 04243 SmallVectorImpl<unsigned> &Params) { 04244 Params.clear(); 04245 if (Declaration->param_size() != Definition->param_size()) 04246 return false; 04247 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { 04248 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); 04249 QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); 04250 04251 // The parameter types are identical 04252 if (Context.hasSameType(DefParamTy, DeclParamTy)) 04253 continue; 04254 04255 QualType DeclParamBaseTy = getCoreType(DeclParamTy); 04256 QualType DefParamBaseTy = getCoreType(DefParamTy); 04257 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier(); 04258 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier(); 04259 04260 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) || 04261 (DeclTyName && DeclTyName == DefTyName)) 04262 Params.push_back(Idx); 04263 else // The two parameters aren't even close 04264 return false; 04265 } 04266 04267 return true; 04268 } 04269 04270 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given 04271 /// declarator needs to be rebuilt in the current instantiation. 04272 /// Any bits of declarator which appear before the name are valid for 04273 /// consideration here. That's specifically the type in the decl spec 04274 /// and the base type in any member-pointer chunks. 04275 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, 04276 DeclarationName Name) { 04277 // The types we specifically need to rebuild are: 04278 // - typenames, typeofs, and decltypes 04279 // - types which will become injected class names 04280 // Of course, we also need to rebuild any type referencing such a 04281 // type. It's safest to just say "dependent", but we call out a 04282 // few cases here. 04283 04284 DeclSpec &DS = D.getMutableDeclSpec(); 04285 switch (DS.getTypeSpecType()) { 04286 case DeclSpec::TST_typename: 04287 case DeclSpec::TST_typeofType: 04288 case DeclSpec::TST_underlyingType: 04289 case DeclSpec::TST_atomic: { 04290 // Grab the type from the parser. 04291 TypeSourceInfo *TSI = nullptr; 04292 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI); 04293 if (T.isNull() || !T->isDependentType()) break; 04294 04295 // Make sure there's a type source info. This isn't really much 04296 // of a waste; most dependent types should have type source info 04297 // attached already. 04298 if (!TSI) 04299 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc()); 04300 04301 // Rebuild the type in the current instantiation. 04302 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name); 04303 if (!TSI) return true; 04304 04305 // Store the new type back in the decl spec. 04306 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI); 04307 DS.UpdateTypeRep(LocType); 04308 break; 04309 } 04310 04311 case DeclSpec::TST_decltype: 04312 case DeclSpec::TST_typeofExpr: { 04313 Expr *E = DS.getRepAsExpr(); 04314 ExprResult Result = S.RebuildExprInCurrentInstantiation(E); 04315 if (Result.isInvalid()) return true; 04316 DS.UpdateExprRep(Result.get()); 04317 break; 04318 } 04319 04320 default: 04321 // Nothing to do for these decl specs. 04322 break; 04323 } 04324 04325 // It doesn't matter what order we do this in. 04326 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { 04327 DeclaratorChunk &Chunk = D.getTypeObject(I); 04328 04329 // The only type information in the declarator which can come 04330 // before the declaration name is the base type of a member 04331 // pointer. 04332 if (Chunk.Kind != DeclaratorChunk::MemberPointer) 04333 continue; 04334 04335 // Rebuild the scope specifier in-place. 04336 CXXScopeSpec &SS = Chunk.Mem.Scope(); 04337 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) 04338 return true; 04339 } 04340 04341 return false; 04342 } 04343 04344 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { 04345 D.setFunctionDefinitionKind(FDK_Declaration); 04346 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg()); 04347 04348 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() && 04349 Dcl && Dcl->getDeclContext()->isFileContext()) 04350 Dcl->setTopLevelDeclInObjCContainer(); 04351 04352 return Dcl; 04353 } 04354 04355 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13: 04356 /// If T is the name of a class, then each of the following shall have a 04357 /// name different from T: 04358 /// - every static data member of class T; 04359 /// - every member function of class T 04360 /// - every member of class T that is itself a type; 04361 /// \returns true if the declaration name violates these rules. 04362 bool Sema::DiagnoseClassNameShadow(DeclContext *DC, 04363 DeclarationNameInfo NameInfo) { 04364 DeclarationName Name = NameInfo.getName(); 04365 04366 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 04367 if (Record->getIdentifier() && Record->getDeclName() == Name) { 04368 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name; 04369 return true; 04370 } 04371 04372 return false; 04373 } 04374 04375 /// \brief Diagnose a declaration whose declarator-id has the given 04376 /// nested-name-specifier. 04377 /// 04378 /// \param SS The nested-name-specifier of the declarator-id. 04379 /// 04380 /// \param DC The declaration context to which the nested-name-specifier 04381 /// resolves. 04382 /// 04383 /// \param Name The name of the entity being declared. 04384 /// 04385 /// \param Loc The location of the name of the entity being declared. 04386 /// 04387 /// \returns true if we cannot safely recover from this error, false otherwise. 04388 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, 04389 DeclarationName Name, 04390 SourceLocation Loc) { 04391 DeclContext *Cur = CurContext; 04392 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur)) 04393 Cur = Cur->getParent(); 04394 04395 // If the user provided a superfluous scope specifier that refers back to the 04396 // class in which the entity is already declared, diagnose and ignore it. 04397 // 04398 // class X { 04399 // void X::f(); 04400 // }; 04401 // 04402 // Note, it was once ill-formed to give redundant qualification in all 04403 // contexts, but that rule was removed by DR482. 04404 if (Cur->Equals(DC)) { 04405 if (Cur->isRecord()) { 04406 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification 04407 : diag::err_member_extra_qualification) 04408 << Name << FixItHint::CreateRemoval(SS.getRange()); 04409 SS.clear(); 04410 } else { 04411 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name; 04412 } 04413 return false; 04414 } 04415 04416 // Check whether the qualifying scope encloses the scope of the original 04417 // declaration. 04418 if (!Cur->Encloses(DC)) { 04419 if (Cur->isRecord()) 04420 Diag(Loc, diag::err_member_qualification) 04421 << Name << SS.getRange(); 04422 else if (isa<TranslationUnitDecl>(DC)) 04423 Diag(Loc, diag::err_invalid_declarator_global_scope) 04424 << Name << SS.getRange(); 04425 else if (isa<FunctionDecl>(Cur)) 04426 Diag(Loc, diag::err_invalid_declarator_in_function) 04427 << Name << SS.getRange(); 04428 else if (isa<BlockDecl>(Cur)) 04429 Diag(Loc, diag::err_invalid_declarator_in_block) 04430 << Name << SS.getRange(); 04431 else 04432 Diag(Loc, diag::err_invalid_declarator_scope) 04433 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange(); 04434 04435 return true; 04436 } 04437 04438 if (Cur->isRecord()) { 04439 // Cannot qualify members within a class. 04440 Diag(Loc, diag::err_member_qualification) 04441 << Name << SS.getRange(); 04442 SS.clear(); 04443 04444 // C++ constructors and destructors with incorrect scopes can break 04445 // our AST invariants by having the wrong underlying types. If 04446 // that's the case, then drop this declaration entirely. 04447 if ((Name.getNameKind() == DeclarationName::CXXConstructorName || 04448 Name.getNameKind() == DeclarationName::CXXDestructorName) && 04449 !Context.hasSameType(Name.getCXXNameType(), 04450 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur)))) 04451 return true; 04452 04453 return false; 04454 } 04455 04456 // C++11 [dcl.meaning]p1: 04457 // [...] "The nested-name-specifier of the qualified declarator-id shall 04458 // not begin with a decltype-specifer" 04459 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data()); 04460 while (SpecLoc.getPrefix()) 04461 SpecLoc = SpecLoc.getPrefix(); 04462 if (dyn_cast_or_null<DecltypeType>( 04463 SpecLoc.getNestedNameSpecifier()->getAsType())) 04464 Diag(Loc, diag::err_decltype_in_declarator) 04465 << SpecLoc.getTypeLoc().getSourceRange(); 04466 04467 return false; 04468 } 04469 04470 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D, 04471 MultiTemplateParamsArg TemplateParamLists) { 04472 // TODO: consider using NameInfo for diagnostic. 04473 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 04474 DeclarationName Name = NameInfo.getName(); 04475 04476 // All of these full declarators require an identifier. If it doesn't have 04477 // one, the ParsedFreeStandingDeclSpec action should be used. 04478 if (!Name) { 04479 if (!D.isInvalidType()) // Reject this if we think it is valid. 04480 Diag(D.getDeclSpec().getLocStart(), 04481 diag::err_declarator_need_ident) 04482 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 04483 return nullptr; 04484 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType)) 04485 return nullptr; 04486 04487 // The scope passed in may not be a decl scope. Zip up the scope tree until 04488 // we find one that is. 04489 while ((S->getFlags() & Scope::DeclScope) == 0 || 04490 (S->getFlags() & Scope::TemplateParamScope) != 0) 04491 S = S->getParent(); 04492 04493 DeclContext *DC = CurContext; 04494 if (D.getCXXScopeSpec().isInvalid()) 04495 D.setInvalidType(); 04496 else if (D.getCXXScopeSpec().isSet()) { 04497 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), 04498 UPPC_DeclarationQualifier)) 04499 return nullptr; 04500 04501 bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); 04502 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext); 04503 if (!DC || isa<EnumDecl>(DC)) { 04504 // If we could not compute the declaration context, it's because the 04505 // declaration context is dependent but does not refer to a class, 04506 // class template, or class template partial specialization. Complain 04507 // and return early, to avoid the coming semantic disaster. 04508 Diag(D.getIdentifierLoc(), 04509 diag::err_template_qualified_declarator_no_match) 04510 << D.getCXXScopeSpec().getScopeRep() 04511 << D.getCXXScopeSpec().getRange(); 04512 return nullptr; 04513 } 04514 bool IsDependentContext = DC->isDependentContext(); 04515 04516 if (!IsDependentContext && 04517 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC)) 04518 return nullptr; 04519 04520 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) { 04521 Diag(D.getIdentifierLoc(), 04522 diag::err_member_def_undefined_record) 04523 << Name << DC << D.getCXXScopeSpec().getRange(); 04524 D.setInvalidType(); 04525 } else if (!D.getDeclSpec().isFriendSpecified()) { 04526 if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC, 04527 Name, D.getIdentifierLoc())) { 04528 if (DC->isRecord()) 04529 return nullptr; 04530 04531 D.setInvalidType(); 04532 } 04533 } 04534 04535 // Check whether we need to rebuild the type of the given 04536 // declaration in the current instantiation. 04537 if (EnteringContext && IsDependentContext && 04538 TemplateParamLists.size() != 0) { 04539 ContextRAII SavedContext(*this, DC); 04540 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name)) 04541 D.setInvalidType(); 04542 } 04543 } 04544 04545 if (DiagnoseClassNameShadow(DC, NameInfo)) 04546 // If this is a typedef, we'll end up spewing multiple diagnostics. 04547 // Just return early; it's safer. 04548 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) 04549 return nullptr; 04550 04551 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 04552 QualType R = TInfo->getType(); 04553 04554 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 04555 UPPC_DeclarationType)) 04556 D.setInvalidType(); 04557 04558 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 04559 ForRedeclaration); 04560 04561 // See if this is a redefinition of a variable in the same scope. 04562 if (!D.getCXXScopeSpec().isSet()) { 04563 bool IsLinkageLookup = false; 04564 bool CreateBuiltins = false; 04565 04566 // If the declaration we're planning to build will be a function 04567 // or object with linkage, then look for another declaration with 04568 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). 04569 // 04570 // If the declaration we're planning to build will be declared with 04571 // external linkage in the translation unit, create any builtin with 04572 // the same name. 04573 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) 04574 /* Do nothing*/; 04575 else if (CurContext->isFunctionOrMethod() && 04576 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern || 04577 R->isFunctionType())) { 04578 IsLinkageLookup = true; 04579 CreateBuiltins = 04580 CurContext->getEnclosingNamespaceContext()->isTranslationUnit(); 04581 } else if (CurContext->getRedeclContext()->isTranslationUnit() && 04582 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) 04583 CreateBuiltins = true; 04584 04585 if (IsLinkageLookup) 04586 Previous.clear(LookupRedeclarationWithLinkage); 04587 04588 LookupName(Previous, S, CreateBuiltins); 04589 } else { // Something like "int foo::x;" 04590 LookupQualifiedName(Previous, DC); 04591 04592 // C++ [dcl.meaning]p1: 04593 // When the declarator-id is qualified, the declaration shall refer to a 04594 // previously declared member of the class or namespace to which the 04595 // qualifier refers (or, in the case of a namespace, of an element of the 04596 // inline namespace set of that namespace (7.3.1)) or to a specialization 04597 // thereof; [...] 04598 // 04599 // Note that we already checked the context above, and that we do not have 04600 // enough information to make sure that Previous contains the declaration 04601 // we want to match. For example, given: 04602 // 04603 // class X { 04604 // void f(); 04605 // void f(float); 04606 // }; 04607 // 04608 // void X::f(int) { } // ill-formed 04609 // 04610 // In this case, Previous will point to the overload set 04611 // containing the two f's declared in X, but neither of them 04612 // matches. 04613 04614 // C++ [dcl.meaning]p1: 04615 // [...] the member shall not merely have been introduced by a 04616 // using-declaration in the scope of the class or namespace nominated by 04617 // the nested-name-specifier of the declarator-id. 04618 RemoveUsingDecls(Previous); 04619 } 04620 04621 if (Previous.isSingleResult() && 04622 Previous.getFoundDecl()->isTemplateParameter()) { 04623 // Maybe we will complain about the shadowed template parameter. 04624 if (!D.isInvalidType()) 04625 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 04626 Previous.getFoundDecl()); 04627 04628 // Just pretend that we didn't see the previous declaration. 04629 Previous.clear(); 04630 } 04631 04632 // In C++, the previous declaration we find might be a tag type 04633 // (class or enum). In this case, the new declaration will hide the 04634 // tag type. Note that this does does not apply if we're declaring a 04635 // typedef (C++ [dcl.typedef]p4). 04636 if (Previous.isSingleTagDecl() && 04637 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef) 04638 Previous.clear(); 04639 04640 // Check that there are no default arguments other than in the parameters 04641 // of a function declaration (C++ only). 04642 if (getLangOpts().CPlusPlus) 04643 CheckExtraCXXDefaultArguments(D); 04644 04645 NamedDecl *New; 04646 04647 bool AddToScope = true; 04648 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 04649 if (TemplateParamLists.size()) { 04650 Diag(D.getIdentifierLoc(), diag::err_template_typedef); 04651 return nullptr; 04652 } 04653 04654 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous); 04655 } else if (R->isFunctionType()) { 04656 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous, 04657 TemplateParamLists, 04658 AddToScope); 04659 } else { 04660 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists, 04661 AddToScope); 04662 } 04663 04664 if (!New) 04665 return nullptr; 04666 04667 // If this has an identifier and is not an invalid redeclaration or 04668 // function template specialization, add it to the scope stack. 04669 if (New->getDeclName() && AddToScope && 04670 !(D.isRedeclaration() && New->isInvalidDecl())) { 04671 // Only make a locally-scoped extern declaration visible if it is the first 04672 // declaration of this entity. Qualified lookup for such an entity should 04673 // only find this declaration if there is no visible declaration of it. 04674 bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl(); 04675 PushOnScopeChains(New, S, AddToContext); 04676 if (!AddToContext) 04677 CurContext->addHiddenDecl(New); 04678 } 04679 04680 return New; 04681 } 04682 04683 /// Helper method to turn variable array types into constant array 04684 /// types in certain situations which would otherwise be errors (for 04685 /// GCC compatibility). 04686 static QualType TryToFixInvalidVariablyModifiedType(QualType T, 04687 ASTContext &Context, 04688 bool &SizeIsNegative, 04689 llvm::APSInt &Oversized) { 04690 // This method tries to turn a variable array into a constant 04691 // array even when the size isn't an ICE. This is necessary 04692 // for compatibility with code that depends on gcc's buggy 04693 // constant expression folding, like struct {char x[(int)(char*)2];} 04694 SizeIsNegative = false; 04695 Oversized = 0; 04696 04697 if (T->isDependentType()) 04698 return QualType(); 04699 04700 QualifierCollector Qs; 04701 const Type *Ty = Qs.strip(T); 04702 04703 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) { 04704 QualType Pointee = PTy->getPointeeType(); 04705 QualType FixedType = 04706 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative, 04707 Oversized); 04708 if (FixedType.isNull()) return FixedType; 04709 FixedType = Context.getPointerType(FixedType); 04710 return Qs.apply(Context, FixedType); 04711 } 04712 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) { 04713 QualType Inner = PTy->getInnerType(); 04714 QualType FixedType = 04715 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative, 04716 Oversized); 04717 if (FixedType.isNull()) return FixedType; 04718 FixedType = Context.getParenType(FixedType); 04719 return Qs.apply(Context, FixedType); 04720 } 04721 04722 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); 04723 if (!VLATy) 04724 return QualType(); 04725 // FIXME: We should probably handle this case 04726 if (VLATy->getElementType()->isVariablyModifiedType()) 04727 return QualType(); 04728 04729 llvm::APSInt Res; 04730 if (!VLATy->getSizeExpr() || 04731 !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context)) 04732 return QualType(); 04733 04734 // Check whether the array size is negative. 04735 if (Res.isSigned() && Res.isNegative()) { 04736 SizeIsNegative = true; 04737 return QualType(); 04738 } 04739 04740 // Check whether the array is too large to be addressed. 04741 unsigned ActiveSizeBits 04742 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(), 04743 Res); 04744 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { 04745 Oversized = Res; 04746 return QualType(); 04747 } 04748 04749 return Context.getConstantArrayType(VLATy->getElementType(), 04750 Res, ArrayType::Normal, 0); 04751 } 04752 04753 static void 04754 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) { 04755 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) { 04756 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>(); 04757 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(), 04758 DstPTL.getPointeeLoc()); 04759 DstPTL.setStarLoc(SrcPTL.getStarLoc()); 04760 return; 04761 } 04762 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) { 04763 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>(); 04764 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(), 04765 DstPTL.getInnerLoc()); 04766 DstPTL.setLParenLoc(SrcPTL.getLParenLoc()); 04767 DstPTL.setRParenLoc(SrcPTL.getRParenLoc()); 04768 return; 04769 } 04770 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>(); 04771 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>(); 04772 TypeLoc SrcElemTL = SrcATL.getElementLoc(); 04773 TypeLoc DstElemTL = DstATL.getElementLoc(); 04774 DstElemTL.initializeFullCopy(SrcElemTL); 04775 DstATL.setLBracketLoc(SrcATL.getLBracketLoc()); 04776 DstATL.setSizeExpr(SrcATL.getSizeExpr()); 04777 DstATL.setRBracketLoc(SrcATL.getRBracketLoc()); 04778 } 04779 04780 /// Helper method to turn variable array types into constant array 04781 /// types in certain situations which would otherwise be errors (for 04782 /// GCC compatibility). 04783 static TypeSourceInfo* 04784 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo, 04785 ASTContext &Context, 04786 bool &SizeIsNegative, 04787 llvm::APSInt &Oversized) { 04788 QualType FixedTy 04789 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context, 04790 SizeIsNegative, Oversized); 04791 if (FixedTy.isNull()) 04792 return nullptr; 04793 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy); 04794 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(), 04795 FixedTInfo->getTypeLoc()); 04796 return FixedTInfo; 04797 } 04798 04799 /// \brief Register the given locally-scoped extern "C" declaration so 04800 /// that it can be found later for redeclarations. We include any extern "C" 04801 /// declaration that is not visible in the translation unit here, not just 04802 /// function-scope declarations. 04803 void 04804 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) { 04805 if (!getLangOpts().CPlusPlus && 04806 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit()) 04807 // Don't need to track declarations in the TU in C. 04808 return; 04809 04810 // Note that we have a locally-scoped external with this name. 04811 // FIXME: There can be multiple such declarations if they are functions marked 04812 // __attribute__((overloadable)) declared in function scope in C. 04813 LocallyScopedExternCDecls[ND->getDeclName()] = ND; 04814 } 04815 04816 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) { 04817 if (ExternalSource) { 04818 // Load locally-scoped external decls from the external source. 04819 // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls? 04820 SmallVector<NamedDecl *, 4> Decls; 04821 ExternalSource->ReadLocallyScopedExternCDecls(Decls); 04822 for (unsigned I = 0, N = Decls.size(); I != N; ++I) { 04823 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos 04824 = LocallyScopedExternCDecls.find(Decls[I]->getDeclName()); 04825 if (Pos == LocallyScopedExternCDecls.end()) 04826 LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I]; 04827 } 04828 } 04829 04830 NamedDecl *D = LocallyScopedExternCDecls.lookup(Name); 04831 return D ? D->getMostRecentDecl() : nullptr; 04832 } 04833 04834 /// \brief Diagnose function specifiers on a declaration of an identifier that 04835 /// does not identify a function. 04836 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) { 04837 // FIXME: We should probably indicate the identifier in question to avoid 04838 // confusion for constructs like "inline int a(), b;" 04839 if (DS.isInlineSpecified()) 04840 Diag(DS.getInlineSpecLoc(), 04841 diag::err_inline_non_function); 04842 04843 if (DS.isVirtualSpecified()) 04844 Diag(DS.getVirtualSpecLoc(), 04845 diag::err_virtual_non_function); 04846 04847 if (DS.isExplicitSpecified()) 04848 Diag(DS.getExplicitSpecLoc(), 04849 diag::err_explicit_non_function); 04850 04851 if (DS.isNoreturnSpecified()) 04852 Diag(DS.getNoreturnSpecLoc(), 04853 diag::err_noreturn_non_function); 04854 } 04855 04856 NamedDecl* 04857 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, 04858 TypeSourceInfo *TInfo, LookupResult &Previous) { 04859 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). 04860 if (D.getCXXScopeSpec().isSet()) { 04861 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) 04862 << D.getCXXScopeSpec().getRange(); 04863 D.setInvalidType(); 04864 // Pretend we didn't see the scope specifier. 04865 DC = CurContext; 04866 Previous.clear(); 04867 } 04868 04869 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 04870 04871 if (D.getDeclSpec().isConstexprSpecified()) 04872 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) 04873 << 1; 04874 04875 if (D.getName().Kind != UnqualifiedId::IK_Identifier) { 04876 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) 04877 << D.getName().getSourceRange(); 04878 return nullptr; 04879 } 04880 04881 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo); 04882 if (!NewTD) return nullptr; 04883 04884 // Handle attributes prior to checking for duplicates in MergeVarDecl 04885 ProcessDeclAttributes(S, NewTD, D); 04886 04887 CheckTypedefForVariablyModifiedType(S, NewTD); 04888 04889 bool Redeclaration = D.isRedeclaration(); 04890 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration); 04891 D.setRedeclaration(Redeclaration); 04892 return ND; 04893 } 04894 04895 void 04896 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) { 04897 // C99 6.7.7p2: If a typedef name specifies a variably modified type 04898 // then it shall have block scope. 04899 // Note that variably modified types must be fixed before merging the decl so 04900 // that redeclarations will match. 04901 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo(); 04902 QualType T = TInfo->getType(); 04903 if (T->isVariablyModifiedType()) { 04904 getCurFunction()->setHasBranchProtectedScope(); 04905 04906 if (S->getFnParent() == nullptr) { 04907 bool SizeIsNegative; 04908 llvm::APSInt Oversized; 04909 TypeSourceInfo *FixedTInfo = 04910 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 04911 SizeIsNegative, 04912 Oversized); 04913 if (FixedTInfo) { 04914 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size); 04915 NewTD->setTypeSourceInfo(FixedTInfo); 04916 } else { 04917 if (SizeIsNegative) 04918 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size); 04919 else if (T->isVariableArrayType()) 04920 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope); 04921 else if (Oversized.getBoolValue()) 04922 Diag(NewTD->getLocation(), diag::err_array_too_large) 04923 << Oversized.toString(10); 04924 else 04925 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope); 04926 NewTD->setInvalidDecl(); 04927 } 04928 } 04929 } 04930 } 04931 04932 04933 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which 04934 /// declares a typedef-name, either using the 'typedef' type specifier or via 04935 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'. 04936 NamedDecl* 04937 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD, 04938 LookupResult &Previous, bool &Redeclaration) { 04939 // Merge the decl with the existing one if appropriate. If the decl is 04940 // in an outer scope, it isn't the same thing. 04941 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false, 04942 /*AllowInlineNamespace*/false); 04943 filterNonConflictingPreviousTypedefDecls(Context, NewTD, Previous); 04944 if (!Previous.empty()) { 04945 Redeclaration = true; 04946 MergeTypedefNameDecl(NewTD, Previous); 04947 } 04948 04949 // If this is the C FILE type, notify the AST context. 04950 if (IdentifierInfo *II = NewTD->getIdentifier()) 04951 if (!NewTD->isInvalidDecl() && 04952 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 04953 if (II->isStr("FILE")) 04954 Context.setFILEDecl(NewTD); 04955 else if (II->isStr("jmp_buf")) 04956 Context.setjmp_bufDecl(NewTD); 04957 else if (II->isStr("sigjmp_buf")) 04958 Context.setsigjmp_bufDecl(NewTD); 04959 else if (II->isStr("ucontext_t")) 04960 Context.setucontext_tDecl(NewTD); 04961 } 04962 04963 return NewTD; 04964 } 04965 04966 /// \brief Determines whether the given declaration is an out-of-scope 04967 /// previous declaration. 04968 /// 04969 /// This routine should be invoked when name lookup has found a 04970 /// previous declaration (PrevDecl) that is not in the scope where a 04971 /// new declaration by the same name is being introduced. If the new 04972 /// declaration occurs in a local scope, previous declarations with 04973 /// linkage may still be considered previous declarations (C99 04974 /// 6.2.2p4-5, C++ [basic.link]p6). 04975 /// 04976 /// \param PrevDecl the previous declaration found by name 04977 /// lookup 04978 /// 04979 /// \param DC the context in which the new declaration is being 04980 /// declared. 04981 /// 04982 /// \returns true if PrevDecl is an out-of-scope previous declaration 04983 /// for a new delcaration with the same name. 04984 static bool 04985 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, 04986 ASTContext &Context) { 04987 if (!PrevDecl) 04988 return false; 04989 04990 if (!PrevDecl->hasLinkage()) 04991 return false; 04992 04993 if (Context.getLangOpts().CPlusPlus) { 04994 // C++ [basic.link]p6: 04995 // If there is a visible declaration of an entity with linkage 04996 // having the same name and type, ignoring entities declared 04997 // outside the innermost enclosing namespace scope, the block 04998 // scope declaration declares that same entity and receives the 04999 // linkage of the previous declaration. 05000 DeclContext *OuterContext = DC->getRedeclContext(); 05001 if (!OuterContext->isFunctionOrMethod()) 05002 // This rule only applies to block-scope declarations. 05003 return false; 05004 05005 DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); 05006 if (PrevOuterContext->isRecord()) 05007 // We found a member function: ignore it. 05008 return false; 05009 05010 // Find the innermost enclosing namespace for the new and 05011 // previous declarations. 05012 OuterContext = OuterContext->getEnclosingNamespaceContext(); 05013 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); 05014 05015 // The previous declaration is in a different namespace, so it 05016 // isn't the same function. 05017 if (!OuterContext->Equals(PrevOuterContext)) 05018 return false; 05019 } 05020 05021 return true; 05022 } 05023 05024 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) { 05025 CXXScopeSpec &SS = D.getCXXScopeSpec(); 05026 if (!SS.isSet()) return; 05027 DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext())); 05028 } 05029 05030 bool Sema::inferObjCARCLifetime(ValueDecl *decl) { 05031 QualType type = decl->getType(); 05032 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); 05033 if (lifetime == Qualifiers::OCL_Autoreleasing) { 05034 // Various kinds of declaration aren't allowed to be __autoreleasing. 05035 unsigned kind = -1U; 05036 if (VarDecl *var = dyn_cast<VarDecl>(decl)) { 05037 if (var->hasAttr<BlocksAttr>()) 05038 kind = 0; // __block 05039 else if (!var->hasLocalStorage()) 05040 kind = 1; // global 05041 } else if (isa<ObjCIvarDecl>(decl)) { 05042 kind = 3; // ivar 05043 } else if (isa<FieldDecl>(decl)) { 05044 kind = 2; // field 05045 } 05046 05047 if (kind != -1U) { 05048 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) 05049 << kind; 05050 } 05051 } else if (lifetime == Qualifiers::OCL_None) { 05052 // Try to infer lifetime. 05053 if (!type->isObjCLifetimeType()) 05054 return false; 05055 05056 lifetime = type->getObjCARCImplicitLifetime(); 05057 type = Context.getLifetimeQualifiedType(type, lifetime); 05058 decl->setType(type); 05059 } 05060 05061 if (VarDecl *var = dyn_cast<VarDecl>(decl)) { 05062 // Thread-local variables cannot have lifetime. 05063 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && 05064 var->getTLSKind()) { 05065 Diag(var->getLocation(), diag::err_arc_thread_ownership) 05066 << var->getType(); 05067 return true; 05068 } 05069 } 05070 05071 return false; 05072 } 05073 05074 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) { 05075 // Ensure that an auto decl is deduced otherwise the checks below might cache 05076 // the wrong linkage. 05077 assert(S.ParsingInitForAutoVars.count(&ND) == 0); 05078 05079 // 'weak' only applies to declarations with external linkage. 05080 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) { 05081 if (!ND.isExternallyVisible()) { 05082 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static); 05083 ND.dropAttr<WeakAttr>(); 05084 } 05085 } 05086 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) { 05087 if (ND.isExternallyVisible()) { 05088 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static); 05089 ND.dropAttr<WeakRefAttr>(); 05090 } 05091 } 05092 05093 // 'selectany' only applies to externally visible varable declarations. 05094 // It does not apply to functions. 05095 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) { 05096 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) { 05097 S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data); 05098 ND.dropAttr<SelectAnyAttr>(); 05099 } 05100 } 05101 05102 // dll attributes require external linkage. 05103 if (const InheritableAttr *Attr = getDLLAttr(&ND)) { 05104 if (!ND.isExternallyVisible()) { 05105 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern) 05106 << &ND << Attr; 05107 ND.setInvalidDecl(); 05108 } 05109 } 05110 } 05111 05112 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl, 05113 NamedDecl *NewDecl, 05114 bool IsSpecialization) { 05115 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) 05116 OldDecl = OldTD->getTemplatedDecl(); 05117 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) 05118 NewDecl = NewTD->getTemplatedDecl(); 05119 05120 if (!OldDecl || !NewDecl) 05121 return; 05122 05123 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>(); 05124 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>(); 05125 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>(); 05126 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>(); 05127 05128 // dllimport and dllexport are inheritable attributes so we have to exclude 05129 // inherited attribute instances. 05130 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) || 05131 (NewExportAttr && !NewExportAttr->isInherited()); 05132 05133 // A redeclaration is not allowed to add a dllimport or dllexport attribute, 05134 // the only exception being explicit specializations. 05135 // Implicitly generated declarations are also excluded for now because there 05136 // is no other way to switch these to use dllimport or dllexport. 05137 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr; 05138 05139 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) { 05140 // If the declaration hasn't been used yet, allow with a warning for 05141 // free functions and global variables. 05142 bool JustWarn = false; 05143 if (!OldDecl->isUsed() && !OldDecl->isCXXClassMember()) { 05144 auto *VD = dyn_cast<VarDecl>(OldDecl); 05145 if (VD && !VD->getDescribedVarTemplate()) 05146 JustWarn = true; 05147 auto *FD = dyn_cast<FunctionDecl>(OldDecl); 05148 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) 05149 JustWarn = true; 05150 } 05151 05152 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration 05153 : diag::err_attribute_dll_redeclaration; 05154 S.Diag(NewDecl->getLocation(), DiagID) 05155 << NewDecl 05156 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr); 05157 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 05158 if (!JustWarn) { 05159 NewDecl->setInvalidDecl(); 05160 return; 05161 } 05162 } 05163 05164 // A redeclaration is not allowed to drop a dllimport attribute, the only 05165 // exceptions being inline function definitions, local extern declarations, 05166 // and qualified friend declarations. 05167 // NB: MSVC converts such a declaration to dllexport. 05168 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false; 05169 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) 05170 // Ignore static data because out-of-line definitions are diagnosed 05171 // separately. 05172 IsStaticDataMember = VD->isStaticDataMember(); 05173 else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) { 05174 IsInline = FD->isInlined(); 05175 IsQualifiedFriend = FD->getQualifier() && 05176 FD->getFriendObjectKind() == Decl::FOK_Declared; 05177 } 05178 05179 if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember && 05180 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) { 05181 S.Diag(NewDecl->getLocation(), 05182 diag::warn_redeclaration_without_attribute_prev_attribute_ignored) 05183 << NewDecl << OldImportAttr; 05184 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 05185 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute); 05186 OldDecl->dropAttr<DLLImportAttr>(); 05187 NewDecl->dropAttr<DLLImportAttr>(); 05188 } else if (IsInline && OldImportAttr && 05189 !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 05190 // In MinGW, seeing a function declared inline drops the dllimport attribute. 05191 OldDecl->dropAttr<DLLImportAttr>(); 05192 NewDecl->dropAttr<DLLImportAttr>(); 05193 S.Diag(NewDecl->getLocation(), 05194 diag::warn_dllimport_dropped_from_inline_function) 05195 << NewDecl << OldImportAttr; 05196 } 05197 } 05198 05199 /// Given that we are within the definition of the given function, 05200 /// will that definition behave like C99's 'inline', where the 05201 /// definition is discarded except for optimization purposes? 05202 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) { 05203 // Try to avoid calling GetGVALinkageForFunction. 05204 05205 // All cases of this require the 'inline' keyword. 05206 if (!FD->isInlined()) return false; 05207 05208 // This is only possible in C++ with the gnu_inline attribute. 05209 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>()) 05210 return false; 05211 05212 // Okay, go ahead and call the relatively-more-expensive function. 05213 05214 #ifndef NDEBUG 05215 // AST quite reasonably asserts that it's working on a function 05216 // definition. We don't really have a way to tell it that we're 05217 // currently defining the function, so just lie to it in +Asserts 05218 // builds. This is an awful hack. 05219 FD->setLazyBody(1); 05220 #endif 05221 05222 bool isC99Inline = 05223 S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally; 05224 05225 #ifndef NDEBUG 05226 FD->setLazyBody(0); 05227 #endif 05228 05229 return isC99Inline; 05230 } 05231 05232 /// Determine whether a variable is extern "C" prior to attaching 05233 /// an initializer. We can't just call isExternC() here, because that 05234 /// will also compute and cache whether the declaration is externally 05235 /// visible, which might change when we attach the initializer. 05236 /// 05237 /// This can only be used if the declaration is known to not be a 05238 /// redeclaration of an internal linkage declaration. 05239 /// 05240 /// For instance: 05241 /// 05242 /// auto x = []{}; 05243 /// 05244 /// Attaching the initializer here makes this declaration not externally 05245 /// visible, because its type has internal linkage. 05246 /// 05247 /// FIXME: This is a hack. 05248 template<typename T> 05249 static bool isIncompleteDeclExternC(Sema &S, const T *D) { 05250 if (S.getLangOpts().CPlusPlus) { 05251 // In C++, the overloadable attribute negates the effects of extern "C". 05252 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>()) 05253 return false; 05254 } 05255 return D->isExternC(); 05256 } 05257 05258 static bool shouldConsiderLinkage(const VarDecl *VD) { 05259 const DeclContext *DC = VD->getDeclContext()->getRedeclContext(); 05260 if (DC->isFunctionOrMethod()) 05261 return VD->hasExternalStorage(); 05262 if (DC->isFileContext()) 05263 return true; 05264 if (DC->isRecord()) 05265 return false; 05266 llvm_unreachable("Unexpected context"); 05267 } 05268 05269 static bool shouldConsiderLinkage(const FunctionDecl *FD) { 05270 const DeclContext *DC = FD->getDeclContext()->getRedeclContext(); 05271 if (DC->isFileContext() || DC->isFunctionOrMethod()) 05272 return true; 05273 if (DC->isRecord()) 05274 return false; 05275 llvm_unreachable("Unexpected context"); 05276 } 05277 05278 static bool hasParsedAttr(Scope *S, const AttributeList *AttrList, 05279 AttributeList::Kind Kind) { 05280 for (const AttributeList *L = AttrList; L; L = L->getNext()) 05281 if (L->getKind() == Kind) 05282 return true; 05283 return false; 05284 } 05285 05286 static bool hasParsedAttr(Scope *S, const Declarator &PD, 05287 AttributeList::Kind Kind) { 05288 // Check decl attributes on the DeclSpec. 05289 if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind)) 05290 return true; 05291 05292 // Walk the declarator structure, checking decl attributes that were in a type 05293 // position to the decl itself. 05294 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) { 05295 if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind)) 05296 return true; 05297 } 05298 05299 // Finally, check attributes on the decl itself. 05300 return hasParsedAttr(S, PD.getAttributes(), Kind); 05301 } 05302 05303 /// Adjust the \c DeclContext for a function or variable that might be a 05304 /// function-local external declaration. 05305 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) { 05306 if (!DC->isFunctionOrMethod()) 05307 return false; 05308 05309 // If this is a local extern function or variable declared within a function 05310 // template, don't add it into the enclosing namespace scope until it is 05311 // instantiated; it might have a dependent type right now. 05312 if (DC->isDependentContext()) 05313 return true; 05314 05315 // C++11 [basic.link]p7: 05316 // When a block scope declaration of an entity with linkage is not found to 05317 // refer to some other declaration, then that entity is a member of the 05318 // innermost enclosing namespace. 05319 // 05320 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a 05321 // semantically-enclosing namespace, not a lexically-enclosing one. 05322 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) 05323 DC = DC->getParent(); 05324 return true; 05325 } 05326 05327 NamedDecl * 05328 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC, 05329 TypeSourceInfo *TInfo, LookupResult &Previous, 05330 MultiTemplateParamsArg TemplateParamLists, 05331 bool &AddToScope) { 05332 QualType R = TInfo->getType(); 05333 DeclarationName Name = GetNameForDeclarator(D).getName(); 05334 05335 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); 05336 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec()); 05337 05338 // dllimport globals without explicit storage class are treated as extern. We 05339 // have to change the storage class this early to get the right DeclContext. 05340 if (SC == SC_None && !DC->isRecord() && 05341 hasParsedAttr(S, D, AttributeList::AT_DLLImport) && 05342 !hasParsedAttr(S, D, AttributeList::AT_DLLExport)) 05343 SC = SC_Extern; 05344 05345 DeclContext *OriginalDC = DC; 05346 bool IsLocalExternDecl = SC == SC_Extern && 05347 adjustContextForLocalExternDecl(DC); 05348 05349 if (getLangOpts().OpenCL) { 05350 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed. 05351 QualType NR = R; 05352 while (NR->isPointerType()) { 05353 if (NR->isFunctionPointerType()) { 05354 Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable); 05355 D.setInvalidType(); 05356 break; 05357 } 05358 NR = NR->getPointeeType(); 05359 } 05360 05361 if (!getOpenCLOptions().cl_khr_fp16) { 05362 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and 05363 // half array type (unless the cl_khr_fp16 extension is enabled). 05364 if (Context.getBaseElementType(R)->isHalfType()) { 05365 Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R; 05366 D.setInvalidType(); 05367 } 05368 } 05369 } 05370 05371 if (SCSpec == DeclSpec::SCS_mutable) { 05372 // mutable can only appear on non-static class members, so it's always 05373 // an error here 05374 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); 05375 D.setInvalidType(); 05376 SC = SC_None; 05377 } 05378 05379 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register && 05380 !D.getAsmLabel() && !getSourceManager().isInSystemMacro( 05381 D.getDeclSpec().getStorageClassSpecLoc())) { 05382 // In C++11, the 'register' storage class specifier is deprecated. 05383 // Suppress the warning in system macros, it's used in macros in some 05384 // popular C system headers, such as in glibc's htonl() macro. 05385 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 05386 diag::warn_deprecated_register) 05387 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 05388 } 05389 05390 IdentifierInfo *II = Name.getAsIdentifierInfo(); 05391 if (!II) { 05392 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) 05393 << Name; 05394 return nullptr; 05395 } 05396 05397 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 05398 05399 if (!DC->isRecord() && S->getFnParent() == nullptr) { 05400 // C99 6.9p2: The storage-class specifiers auto and register shall not 05401 // appear in the declaration specifiers in an external declaration. 05402 // Global Register+Asm is a GNU extension we support. 05403 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) { 05404 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); 05405 D.setInvalidType(); 05406 } 05407 } 05408 05409 if (getLangOpts().OpenCL) { 05410 // Set up the special work-group-local storage class for variables in the 05411 // OpenCL __local address space. 05412 if (R.getAddressSpace() == LangAS::opencl_local) { 05413 SC = SC_OpenCLWorkGroupLocal; 05414 } 05415 05416 // OpenCL v1.2 s6.9.b p4: 05417 // The sampler type cannot be used with the __local and __global address 05418 // space qualifiers. 05419 if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local || 05420 R.getAddressSpace() == LangAS::opencl_global)) { 05421 Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace); 05422 } 05423 05424 // OpenCL 1.2 spec, p6.9 r: 05425 // The event type cannot be used to declare a program scope variable. 05426 // The event type cannot be used with the __local, __constant and __global 05427 // address space qualifiers. 05428 if (R->isEventT()) { 05429 if (S->getParent() == nullptr) { 05430 Diag(D.getLocStart(), diag::err_event_t_global_var); 05431 D.setInvalidType(); 05432 } 05433 05434 if (R.getAddressSpace()) { 05435 Diag(D.getLocStart(), diag::err_event_t_addr_space_qual); 05436 D.setInvalidType(); 05437 } 05438 } 05439 } 05440 05441 bool IsExplicitSpecialization = false; 05442 bool IsVariableTemplateSpecialization = false; 05443 bool IsPartialSpecialization = false; 05444 bool IsVariableTemplate = false; 05445 VarDecl *NewVD = nullptr; 05446 VarTemplateDecl *NewTemplate = nullptr; 05447 TemplateParameterList *TemplateParams = nullptr; 05448 if (!getLangOpts().CPlusPlus) { 05449 NewVD = VarDecl::Create(Context, DC, D.getLocStart(), 05450 D.getIdentifierLoc(), II, 05451 R, TInfo, SC); 05452 05453 if (D.isInvalidType()) 05454 NewVD->setInvalidDecl(); 05455 } else { 05456 bool Invalid = false; 05457 05458 if (DC->isRecord() && !CurContext->isRecord()) { 05459 // This is an out-of-line definition of a static data member. 05460 switch (SC) { 05461 case SC_None: 05462 break; 05463 case SC_Static: 05464 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 05465 diag::err_static_out_of_line) 05466 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 05467 break; 05468 case SC_Auto: 05469 case SC_Register: 05470 case SC_Extern: 05471 // [dcl.stc] p2: The auto or register specifiers shall be applied only 05472 // to names of variables declared in a block or to function parameters. 05473 // [dcl.stc] p6: The extern specifier cannot be used in the declaration 05474 // of class members 05475 05476 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 05477 diag::err_storage_class_for_static_member) 05478 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 05479 break; 05480 case SC_PrivateExtern: 05481 llvm_unreachable("C storage class in c++!"); 05482 case SC_OpenCLWorkGroupLocal: 05483 llvm_unreachable("OpenCL storage class in c++!"); 05484 } 05485 } 05486 05487 if (SC == SC_Static && CurContext->isRecord()) { 05488 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { 05489 if (RD->isLocalClass()) 05490 Diag(D.getIdentifierLoc(), 05491 diag::err_static_data_member_not_allowed_in_local_class) 05492 << Name << RD->getDeclName(); 05493 05494 // C++98 [class.union]p1: If a union contains a static data member, 05495 // the program is ill-formed. C++11 drops this restriction. 05496 if (RD->isUnion()) 05497 Diag(D.getIdentifierLoc(), 05498 getLangOpts().CPlusPlus11 05499 ? diag::warn_cxx98_compat_static_data_member_in_union 05500 : diag::ext_static_data_member_in_union) << Name; 05501 // We conservatively disallow static data members in anonymous structs. 05502 else if (!RD->getDeclName()) 05503 Diag(D.getIdentifierLoc(), 05504 diag::err_static_data_member_not_allowed_in_anon_struct) 05505 << Name << RD->isUnion(); 05506 } 05507 } 05508 05509 // Match up the template parameter lists with the scope specifier, then 05510 // determine whether we have a template or a template specialization. 05511 TemplateParams = MatchTemplateParametersToScopeSpecifier( 05512 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(), 05513 D.getCXXScopeSpec(), 05514 D.getName().getKind() == UnqualifiedId::IK_TemplateId 05515 ? D.getName().TemplateId 05516 : nullptr, 05517 TemplateParamLists, 05518 /*never a friend*/ false, IsExplicitSpecialization, Invalid); 05519 05520 if (TemplateParams) { 05521 if (!TemplateParams->size() && 05522 D.getName().getKind() != UnqualifiedId::IK_TemplateId) { 05523 // There is an extraneous 'template<>' for this variable. Complain 05524 // about it, but allow the declaration of the variable. 05525 Diag(TemplateParams->getTemplateLoc(), 05526 diag::err_template_variable_noparams) 05527 << II 05528 << SourceRange(TemplateParams->getTemplateLoc(), 05529 TemplateParams->getRAngleLoc()); 05530 TemplateParams = nullptr; 05531 } else { 05532 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 05533 // This is an explicit specialization or a partial specialization. 05534 // FIXME: Check that we can declare a specialization here. 05535 IsVariableTemplateSpecialization = true; 05536 IsPartialSpecialization = TemplateParams->size() > 0; 05537 } else { // if (TemplateParams->size() > 0) 05538 // This is a template declaration. 05539 IsVariableTemplate = true; 05540 05541 // Check that we can declare a template here. 05542 if (CheckTemplateDeclScope(S, TemplateParams)) 05543 return nullptr; 05544 05545 // Only C++1y supports variable templates (N3651). 05546 Diag(D.getIdentifierLoc(), 05547 getLangOpts().CPlusPlus14 05548 ? diag::warn_cxx11_compat_variable_template 05549 : diag::ext_variable_template); 05550 } 05551 } 05552 } else { 05553 assert(D.getName().getKind() != UnqualifiedId::IK_TemplateId && 05554 "should have a 'template<>' for this decl"); 05555 } 05556 05557 if (IsVariableTemplateSpecialization) { 05558 SourceLocation TemplateKWLoc = 05559 TemplateParamLists.size() > 0 05560 ? TemplateParamLists[0]->getTemplateLoc() 05561 : SourceLocation(); 05562 DeclResult Res = ActOnVarTemplateSpecialization( 05563 S, D, TInfo, TemplateKWLoc, TemplateParams, SC, 05564 IsPartialSpecialization); 05565 if (Res.isInvalid()) 05566 return nullptr; 05567 NewVD = cast<VarDecl>(Res.get()); 05568 AddToScope = false; 05569 } else 05570 NewVD = VarDecl::Create(Context, DC, D.getLocStart(), 05571 D.getIdentifierLoc(), II, R, TInfo, SC); 05572 05573 // If this is supposed to be a variable template, create it as such. 05574 if (IsVariableTemplate) { 05575 NewTemplate = 05576 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name, 05577 TemplateParams, NewVD); 05578 NewVD->setDescribedVarTemplate(NewTemplate); 05579 } 05580 05581 // If this decl has an auto type in need of deduction, make a note of the 05582 // Decl so we can diagnose uses of it in its own initializer. 05583 if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType()) 05584 ParsingInitForAutoVars.insert(NewVD); 05585 05586 if (D.isInvalidType() || Invalid) { 05587 NewVD->setInvalidDecl(); 05588 if (NewTemplate) 05589 NewTemplate->setInvalidDecl(); 05590 } 05591 05592 SetNestedNameSpecifier(NewVD, D); 05593 05594 // If we have any template parameter lists that don't directly belong to 05595 // the variable (matching the scope specifier), store them. 05596 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0; 05597 if (TemplateParamLists.size() > VDTemplateParamLists) 05598 NewVD->setTemplateParameterListsInfo( 05599 Context, TemplateParamLists.size() - VDTemplateParamLists, 05600 TemplateParamLists.data()); 05601 05602 if (D.getDeclSpec().isConstexprSpecified()) 05603 NewVD->setConstexpr(true); 05604 } 05605 05606 // Set the lexical context. If the declarator has a C++ scope specifier, the 05607 // lexical context will be different from the semantic context. 05608 NewVD->setLexicalDeclContext(CurContext); 05609 if (NewTemplate) 05610 NewTemplate->setLexicalDeclContext(CurContext); 05611 05612 if (IsLocalExternDecl) 05613 NewVD->setLocalExternDecl(); 05614 05615 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) { 05616 if (NewVD->hasLocalStorage()) { 05617 // C++11 [dcl.stc]p4: 05618 // When thread_local is applied to a variable of block scope the 05619 // storage-class-specifier static is implied if it does not appear 05620 // explicitly. 05621 // Core issue: 'static' is not implied if the variable is declared 05622 // 'extern'. 05623 if (SCSpec == DeclSpec::SCS_unspecified && 05624 TSCS == DeclSpec::TSCS_thread_local && 05625 DC->isFunctionOrMethod()) 05626 NewVD->setTSCSpec(TSCS); 05627 else 05628 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 05629 diag::err_thread_non_global) 05630 << DeclSpec::getSpecifierName(TSCS); 05631 } else if (!Context.getTargetInfo().isTLSSupported()) 05632 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 05633 diag::err_thread_unsupported); 05634 else 05635 NewVD->setTSCSpec(TSCS); 05636 } 05637 05638 // C99 6.7.4p3 05639 // An inline definition of a function with external linkage shall 05640 // not contain a definition of a modifiable object with static or 05641 // thread storage duration... 05642 // We only apply this when the function is required to be defined 05643 // elsewhere, i.e. when the function is not 'extern inline'. Note 05644 // that a local variable with thread storage duration still has to 05645 // be marked 'static'. Also note that it's possible to get these 05646 // semantics in C++ using __attribute__((gnu_inline)). 05647 if (SC == SC_Static && S->getFnParent() != nullptr && 05648 !NewVD->getType().isConstQualified()) { 05649 FunctionDecl *CurFD = getCurFunctionDecl(); 05650 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) { 05651 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 05652 diag::warn_static_local_in_extern_inline); 05653 MaybeSuggestAddingStaticToDecl(CurFD); 05654 } 05655 } 05656 05657 if (D.getDeclSpec().isModulePrivateSpecified()) { 05658 if (IsVariableTemplateSpecialization) 05659 Diag(NewVD->getLocation(), diag::err_module_private_specialization) 05660 << (IsPartialSpecialization ? 1 : 0) 05661 << FixItHint::CreateRemoval( 05662 D.getDeclSpec().getModulePrivateSpecLoc()); 05663 else if (IsExplicitSpecialization) 05664 Diag(NewVD->getLocation(), diag::err_module_private_specialization) 05665 << 2 05666 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 05667 else if (NewVD->hasLocalStorage()) 05668 Diag(NewVD->getLocation(), diag::err_module_private_local) 05669 << 0 << NewVD->getDeclName() 05670 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 05671 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 05672 else { 05673 NewVD->setModulePrivate(); 05674 if (NewTemplate) 05675 NewTemplate->setModulePrivate(); 05676 } 05677 } 05678 05679 // Handle attributes prior to checking for duplicates in MergeVarDecl 05680 ProcessDeclAttributes(S, NewVD, D); 05681 05682 if (getLangOpts().CUDA) { 05683 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static 05684 // storage [duration]." 05685 if (SC == SC_None && S->getFnParent() != nullptr && 05686 (NewVD->hasAttr<CUDASharedAttr>() || 05687 NewVD->hasAttr<CUDAConstantAttr>())) { 05688 NewVD->setStorageClass(SC_Static); 05689 } 05690 } 05691 05692 // Ensure that dllimport globals without explicit storage class are treated as 05693 // extern. The storage class is set above using parsed attributes. Now we can 05694 // check the VarDecl itself. 05695 assert(!NewVD->hasAttr<DLLImportAttr>() || 05696 NewVD->getAttr<DLLImportAttr>()->isInherited() || 05697 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None); 05698 05699 // In auto-retain/release, infer strong retension for variables of 05700 // retainable type. 05701 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD)) 05702 NewVD->setInvalidDecl(); 05703 05704 // Handle GNU asm-label extension (encoded as an attribute). 05705 if (Expr *E = (Expr*)D.getAsmLabel()) { 05706 // The parser guarantees this is a string. 05707 StringLiteral *SE = cast<StringLiteral>(E); 05708 StringRef Label = SE->getString(); 05709 if (S->getFnParent() != nullptr) { 05710 switch (SC) { 05711 case SC_None: 05712 case SC_Auto: 05713 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label; 05714 break; 05715 case SC_Register: 05716 // Local Named register 05717 if (!Context.getTargetInfo().isValidGCCRegisterName(Label)) 05718 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; 05719 break; 05720 case SC_Static: 05721 case SC_Extern: 05722 case SC_PrivateExtern: 05723 case SC_OpenCLWorkGroupLocal: 05724 break; 05725 } 05726 } else if (SC == SC_Register) { 05727 // Global Named register 05728 if (!Context.getTargetInfo().isValidGCCRegisterName(Label)) 05729 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; 05730 if (!R->isIntegralType(Context) && !R->isPointerType()) { 05731 Diag(D.getLocStart(), diag::err_asm_bad_register_type); 05732 NewVD->setInvalidDecl(true); 05733 } 05734 } 05735 05736 NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), 05737 Context, Label, 0)); 05738 } else if (!ExtnameUndeclaredIdentifiers.empty()) { 05739 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = 05740 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier()); 05741 if (I != ExtnameUndeclaredIdentifiers.end()) { 05742 NewVD->addAttr(I->second); 05743 ExtnameUndeclaredIdentifiers.erase(I); 05744 } 05745 } 05746 05747 // Diagnose shadowed variables before filtering for scope. 05748 if (D.getCXXScopeSpec().isEmpty()) 05749 CheckShadow(S, NewVD, Previous); 05750 05751 // Don't consider existing declarations that are in a different 05752 // scope and are out-of-semantic-context declarations (if the new 05753 // declaration has linkage). 05754 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD), 05755 D.getCXXScopeSpec().isNotEmpty() || 05756 IsExplicitSpecialization || 05757 IsVariableTemplateSpecialization); 05758 05759 // Check whether the previous declaration is in the same block scope. This 05760 // affects whether we merge types with it, per C++11 [dcl.array]p3. 05761 if (getLangOpts().CPlusPlus && 05762 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage()) 05763 NewVD->setPreviousDeclInSameBlockScope( 05764 Previous.isSingleResult() && !Previous.isShadowed() && 05765 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false)); 05766 05767 if (!getLangOpts().CPlusPlus) { 05768 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); 05769 } else { 05770 // If this is an explicit specialization of a static data member, check it. 05771 if (IsExplicitSpecialization && !NewVD->isInvalidDecl() && 05772 CheckMemberSpecialization(NewVD, Previous)) 05773 NewVD->setInvalidDecl(); 05774 05775 // Merge the decl with the existing one if appropriate. 05776 if (!Previous.empty()) { 05777 if (Previous.isSingleResult() && 05778 isa<FieldDecl>(Previous.getFoundDecl()) && 05779 D.getCXXScopeSpec().isSet()) { 05780 // The user tried to define a non-static data member 05781 // out-of-line (C++ [dcl.meaning]p1). 05782 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) 05783 << D.getCXXScopeSpec().getRange(); 05784 Previous.clear(); 05785 NewVD->setInvalidDecl(); 05786 } 05787 } else if (D.getCXXScopeSpec().isSet()) { 05788 // No previous declaration in the qualifying scope. 05789 Diag(D.getIdentifierLoc(), diag::err_no_member) 05790 << Name << computeDeclContext(D.getCXXScopeSpec(), true) 05791 << D.getCXXScopeSpec().getRange(); 05792 NewVD->setInvalidDecl(); 05793 } 05794 05795 if (!IsVariableTemplateSpecialization) 05796 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); 05797 05798 if (NewTemplate) { 05799 VarTemplateDecl *PrevVarTemplate = 05800 NewVD->getPreviousDecl() 05801 ? NewVD->getPreviousDecl()->getDescribedVarTemplate() 05802 : nullptr; 05803 05804 // Check the template parameter list of this declaration, possibly 05805 // merging in the template parameter list from the previous variable 05806 // template declaration. 05807 if (CheckTemplateParameterList( 05808 TemplateParams, 05809 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters() 05810 : nullptr, 05811 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() && 05812 DC->isDependentContext()) 05813 ? TPC_ClassTemplateMember 05814 : TPC_VarTemplate)) 05815 NewVD->setInvalidDecl(); 05816 05817 // If we are providing an explicit specialization of a static variable 05818 // template, make a note of that. 05819 if (PrevVarTemplate && 05820 PrevVarTemplate->getInstantiatedFromMemberTemplate()) 05821 PrevVarTemplate->setMemberSpecialization(); 05822 } 05823 } 05824 05825 ProcessPragmaWeak(S, NewVD); 05826 05827 // If this is the first declaration of an extern C variable, update 05828 // the map of such variables. 05829 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() && 05830 isIncompleteDeclExternC(*this, NewVD)) 05831 RegisterLocallyScopedExternCDecl(NewVD, S); 05832 05833 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { 05834 Decl *ManglingContextDecl; 05835 if (MangleNumberingContext *MCtx = 05836 getCurrentMangleNumberContext(NewVD->getDeclContext(), 05837 ManglingContextDecl)) { 05838 Context.setManglingNumber( 05839 NewVD, MCtx->getManglingNumber(NewVD, S->getMSLocalManglingNumber())); 05840 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); 05841 } 05842 } 05843 05844 if (D.isRedeclaration() && !Previous.empty()) { 05845 checkDLLAttributeRedeclaration( 05846 *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD, 05847 IsExplicitSpecialization); 05848 } 05849 05850 if (NewTemplate) { 05851 if (NewVD->isInvalidDecl()) 05852 NewTemplate->setInvalidDecl(); 05853 ActOnDocumentableDecl(NewTemplate); 05854 return NewTemplate; 05855 } 05856 05857 return NewVD; 05858 } 05859 05860 /// \brief Diagnose variable or built-in function shadowing. Implements 05861 /// -Wshadow. 05862 /// 05863 /// This method is called whenever a VarDecl is added to a "useful" 05864 /// scope. 05865 /// 05866 /// \param S the scope in which the shadowing name is being declared 05867 /// \param R the lookup of the name 05868 /// 05869 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) { 05870 // Return if warning is ignored. 05871 if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc())) 05872 return; 05873 05874 // Don't diagnose declarations at file scope. 05875 if (D->hasGlobalStorage()) 05876 return; 05877 05878 DeclContext *NewDC = D->getDeclContext(); 05879 05880 // Only diagnose if we're shadowing an unambiguous field or variable. 05881 if (R.getResultKind() != LookupResult::Found) 05882 return; 05883 05884 NamedDecl* ShadowedDecl = R.getFoundDecl(); 05885 if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl)) 05886 return; 05887 05888 // Fields are not shadowed by variables in C++ static methods. 05889 if (isa<FieldDecl>(ShadowedDecl)) 05890 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC)) 05891 if (MD->isStatic()) 05892 return; 05893 05894 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl)) 05895 if (shadowedVar->isExternC()) { 05896 // For shadowing external vars, make sure that we point to the global 05897 // declaration, not a locally scoped extern declaration. 05898 for (auto I : shadowedVar->redecls()) 05899 if (I->isFileVarDecl()) { 05900 ShadowedDecl = I; 05901 break; 05902 } 05903 } 05904 05905 DeclContext *OldDC = ShadowedDecl->getDeclContext(); 05906 05907 // Only warn about certain kinds of shadowing for class members. 05908 if (NewDC && NewDC->isRecord()) { 05909 // In particular, don't warn about shadowing non-class members. 05910 if (!OldDC->isRecord()) 05911 return; 05912 05913 // TODO: should we warn about static data members shadowing 05914 // static data members from base classes? 05915 05916 // TODO: don't diagnose for inaccessible shadowed members. 05917 // This is hard to do perfectly because we might friend the 05918 // shadowing context, but that's just a false negative. 05919 } 05920 05921 // Determine what kind of declaration we're shadowing. 05922 unsigned Kind; 05923 if (isa<RecordDecl>(OldDC)) { 05924 if (isa<FieldDecl>(ShadowedDecl)) 05925 Kind = 3; // field 05926 else 05927 Kind = 2; // static data member 05928 } else if (OldDC->isFileContext()) 05929 Kind = 1; // global 05930 else 05931 Kind = 0; // local 05932 05933 DeclarationName Name = R.getLookupName(); 05934 05935 // Emit warning and note. 05936 if (getSourceManager().isInSystemMacro(R.getNameLoc())) 05937 return; 05938 Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC; 05939 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 05940 } 05941 05942 /// \brief Check -Wshadow without the advantage of a previous lookup. 05943 void Sema::CheckShadow(Scope *S, VarDecl *D) { 05944 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation())) 05945 return; 05946 05947 LookupResult R(*this, D->getDeclName(), D->getLocation(), 05948 Sema::LookupOrdinaryName, Sema::ForRedeclaration); 05949 LookupName(R, S); 05950 CheckShadow(S, D, R); 05951 } 05952 05953 /// Check for conflict between this global or extern "C" declaration and 05954 /// previous global or extern "C" declarations. This is only used in C++. 05955 template<typename T> 05956 static bool checkGlobalOrExternCConflict( 05957 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) { 05958 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""); 05959 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName()); 05960 05961 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) { 05962 // The common case: this global doesn't conflict with any extern "C" 05963 // declaration. 05964 return false; 05965 } 05966 05967 if (Prev) { 05968 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) { 05969 // Both the old and new declarations have C language linkage. This is a 05970 // redeclaration. 05971 Previous.clear(); 05972 Previous.addDecl(Prev); 05973 return true; 05974 } 05975 05976 // This is a global, non-extern "C" declaration, and there is a previous 05977 // non-global extern "C" declaration. Diagnose if this is a variable 05978 // declaration. 05979 if (!isa<VarDecl>(ND)) 05980 return false; 05981 } else { 05982 // The declaration is extern "C". Check for any declaration in the 05983 // translation unit which might conflict. 05984 if (IsGlobal) { 05985 // We have already performed the lookup into the translation unit. 05986 IsGlobal = false; 05987 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 05988 I != E; ++I) { 05989 if (isa<VarDecl>(*I)) { 05990 Prev = *I; 05991 break; 05992 } 05993 } 05994 } else { 05995 DeclContext::lookup_result R = 05996 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName()); 05997 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end(); 05998 I != E; ++I) { 05999 if (isa<VarDecl>(*I)) { 06000 Prev = *I; 06001 break; 06002 } 06003 // FIXME: If we have any other entity with this name in global scope, 06004 // the declaration is ill-formed, but that is a defect: it breaks the 06005 // 'stat' hack, for instance. Only variables can have mangled name 06006 // clashes with extern "C" declarations, so only they deserve a 06007 // diagnostic. 06008 } 06009 } 06010 06011 if (!Prev) 06012 return false; 06013 } 06014 06015 // Use the first declaration's location to ensure we point at something which 06016 // is lexically inside an extern "C" linkage-spec. 06017 assert(Prev && "should have found a previous declaration to diagnose"); 06018 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev)) 06019 Prev = FD->getFirstDecl(); 06020 else 06021 Prev = cast<VarDecl>(Prev)->getFirstDecl(); 06022 06023 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict) 06024 << IsGlobal << ND; 06025 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict) 06026 << IsGlobal; 06027 return false; 06028 } 06029 06030 /// Apply special rules for handling extern "C" declarations. Returns \c true 06031 /// if we have found that this is a redeclaration of some prior entity. 06032 /// 06033 /// Per C++ [dcl.link]p6: 06034 /// Two declarations [for a function or variable] with C language linkage 06035 /// with the same name that appear in different scopes refer to the same 06036 /// [entity]. An entity with C language linkage shall not be declared with 06037 /// the same name as an entity in global scope. 06038 template<typename T> 06039 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND, 06040 LookupResult &Previous) { 06041 if (!S.getLangOpts().CPlusPlus) { 06042 // In C, when declaring a global variable, look for a corresponding 'extern' 06043 // variable declared in function scope. We don't need this in C++, because 06044 // we find local extern decls in the surrounding file-scope DeclContext. 06045 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 06046 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) { 06047 Previous.clear(); 06048 Previous.addDecl(Prev); 06049 return true; 06050 } 06051 } 06052 return false; 06053 } 06054 06055 // A declaration in the translation unit can conflict with an extern "C" 06056 // declaration. 06057 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) 06058 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous); 06059 06060 // An extern "C" declaration can conflict with a declaration in the 06061 // translation unit or can be a redeclaration of an extern "C" declaration 06062 // in another scope. 06063 if (isIncompleteDeclExternC(S,ND)) 06064 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous); 06065 06066 // Neither global nor extern "C": nothing to do. 06067 return false; 06068 } 06069 06070 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) { 06071 // If the decl is already known invalid, don't check it. 06072 if (NewVD->isInvalidDecl()) 06073 return; 06074 06075 TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo(); 06076 QualType T = TInfo->getType(); 06077 06078 // Defer checking an 'auto' type until its initializer is attached. 06079 if (T->isUndeducedType()) 06080 return; 06081 06082 if (NewVD->hasAttrs()) 06083 CheckAlignasUnderalignment(NewVD); 06084 06085 if (T->isObjCObjectType()) { 06086 Diag(NewVD->getLocation(), diag::err_statically_allocated_object) 06087 << FixItHint::CreateInsertion(NewVD->getLocation(), "*"); 06088 T = Context.getObjCObjectPointerType(T); 06089 NewVD->setType(T); 06090 } 06091 06092 // Emit an error if an address space was applied to decl with local storage. 06093 // This includes arrays of objects with address space qualifiers, but not 06094 // automatic variables that point to other address spaces. 06095 // ISO/IEC TR 18037 S5.1.2 06096 if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) { 06097 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl); 06098 NewVD->setInvalidDecl(); 06099 return; 06100 } 06101 06102 // OpenCL v1.2 s6.5 - All program scope variables must be declared in the 06103 // __constant address space. 06104 if (getLangOpts().OpenCL && NewVD->isFileVarDecl() 06105 && T.getAddressSpace() != LangAS::opencl_constant 06106 && !T->isSamplerT()){ 06107 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space); 06108 NewVD->setInvalidDecl(); 06109 return; 06110 } 06111 06112 // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program 06113 // scope. 06114 if ((getLangOpts().OpenCLVersion >= 120) 06115 && NewVD->isStaticLocal()) { 06116 Diag(NewVD->getLocation(), diag::err_static_function_scope); 06117 NewVD->setInvalidDecl(); 06118 return; 06119 } 06120 06121 if (NewVD->hasLocalStorage() && T.isObjCGCWeak() 06122 && !NewVD->hasAttr<BlocksAttr>()) { 06123 if (getLangOpts().getGC() != LangOptions::NonGC) 06124 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local); 06125 else { 06126 assert(!getLangOpts().ObjCAutoRefCount); 06127 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); 06128 } 06129 } 06130 06131 bool isVM = T->isVariablyModifiedType(); 06132 if (isVM || NewVD->hasAttr<CleanupAttr>() || 06133 NewVD->hasAttr<BlocksAttr>()) 06134 getCurFunction()->setHasBranchProtectedScope(); 06135 06136 if ((isVM && NewVD->hasLinkage()) || 06137 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) { 06138 bool SizeIsNegative; 06139 llvm::APSInt Oversized; 06140 TypeSourceInfo *FixedTInfo = 06141 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 06142 SizeIsNegative, Oversized); 06143 if (!FixedTInfo && T->isVariableArrayType()) { 06144 const VariableArrayType *VAT = Context.getAsVariableArrayType(T); 06145 // FIXME: This won't give the correct result for 06146 // int a[10][n]; 06147 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); 06148 06149 if (NewVD->isFileVarDecl()) 06150 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) 06151 << SizeRange; 06152 else if (NewVD->isStaticLocal()) 06153 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) 06154 << SizeRange; 06155 else 06156 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) 06157 << SizeRange; 06158 NewVD->setInvalidDecl(); 06159 return; 06160 } 06161 06162 if (!FixedTInfo) { 06163 if (NewVD->isFileVarDecl()) 06164 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); 06165 else 06166 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); 06167 NewVD->setInvalidDecl(); 06168 return; 06169 } 06170 06171 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size); 06172 NewVD->setType(FixedTInfo->getType()); 06173 NewVD->setTypeSourceInfo(FixedTInfo); 06174 } 06175 06176 if (T->isVoidType()) { 06177 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names 06178 // of objects and functions. 06179 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) { 06180 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) 06181 << T; 06182 NewVD->setInvalidDecl(); 06183 return; 06184 } 06185 } 06186 06187 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { 06188 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); 06189 NewVD->setInvalidDecl(); 06190 return; 06191 } 06192 06193 if (isVM && NewVD->hasAttr<BlocksAttr>()) { 06194 Diag(NewVD->getLocation(), diag::err_block_on_vm); 06195 NewVD->setInvalidDecl(); 06196 return; 06197 } 06198 06199 if (NewVD->isConstexpr() && !T->isDependentType() && 06200 RequireLiteralType(NewVD->getLocation(), T, 06201 diag::err_constexpr_var_non_literal)) { 06202 NewVD->setInvalidDecl(); 06203 return; 06204 } 06205 } 06206 06207 /// \brief Perform semantic checking on a newly-created variable 06208 /// declaration. 06209 /// 06210 /// This routine performs all of the type-checking required for a 06211 /// variable declaration once it has been built. It is used both to 06212 /// check variables after they have been parsed and their declarators 06213 /// have been translated into a declaration, and to check variables 06214 /// that have been instantiated from a template. 06215 /// 06216 /// Sets NewVD->isInvalidDecl() if an error was encountered. 06217 /// 06218 /// Returns true if the variable declaration is a redeclaration. 06219 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) { 06220 CheckVariableDeclarationType(NewVD); 06221 06222 // If the decl is already known invalid, don't check it. 06223 if (NewVD->isInvalidDecl()) 06224 return false; 06225 06226 // If we did not find anything by this name, look for a non-visible 06227 // extern "C" declaration with the same name. 06228 if (Previous.empty() && 06229 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous)) 06230 Previous.setShadowed(); 06231 06232 // Filter out any non-conflicting previous declarations. 06233 filterNonConflictingPreviousDecls(Context, NewVD, Previous); 06234 06235 if (!Previous.empty()) { 06236 MergeVarDecl(NewVD, Previous); 06237 return true; 06238 } 06239 return false; 06240 } 06241 06242 /// \brief Data used with FindOverriddenMethod 06243 struct FindOverriddenMethodData { 06244 Sema *S; 06245 CXXMethodDecl *Method; 06246 }; 06247 06248 /// \brief Member lookup function that determines whether a given C++ 06249 /// method overrides a method in a base class, to be used with 06250 /// CXXRecordDecl::lookupInBases(). 06251 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier, 06252 CXXBasePath &Path, 06253 void *UserData) { 06254 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); 06255 06256 FindOverriddenMethodData *Data 06257 = reinterpret_cast<FindOverriddenMethodData*>(UserData); 06258 06259 DeclarationName Name = Data->Method->getDeclName(); 06260 06261 // FIXME: Do we care about other names here too? 06262 if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 06263 // We really want to find the base class destructor here. 06264 QualType T = Data->S->Context.getTypeDeclType(BaseRecord); 06265 CanQualType CT = Data->S->Context.getCanonicalType(T); 06266 06267 Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT); 06268 } 06269 06270 for (Path.Decls = BaseRecord->lookup(Name); 06271 !Path.Decls.empty(); 06272 Path.Decls = Path.Decls.slice(1)) { 06273 NamedDecl *D = Path.Decls.front(); 06274 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 06275 if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false)) 06276 return true; 06277 } 06278 } 06279 06280 return false; 06281 } 06282 06283 namespace { 06284 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted }; 06285 } 06286 /// \brief Report an error regarding overriding, along with any relevant 06287 /// overriden methods. 06288 /// 06289 /// \param DiagID the primary error to report. 06290 /// \param MD the overriding method. 06291 /// \param OEK which overrides to include as notes. 06292 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD, 06293 OverrideErrorKind OEK = OEK_All) { 06294 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 06295 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(), 06296 E = MD->end_overridden_methods(); 06297 I != E; ++I) { 06298 // This check (& the OEK parameter) could be replaced by a predicate, but 06299 // without lambdas that would be overkill. This is still nicer than writing 06300 // out the diag loop 3 times. 06301 if ((OEK == OEK_All) || 06302 (OEK == OEK_NonDeleted && !(*I)->isDeleted()) || 06303 (OEK == OEK_Deleted && (*I)->isDeleted())) 06304 S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function); 06305 } 06306 } 06307 06308 /// AddOverriddenMethods - See if a method overrides any in the base classes, 06309 /// and if so, check that it's a valid override and remember it. 06310 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { 06311 // Look for methods in base classes that this method might override. 06312 CXXBasePaths Paths; 06313 FindOverriddenMethodData Data; 06314 Data.Method = MD; 06315 Data.S = this; 06316 bool hasDeletedOverridenMethods = false; 06317 bool hasNonDeletedOverridenMethods = false; 06318 bool AddedAny = false; 06319 if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) { 06320 for (auto *I : Paths.found_decls()) { 06321 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) { 06322 MD->addOverriddenMethod(OldMD->getCanonicalDecl()); 06323 if (!CheckOverridingFunctionReturnType(MD, OldMD) && 06324 !CheckOverridingFunctionAttributes(MD, OldMD) && 06325 !CheckOverridingFunctionExceptionSpec(MD, OldMD) && 06326 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) { 06327 hasDeletedOverridenMethods |= OldMD->isDeleted(); 06328 hasNonDeletedOverridenMethods |= !OldMD->isDeleted(); 06329 AddedAny = true; 06330 } 06331 } 06332 } 06333 } 06334 06335 if (hasDeletedOverridenMethods && !MD->isDeleted()) { 06336 ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted); 06337 } 06338 if (hasNonDeletedOverridenMethods && MD->isDeleted()) { 06339 ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted); 06340 } 06341 06342 return AddedAny; 06343 } 06344 06345 namespace { 06346 // Struct for holding all of the extra arguments needed by 06347 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator. 06348 struct ActOnFDArgs { 06349 Scope *S; 06350 Declarator &D; 06351 MultiTemplateParamsArg TemplateParamLists; 06352 bool AddToScope; 06353 }; 06354 } 06355 06356 namespace { 06357 06358 // Callback to only accept typo corrections that have a non-zero edit distance. 06359 // Also only accept corrections that have the same parent decl. 06360 class DifferentNameValidatorCCC : public CorrectionCandidateCallback { 06361 public: 06362 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD, 06363 CXXRecordDecl *Parent) 06364 : Context(Context), OriginalFD(TypoFD), 06365 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {} 06366 06367 bool ValidateCandidate(const TypoCorrection &candidate) override { 06368 if (candidate.getEditDistance() == 0) 06369 return false; 06370 06371 SmallVector<unsigned, 1> MismatchedParams; 06372 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(), 06373 CDeclEnd = candidate.end(); 06374 CDecl != CDeclEnd; ++CDecl) { 06375 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); 06376 06377 if (FD && !FD->hasBody() && 06378 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) { 06379 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 06380 CXXRecordDecl *Parent = MD->getParent(); 06381 if (Parent && Parent->getCanonicalDecl() == ExpectedParent) 06382 return true; 06383 } else if (!ExpectedParent) { 06384 return true; 06385 } 06386 } 06387 } 06388 06389 return false; 06390 } 06391 06392 private: 06393 ASTContext &Context; 06394 FunctionDecl *OriginalFD; 06395 CXXRecordDecl *ExpectedParent; 06396 }; 06397 06398 } 06399 06400 /// \brief Generate diagnostics for an invalid function redeclaration. 06401 /// 06402 /// This routine handles generating the diagnostic messages for an invalid 06403 /// function redeclaration, including finding possible similar declarations 06404 /// or performing typo correction if there are no previous declarations with 06405 /// the same name. 06406 /// 06407 /// Returns a NamedDecl iff typo correction was performed and substituting in 06408 /// the new declaration name does not cause new errors. 06409 static NamedDecl *DiagnoseInvalidRedeclaration( 06410 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD, 06411 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) { 06412 DeclarationName Name = NewFD->getDeclName(); 06413 DeclContext *NewDC = NewFD->getDeclContext(); 06414 SmallVector<unsigned, 1> MismatchedParams; 06415 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches; 06416 TypoCorrection Correction; 06417 bool IsDefinition = ExtraArgs.D.isFunctionDefinition(); 06418 unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend 06419 : diag::err_member_decl_does_not_match; 06420 LookupResult Prev(SemaRef, Name, NewFD->getLocation(), 06421 IsLocalFriend ? Sema::LookupLocalFriendName 06422 : Sema::LookupOrdinaryName, 06423 Sema::ForRedeclaration); 06424 06425 NewFD->setInvalidDecl(); 06426 if (IsLocalFriend) 06427 SemaRef.LookupName(Prev, S); 06428 else 06429 SemaRef.LookupQualifiedName(Prev, NewDC); 06430 assert(!Prev.isAmbiguous() && 06431 "Cannot have an ambiguity in previous-declaration lookup"); 06432 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 06433 if (!Prev.empty()) { 06434 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); 06435 Func != FuncEnd; ++Func) { 06436 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func); 06437 if (FD && 06438 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { 06439 // Add 1 to the index so that 0 can mean the mismatch didn't 06440 // involve a parameter 06441 unsigned ParamNum = 06442 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1; 06443 NearMatches.push_back(std::make_pair(FD, ParamNum)); 06444 } 06445 } 06446 // If the qualified name lookup yielded nothing, try typo correction 06447 } else if ((Correction = SemaRef.CorrectTypo( 06448 Prev.getLookupNameInfo(), Prev.getLookupKind(), S, 06449 &ExtraArgs.D.getCXXScopeSpec(), 06450 llvm::make_unique<DifferentNameValidatorCCC>( 06451 SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr), 06452 Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) { 06453 // Set up everything for the call to ActOnFunctionDeclarator 06454 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(), 06455 ExtraArgs.D.getIdentifierLoc()); 06456 Previous.clear(); 06457 Previous.setLookupName(Correction.getCorrection()); 06458 for (TypoCorrection::decl_iterator CDecl = Correction.begin(), 06459 CDeclEnd = Correction.end(); 06460 CDecl != CDeclEnd; ++CDecl) { 06461 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); 06462 if (FD && !FD->hasBody() && 06463 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { 06464 Previous.addDecl(FD); 06465 } 06466 } 06467 bool wasRedeclaration = ExtraArgs.D.isRedeclaration(); 06468 06469 NamedDecl *Result; 06470 // Retry building the function declaration with the new previous 06471 // declarations, and with errors suppressed. 06472 { 06473 // Trap errors. 06474 Sema::SFINAETrap Trap(SemaRef); 06475 06476 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the 06477 // pieces need to verify the typo-corrected C++ declaration and hopefully 06478 // eliminate the need for the parameter pack ExtraArgs. 06479 Result = SemaRef.ActOnFunctionDeclarator( 06480 ExtraArgs.S, ExtraArgs.D, 06481 Correction.getCorrectionDecl()->getDeclContext(), 06482 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists, 06483 ExtraArgs.AddToScope); 06484 06485 if (Trap.hasErrorOccurred()) 06486 Result = nullptr; 06487 } 06488 06489 if (Result) { 06490 // Determine which correction we picked. 06491 Decl *Canonical = Result->getCanonicalDecl(); 06492 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 06493 I != E; ++I) 06494 if ((*I)->getCanonicalDecl() == Canonical) 06495 Correction.setCorrectionDecl(*I); 06496 06497 SemaRef.diagnoseTypo( 06498 Correction, 06499 SemaRef.PDiag(IsLocalFriend 06500 ? diag::err_no_matching_local_friend_suggest 06501 : diag::err_member_decl_does_not_match_suggest) 06502 << Name << NewDC << IsDefinition); 06503 return Result; 06504 } 06505 06506 // Pretend the typo correction never occurred 06507 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(), 06508 ExtraArgs.D.getIdentifierLoc()); 06509 ExtraArgs.D.setRedeclaration(wasRedeclaration); 06510 Previous.clear(); 06511 Previous.setLookupName(Name); 06512 } 06513 06514 SemaRef.Diag(NewFD->getLocation(), DiagMsg) 06515 << Name << NewDC << IsDefinition << NewFD->getLocation(); 06516 06517 bool NewFDisConst = false; 06518 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) 06519 NewFDisConst = NewMD->isConst(); 06520 06521 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator 06522 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end(); 06523 NearMatch != NearMatchEnd; ++NearMatch) { 06524 FunctionDecl *FD = NearMatch->first; 06525 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 06526 bool FDisConst = MD && MD->isConst(); 06527 bool IsMember = MD || !IsLocalFriend; 06528 06529 // FIXME: These notes are poorly worded for the local friend case. 06530 if (unsigned Idx = NearMatch->second) { 06531 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1); 06532 SourceLocation Loc = FDParam->getTypeSpecStartLoc(); 06533 if (Loc.isInvalid()) Loc = FD->getLocation(); 06534 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match 06535 : diag::note_local_decl_close_param_match) 06536 << Idx << FDParam->getType() 06537 << NewFD->getParamDecl(Idx - 1)->getType(); 06538 } else if (FDisConst != NewFDisConst) { 06539 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match) 06540 << NewFDisConst << FD->getSourceRange().getEnd(); 06541 } else 06542 SemaRef.Diag(FD->getLocation(), 06543 IsMember ? diag::note_member_def_close_match 06544 : diag::note_local_decl_close_match); 06545 } 06546 return nullptr; 06547 } 06548 06549 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) { 06550 switch (D.getDeclSpec().getStorageClassSpec()) { 06551 default: llvm_unreachable("Unknown storage class!"); 06552 case DeclSpec::SCS_auto: 06553 case DeclSpec::SCS_register: 06554 case DeclSpec::SCS_mutable: 06555 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), 06556 diag::err_typecheck_sclass_func); 06557 D.setInvalidType(); 06558 break; 06559 case DeclSpec::SCS_unspecified: break; 06560 case DeclSpec::SCS_extern: 06561 if (D.getDeclSpec().isExternInLinkageSpec()) 06562 return SC_None; 06563 return SC_Extern; 06564 case DeclSpec::SCS_static: { 06565 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) { 06566 // C99 6.7.1p5: 06567 // The declaration of an identifier for a function that has 06568 // block scope shall have no explicit storage-class specifier 06569 // other than extern 06570 // See also (C++ [dcl.stc]p4). 06571 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), 06572 diag::err_static_block_func); 06573 break; 06574 } else 06575 return SC_Static; 06576 } 06577 case DeclSpec::SCS_private_extern: return SC_PrivateExtern; 06578 } 06579 06580 // No explicit storage class has already been returned 06581 return SC_None; 06582 } 06583 06584 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D, 06585 DeclContext *DC, QualType &R, 06586 TypeSourceInfo *TInfo, 06587 StorageClass SC, 06588 bool &IsVirtualOkay) { 06589 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D); 06590 DeclarationName Name = NameInfo.getName(); 06591 06592 FunctionDecl *NewFD = nullptr; 06593 bool isInline = D.getDeclSpec().isInlineSpecified(); 06594 06595 if (!SemaRef.getLangOpts().CPlusPlus) { 06596 // Determine whether the function was written with a 06597 // prototype. This true when: 06598 // - there is a prototype in the declarator, or 06599 // - the type R of the function is some kind of typedef or other reference 06600 // to a type name (which eventually refers to a function type). 06601 bool HasPrototype = 06602 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) || 06603 (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType()); 06604 06605 NewFD = FunctionDecl::Create(SemaRef.Context, DC, 06606 D.getLocStart(), NameInfo, R, 06607 TInfo, SC, isInline, 06608 HasPrototype, false); 06609 if (D.isInvalidType()) 06610 NewFD->setInvalidDecl(); 06611 06612 // Set the lexical context. 06613 NewFD->setLexicalDeclContext(SemaRef.CurContext); 06614 06615 return NewFD; 06616 } 06617 06618 bool isExplicit = D.getDeclSpec().isExplicitSpecified(); 06619 bool isConstexpr = D.getDeclSpec().isConstexprSpecified(); 06620 06621 // Check that the return type is not an abstract class type. 06622 // For record types, this is done by the AbstractClassUsageDiagnoser once 06623 // the class has been completely parsed. 06624 if (!DC->isRecord() && 06625 SemaRef.RequireNonAbstractType( 06626 D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(), 06627 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType)) 06628 D.setInvalidType(); 06629 06630 if (Name.getNameKind() == DeclarationName::CXXConstructorName) { 06631 // This is a C++ constructor declaration. 06632 assert(DC->isRecord() && 06633 "Constructors can only be declared in a member context"); 06634 06635 R = SemaRef.CheckConstructorDeclarator(D, R, SC); 06636 return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC), 06637 D.getLocStart(), NameInfo, 06638 R, TInfo, isExplicit, isInline, 06639 /*isImplicitlyDeclared=*/false, 06640 isConstexpr); 06641 06642 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 06643 // This is a C++ destructor declaration. 06644 if (DC->isRecord()) { 06645 R = SemaRef.CheckDestructorDeclarator(D, R, SC); 06646 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 06647 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create( 06648 SemaRef.Context, Record, 06649 D.getLocStart(), 06650 NameInfo, R, TInfo, isInline, 06651 /*isImplicitlyDeclared=*/false); 06652 06653 // If the class is complete, then we now create the implicit exception 06654 // specification. If the class is incomplete or dependent, we can't do 06655 // it yet. 06656 if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() && 06657 Record->getDefinition() && !Record->isBeingDefined() && 06658 R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) { 06659 SemaRef.AdjustDestructorExceptionSpec(Record, NewDD); 06660 } 06661 06662 IsVirtualOkay = true; 06663 return NewDD; 06664 06665 } else { 06666 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); 06667 D.setInvalidType(); 06668 06669 // Create a FunctionDecl to satisfy the function definition parsing 06670 // code path. 06671 return FunctionDecl::Create(SemaRef.Context, DC, 06672 D.getLocStart(), 06673 D.getIdentifierLoc(), Name, R, TInfo, 06674 SC, isInline, 06675 /*hasPrototype=*/true, isConstexpr); 06676 } 06677 06678 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { 06679 if (!DC->isRecord()) { 06680 SemaRef.Diag(D.getIdentifierLoc(), 06681 diag::err_conv_function_not_member); 06682 return nullptr; 06683 } 06684 06685 SemaRef.CheckConversionDeclarator(D, R, SC); 06686 IsVirtualOkay = true; 06687 return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC), 06688 D.getLocStart(), NameInfo, 06689 R, TInfo, isInline, isExplicit, 06690 isConstexpr, SourceLocation()); 06691 06692 } else if (DC->isRecord()) { 06693 // If the name of the function is the same as the name of the record, 06694 // then this must be an invalid constructor that has a return type. 06695 // (The parser checks for a return type and makes the declarator a 06696 // constructor if it has no return type). 06697 if (Name.getAsIdentifierInfo() && 06698 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){ 06699 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) 06700 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 06701 << SourceRange(D.getIdentifierLoc()); 06702 return nullptr; 06703 } 06704 06705 // This is a C++ method declaration. 06706 CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context, 06707 cast<CXXRecordDecl>(DC), 06708 D.getLocStart(), NameInfo, R, 06709 TInfo, SC, isInline, 06710 isConstexpr, SourceLocation()); 06711 IsVirtualOkay = !Ret->isStatic(); 06712 return Ret; 06713 } else { 06714 // Determine whether the function was written with a 06715 // prototype. This true when: 06716 // - we're in C++ (where every function has a prototype), 06717 return FunctionDecl::Create(SemaRef.Context, DC, 06718 D.getLocStart(), 06719 NameInfo, R, TInfo, SC, isInline, 06720 true/*HasPrototype*/, isConstexpr); 06721 } 06722 } 06723 06724 enum OpenCLParamType { 06725 ValidKernelParam, 06726 PtrPtrKernelParam, 06727 PtrKernelParam, 06728 PrivatePtrKernelParam, 06729 InvalidKernelParam, 06730 RecordKernelParam 06731 }; 06732 06733 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) { 06734 if (PT->isPointerType()) { 06735 QualType PointeeType = PT->getPointeeType(); 06736 if (PointeeType->isPointerType()) 06737 return PtrPtrKernelParam; 06738 return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam 06739 : PtrKernelParam; 06740 } 06741 06742 // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can 06743 // be used as builtin types. 06744 06745 if (PT->isImageType()) 06746 return PtrKernelParam; 06747 06748 if (PT->isBooleanType()) 06749 return InvalidKernelParam; 06750 06751 if (PT->isEventT()) 06752 return InvalidKernelParam; 06753 06754 if (PT->isHalfType()) 06755 return InvalidKernelParam; 06756 06757 if (PT->isRecordType()) 06758 return RecordKernelParam; 06759 06760 return ValidKernelParam; 06761 } 06762 06763 static void checkIsValidOpenCLKernelParameter( 06764 Sema &S, 06765 Declarator &D, 06766 ParmVarDecl *Param, 06767 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) { 06768 QualType PT = Param->getType(); 06769 06770 // Cache the valid types we encounter to avoid rechecking structs that are 06771 // used again 06772 if (ValidTypes.count(PT.getTypePtr())) 06773 return; 06774 06775 switch (getOpenCLKernelParameterType(PT)) { 06776 case PtrPtrKernelParam: 06777 // OpenCL v1.2 s6.9.a: 06778 // A kernel function argument cannot be declared as a 06779 // pointer to a pointer type. 06780 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param); 06781 D.setInvalidType(); 06782 return; 06783 06784 case PrivatePtrKernelParam: 06785 // OpenCL v1.2 s6.9.a: 06786 // A kernel function argument cannot be declared as a 06787 // pointer to the private address space. 06788 S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param); 06789 D.setInvalidType(); 06790 return; 06791 06792 // OpenCL v1.2 s6.9.k: 06793 // Arguments to kernel functions in a program cannot be declared with the 06794 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and 06795 // uintptr_t or a struct and/or union that contain fields declared to be 06796 // one of these built-in scalar types. 06797 06798 case InvalidKernelParam: 06799 // OpenCL v1.2 s6.8 n: 06800 // A kernel function argument cannot be declared 06801 // of event_t type. 06802 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; 06803 D.setInvalidType(); 06804 return; 06805 06806 case PtrKernelParam: 06807 case ValidKernelParam: 06808 ValidTypes.insert(PT.getTypePtr()); 06809 return; 06810 06811 case RecordKernelParam: 06812 break; 06813 } 06814 06815 // Track nested structs we will inspect 06816 SmallVector<const Decl *, 4> VisitStack; 06817 06818 // Track where we are in the nested structs. Items will migrate from 06819 // VisitStack to HistoryStack as we do the DFS for bad field. 06820 SmallVector<const FieldDecl *, 4> HistoryStack; 06821 HistoryStack.push_back(nullptr); 06822 06823 const RecordDecl *PD = PT->castAs<RecordType>()->getDecl(); 06824 VisitStack.push_back(PD); 06825 06826 assert(VisitStack.back() && "First decl null?"); 06827 06828 do { 06829 const Decl *Next = VisitStack.pop_back_val(); 06830 if (!Next) { 06831 assert(!HistoryStack.empty()); 06832 // Found a marker, we have gone up a level 06833 if (const FieldDecl *Hist = HistoryStack.pop_back_val()) 06834 ValidTypes.insert(Hist->getType().getTypePtr()); 06835 06836 continue; 06837 } 06838 06839 // Adds everything except the original parameter declaration (which is not a 06840 // field itself) to the history stack. 06841 const RecordDecl *RD; 06842 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) { 06843 HistoryStack.push_back(Field); 06844 RD = Field->getType()->castAs<RecordType>()->getDecl(); 06845 } else { 06846 RD = cast<RecordDecl>(Next); 06847 } 06848 06849 // Add a null marker so we know when we've gone back up a level 06850 VisitStack.push_back(nullptr); 06851 06852 for (const auto *FD : RD->fields()) { 06853 QualType QT = FD->getType(); 06854 06855 if (ValidTypes.count(QT.getTypePtr())) 06856 continue; 06857 06858 OpenCLParamType ParamType = getOpenCLKernelParameterType(QT); 06859 if (ParamType == ValidKernelParam) 06860 continue; 06861 06862 if (ParamType == RecordKernelParam) { 06863 VisitStack.push_back(FD); 06864 continue; 06865 } 06866 06867 // OpenCL v1.2 s6.9.p: 06868 // Arguments to kernel functions that are declared to be a struct or union 06869 // do not allow OpenCL objects to be passed as elements of the struct or 06870 // union. 06871 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam || 06872 ParamType == PrivatePtrKernelParam) { 06873 S.Diag(Param->getLocation(), 06874 diag::err_record_with_pointers_kernel_param) 06875 << PT->isUnionType() 06876 << PT; 06877 } else { 06878 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; 06879 } 06880 06881 S.Diag(PD->getLocation(), diag::note_within_field_of_type) 06882 << PD->getDeclName(); 06883 06884 // We have an error, now let's go back up through history and show where 06885 // the offending field came from 06886 for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1, 06887 E = HistoryStack.end(); I != E; ++I) { 06888 const FieldDecl *OuterField = *I; 06889 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type) 06890 << OuterField->getType(); 06891 } 06892 06893 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here) 06894 << QT->isPointerType() 06895 << QT; 06896 D.setInvalidType(); 06897 return; 06898 } 06899 } while (!VisitStack.empty()); 06900 } 06901 06902 NamedDecl* 06903 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC, 06904 TypeSourceInfo *TInfo, LookupResult &Previous, 06905 MultiTemplateParamsArg TemplateParamLists, 06906 bool &AddToScope) { 06907 QualType R = TInfo->getType(); 06908 06909 assert(R.getTypePtr()->isFunctionType()); 06910 06911 // TODO: consider using NameInfo for diagnostic. 06912 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 06913 DeclarationName Name = NameInfo.getName(); 06914 StorageClass SC = getFunctionStorageClass(*this, D); 06915 06916 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 06917 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 06918 diag::err_invalid_thread) 06919 << DeclSpec::getSpecifierName(TSCS); 06920 06921 if (D.isFirstDeclarationOfMember()) 06922 adjustMemberFunctionCC(R, D.isStaticMember()); 06923 06924 bool isFriend = false; 06925 FunctionTemplateDecl *FunctionTemplate = nullptr; 06926 bool isExplicitSpecialization = false; 06927 bool isFunctionTemplateSpecialization = false; 06928 06929 bool isDependentClassScopeExplicitSpecialization = false; 06930 bool HasExplicitTemplateArgs = false; 06931 TemplateArgumentListInfo TemplateArgs; 06932 06933 bool isVirtualOkay = false; 06934 06935 DeclContext *OriginalDC = DC; 06936 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC); 06937 06938 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC, 06939 isVirtualOkay); 06940 if (!NewFD) return nullptr; 06941 06942 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer()) 06943 NewFD->setTopLevelDeclInObjCContainer(); 06944 06945 // Set the lexical context. If this is a function-scope declaration, or has a 06946 // C++ scope specifier, or is the object of a friend declaration, the lexical 06947 // context will be different from the semantic context. 06948 NewFD->setLexicalDeclContext(CurContext); 06949 06950 if (IsLocalExternDecl) 06951 NewFD->setLocalExternDecl(); 06952 06953 if (getLangOpts().CPlusPlus) { 06954 bool isInline = D.getDeclSpec().isInlineSpecified(); 06955 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 06956 bool isExplicit = D.getDeclSpec().isExplicitSpecified(); 06957 bool isConstexpr = D.getDeclSpec().isConstexprSpecified(); 06958 isFriend = D.getDeclSpec().isFriendSpecified(); 06959 if (isFriend && !isInline && D.isFunctionDefinition()) { 06960 // C++ [class.friend]p5 06961 // A function can be defined in a friend declaration of a 06962 // class . . . . Such a function is implicitly inline. 06963 NewFD->setImplicitlyInline(); 06964 } 06965 06966 // If this is a method defined in an __interface, and is not a constructor 06967 // or an overloaded operator, then set the pure flag (isVirtual will already 06968 // return true). 06969 if (const CXXRecordDecl *Parent = 06970 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) { 06971 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided()) 06972 NewFD->setPure(true); 06973 } 06974 06975 SetNestedNameSpecifier(NewFD, D); 06976 isExplicitSpecialization = false; 06977 isFunctionTemplateSpecialization = false; 06978 if (D.isInvalidType()) 06979 NewFD->setInvalidDecl(); 06980 06981 // Match up the template parameter lists with the scope specifier, then 06982 // determine whether we have a template or a template specialization. 06983 bool Invalid = false; 06984 if (TemplateParameterList *TemplateParams = 06985 MatchTemplateParametersToScopeSpecifier( 06986 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(), 06987 D.getCXXScopeSpec(), 06988 D.getName().getKind() == UnqualifiedId::IK_TemplateId 06989 ? D.getName().TemplateId 06990 : nullptr, 06991 TemplateParamLists, isFriend, isExplicitSpecialization, 06992 Invalid)) { 06993 if (TemplateParams->size() > 0) { 06994 // This is a function template 06995 06996 // Check that we can declare a template here. 06997 if (CheckTemplateDeclScope(S, TemplateParams)) 06998 return nullptr; 06999 07000 // A destructor cannot be a template. 07001 if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 07002 Diag(NewFD->getLocation(), diag::err_destructor_template); 07003 return nullptr; 07004 } 07005 07006 // If we're adding a template to a dependent context, we may need to 07007 // rebuilding some of the types used within the template parameter list, 07008 // now that we know what the current instantiation is. 07009 if (DC->isDependentContext()) { 07010 ContextRAII SavedContext(*this, DC); 07011 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 07012 Invalid = true; 07013 } 07014 07015 07016 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC, 07017 NewFD->getLocation(), 07018 Name, TemplateParams, 07019 NewFD); 07020 FunctionTemplate->setLexicalDeclContext(CurContext); 07021 NewFD->setDescribedFunctionTemplate(FunctionTemplate); 07022 07023 // For source fidelity, store the other template param lists. 07024 if (TemplateParamLists.size() > 1) { 07025 NewFD->setTemplateParameterListsInfo(Context, 07026 TemplateParamLists.size() - 1, 07027 TemplateParamLists.data()); 07028 } 07029 } else { 07030 // This is a function template specialization. 07031 isFunctionTemplateSpecialization = true; 07032 // For source fidelity, store all the template param lists. 07033 if (TemplateParamLists.size() > 0) 07034 NewFD->setTemplateParameterListsInfo(Context, 07035 TemplateParamLists.size(), 07036 TemplateParamLists.data()); 07037 07038 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". 07039 if (isFriend) { 07040 // We want to remove the "template<>", found here. 07041 SourceRange RemoveRange = TemplateParams->getSourceRange(); 07042 07043 // If we remove the template<> and the name is not a 07044 // template-id, we're actually silently creating a problem: 07045 // the friend declaration will refer to an untemplated decl, 07046 // and clearly the user wants a template specialization. So 07047 // we need to insert '<>' after the name. 07048 SourceLocation InsertLoc; 07049 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) { 07050 InsertLoc = D.getName().getSourceRange().getEnd(); 07051 InsertLoc = getLocForEndOfToken(InsertLoc); 07052 } 07053 07054 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) 07055 << Name << RemoveRange 07056 << FixItHint::CreateRemoval(RemoveRange) 07057 << FixItHint::CreateInsertion(InsertLoc, "<>"); 07058 } 07059 } 07060 } 07061 else { 07062 // All template param lists were matched against the scope specifier: 07063 // this is NOT (an explicit specialization of) a template. 07064 if (TemplateParamLists.size() > 0) 07065 // For source fidelity, store all the template param lists. 07066 NewFD->setTemplateParameterListsInfo(Context, 07067 TemplateParamLists.size(), 07068 TemplateParamLists.data()); 07069 } 07070 07071 if (Invalid) { 07072 NewFD->setInvalidDecl(); 07073 if (FunctionTemplate) 07074 FunctionTemplate->setInvalidDecl(); 07075 } 07076 07077 // C++ [dcl.fct.spec]p5: 07078 // The virtual specifier shall only be used in declarations of 07079 // nonstatic class member functions that appear within a 07080 // member-specification of a class declaration; see 10.3. 07081 // 07082 if (isVirtual && !NewFD->isInvalidDecl()) { 07083 if (!isVirtualOkay) { 07084 Diag(D.getDeclSpec().getVirtualSpecLoc(), 07085 diag::err_virtual_non_function); 07086 } else if (!CurContext->isRecord()) { 07087 // 'virtual' was specified outside of the class. 07088 Diag(D.getDeclSpec().getVirtualSpecLoc(), 07089 diag::err_virtual_out_of_class) 07090 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); 07091 } else if (NewFD->getDescribedFunctionTemplate()) { 07092 // C++ [temp.mem]p3: 07093 // A member function template shall not be virtual. 07094 Diag(D.getDeclSpec().getVirtualSpecLoc(), 07095 diag::err_virtual_member_function_template) 07096 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); 07097 } else { 07098 // Okay: Add virtual to the method. 07099 NewFD->setVirtualAsWritten(true); 07100 } 07101 07102 if (getLangOpts().CPlusPlus14 && 07103 NewFD->getReturnType()->isUndeducedType()) 07104 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual); 07105 } 07106 07107 if (getLangOpts().CPlusPlus14 && 07108 (NewFD->isDependentContext() || 07109 (isFriend && CurContext->isDependentContext())) && 07110 NewFD->getReturnType()->isUndeducedType()) { 07111 // If the function template is referenced directly (for instance, as a 07112 // member of the current instantiation), pretend it has a dependent type. 07113 // This is not really justified by the standard, but is the only sane 07114 // thing to do. 07115 // FIXME: For a friend function, we have not marked the function as being 07116 // a friend yet, so 'isDependentContext' on the FD doesn't work. 07117 const FunctionProtoType *FPT = 07118 NewFD->getType()->castAs<FunctionProtoType>(); 07119 QualType Result = 07120 SubstAutoType(FPT->getReturnType(), Context.DependentTy); 07121 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(), 07122 FPT->getExtProtoInfo())); 07123 } 07124 07125 // C++ [dcl.fct.spec]p3: 07126 // The inline specifier shall not appear on a block scope function 07127 // declaration. 07128 if (isInline && !NewFD->isInvalidDecl()) { 07129 if (CurContext->isFunctionOrMethod()) { 07130 // 'inline' is not allowed on block scope function declaration. 07131 Diag(D.getDeclSpec().getInlineSpecLoc(), 07132 diag::err_inline_declaration_block_scope) << Name 07133 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 07134 } 07135 } 07136 07137 // C++ [dcl.fct.spec]p6: 07138 // The explicit specifier shall be used only in the declaration of a 07139 // constructor or conversion function within its class definition; 07140 // see 12.3.1 and 12.3.2. 07141 if (isExplicit && !NewFD->isInvalidDecl()) { 07142 if (!CurContext->isRecord()) { 07143 // 'explicit' was specified outside of the class. 07144 Diag(D.getDeclSpec().getExplicitSpecLoc(), 07145 diag::err_explicit_out_of_class) 07146 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc()); 07147 } else if (!isa<CXXConstructorDecl>(NewFD) && 07148 !isa<CXXConversionDecl>(NewFD)) { 07149 // 'explicit' was specified on a function that wasn't a constructor 07150 // or conversion function. 07151 Diag(D.getDeclSpec().getExplicitSpecLoc(), 07152 diag::err_explicit_non_ctor_or_conv_function) 07153 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc()); 07154 } 07155 } 07156 07157 if (isConstexpr) { 07158 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors 07159 // are implicitly inline. 07160 NewFD->setImplicitlyInline(); 07161 07162 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to 07163 // be either constructors or to return a literal type. Therefore, 07164 // destructors cannot be declared constexpr. 07165 if (isa<CXXDestructorDecl>(NewFD)) 07166 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor); 07167 } 07168 07169 // If __module_private__ was specified, mark the function accordingly. 07170 if (D.getDeclSpec().isModulePrivateSpecified()) { 07171 if (isFunctionTemplateSpecialization) { 07172 SourceLocation ModulePrivateLoc 07173 = D.getDeclSpec().getModulePrivateSpecLoc(); 07174 Diag(ModulePrivateLoc, diag::err_module_private_specialization) 07175 << 0 07176 << FixItHint::CreateRemoval(ModulePrivateLoc); 07177 } else { 07178 NewFD->setModulePrivate(); 07179 if (FunctionTemplate) 07180 FunctionTemplate->setModulePrivate(); 07181 } 07182 } 07183 07184 if (isFriend) { 07185 if (FunctionTemplate) { 07186 FunctionTemplate->setObjectOfFriendDecl(); 07187 FunctionTemplate->setAccess(AS_public); 07188 } 07189 NewFD->setObjectOfFriendDecl(); 07190 NewFD->setAccess(AS_public); 07191 } 07192 07193 // If a function is defined as defaulted or deleted, mark it as such now. 07194 // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function 07195 // definition kind to FDK_Definition. 07196 switch (D.getFunctionDefinitionKind()) { 07197 case FDK_Declaration: 07198 case FDK_Definition: 07199 break; 07200 07201 case FDK_Defaulted: 07202 NewFD->setDefaulted(); 07203 break; 07204 07205 case FDK_Deleted: 07206 NewFD->setDeletedAsWritten(); 07207 break; 07208 } 07209 07210 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && 07211 D.isFunctionDefinition()) { 07212 // C++ [class.mfct]p2: 07213 // A member function may be defined (8.4) in its class definition, in 07214 // which case it is an inline member function (7.1.2) 07215 NewFD->setImplicitlyInline(); 07216 } 07217 07218 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) && 07219 !CurContext->isRecord()) { 07220 // C++ [class.static]p1: 07221 // A data or function member of a class may be declared static 07222 // in a class definition, in which case it is a static member of 07223 // the class. 07224 07225 // Complain about the 'static' specifier if it's on an out-of-line 07226 // member function definition. 07227 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 07228 diag::err_static_out_of_line) 07229 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 07230 } 07231 07232 // C++11 [except.spec]p15: 07233 // A deallocation function with no exception-specification is treated 07234 // as if it were specified with noexcept(true). 07235 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>(); 07236 if ((Name.getCXXOverloadedOperator() == OO_Delete || 07237 Name.getCXXOverloadedOperator() == OO_Array_Delete) && 07238 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) 07239 NewFD->setType(Context.getFunctionType( 07240 FPT->getReturnType(), FPT->getParamTypes(), 07241 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept))); 07242 } 07243 07244 // Filter out previous declarations that don't match the scope. 07245 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD), 07246 D.getCXXScopeSpec().isNotEmpty() || 07247 isExplicitSpecialization || 07248 isFunctionTemplateSpecialization); 07249 07250 // Handle GNU asm-label extension (encoded as an attribute). 07251 if (Expr *E = (Expr*) D.getAsmLabel()) { 07252 // The parser guarantees this is a string. 07253 StringLiteral *SE = cast<StringLiteral>(E); 07254 NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context, 07255 SE->getString(), 0)); 07256 } else if (!ExtnameUndeclaredIdentifiers.empty()) { 07257 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = 07258 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier()); 07259 if (I != ExtnameUndeclaredIdentifiers.end()) { 07260 NewFD->addAttr(I->second); 07261 ExtnameUndeclaredIdentifiers.erase(I); 07262 } 07263 } 07264 07265 // Copy the parameter declarations from the declarator D to the function 07266 // declaration NewFD, if they are available. First scavenge them into Params. 07267 SmallVector<ParmVarDecl*, 16> Params; 07268 if (D.isFunctionDeclarator()) { 07269 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 07270 07271 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs 07272 // function that takes no arguments, not a function that takes a 07273 // single void argument. 07274 // We let through "const void" here because Sema::GetTypeForDeclarator 07275 // already checks for that case. 07276 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) { 07277 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { 07278 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); 07279 assert(Param->getDeclContext() != NewFD && "Was set before ?"); 07280 Param->setDeclContext(NewFD); 07281 Params.push_back(Param); 07282 07283 if (Param->isInvalidDecl()) 07284 NewFD->setInvalidDecl(); 07285 } 07286 } 07287 07288 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { 07289 // When we're declaring a function with a typedef, typeof, etc as in the 07290 // following example, we'll need to synthesize (unnamed) 07291 // parameters for use in the declaration. 07292 // 07293 // @code 07294 // typedef void fn(int); 07295 // fn f; 07296 // @endcode 07297 07298 // Synthesize a parameter for each argument type. 07299 for (const auto &AI : FT->param_types()) { 07300 ParmVarDecl *Param = 07301 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI); 07302 Param->setScopeInfo(0, Params.size()); 07303 Params.push_back(Param); 07304 } 07305 } else { 07306 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && 07307 "Should not need args for typedef of non-prototype fn"); 07308 } 07309 07310 // Finally, we know we have the right number of parameters, install them. 07311 NewFD->setParams(Params); 07312 07313 // Find all anonymous symbols defined during the declaration of this function 07314 // and add to NewFD. This lets us track decls such 'enum Y' in: 07315 // 07316 // void f(enum Y {AA} x) {} 07317 // 07318 // which would otherwise incorrectly end up in the translation unit scope. 07319 NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope); 07320 DeclsInPrototypeScope.clear(); 07321 07322 if (D.getDeclSpec().isNoreturnSpecified()) 07323 NewFD->addAttr( 07324 ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(), 07325 Context, 0)); 07326 07327 // Functions returning a variably modified type violate C99 6.7.5.2p2 07328 // because all functions have linkage. 07329 if (!NewFD->isInvalidDecl() && 07330 NewFD->getReturnType()->isVariablyModifiedType()) { 07331 Diag(NewFD->getLocation(), diag::err_vm_func_decl); 07332 NewFD->setInvalidDecl(); 07333 } 07334 07335 if (D.isFunctionDefinition() && CodeSegStack.CurrentValue && 07336 !NewFD->hasAttr<SectionAttr>()) { 07337 NewFD->addAttr( 07338 SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate, 07339 CodeSegStack.CurrentValue->getString(), 07340 CodeSegStack.CurrentPragmaLocation)); 07341 if (UnifySection(CodeSegStack.CurrentValue->getString(), 07342 ASTContext::PSF_Implicit | ASTContext::PSF_Execute | 07343 ASTContext::PSF_Read, 07344 NewFD)) 07345 NewFD->dropAttr<SectionAttr>(); 07346 } 07347 07348 // Handle attributes. 07349 ProcessDeclAttributes(S, NewFD, D); 07350 07351 QualType RetType = NewFD->getReturnType(); 07352 const CXXRecordDecl *Ret = RetType->isRecordType() ? 07353 RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl(); 07354 if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() && 07355 Ret && Ret->hasAttr<WarnUnusedResultAttr>()) { 07356 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 07357 // Attach WarnUnusedResult to functions returning types with that attribute. 07358 // Don't apply the attribute to that type's own non-static member functions 07359 // (to avoid warning on things like assignment operators) 07360 if (!MD || MD->getParent() != Ret) 07361 NewFD->addAttr(WarnUnusedResultAttr::CreateImplicit(Context)); 07362 } 07363 07364 if (getLangOpts().OpenCL) { 07365 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return 07366 // type declaration will generate a compilation error. 07367 unsigned AddressSpace = RetType.getAddressSpace(); 07368 if (AddressSpace == LangAS::opencl_local || 07369 AddressSpace == LangAS::opencl_global || 07370 AddressSpace == LangAS::opencl_constant) { 07371 Diag(NewFD->getLocation(), 07372 diag::err_opencl_return_value_with_address_space); 07373 NewFD->setInvalidDecl(); 07374 } 07375 } 07376 07377 if (!getLangOpts().CPlusPlus) { 07378 // Perform semantic checking on the function declaration. 07379 bool isExplicitSpecialization=false; 07380 if (!NewFD->isInvalidDecl() && NewFD->isMain()) 07381 CheckMain(NewFD, D.getDeclSpec()); 07382 07383 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) 07384 CheckMSVCRTEntryPoint(NewFD); 07385 07386 if (!NewFD->isInvalidDecl()) 07387 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, 07388 isExplicitSpecialization)); 07389 else if (!Previous.empty()) 07390 // Make graceful recovery from an invalid redeclaration. 07391 D.setRedeclaration(true); 07392 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || 07393 Previous.getResultKind() != LookupResult::FoundOverloaded) && 07394 "previous declaration set still overloaded"); 07395 07396 // Diagnose no-prototype function declarations with calling conventions that 07397 // don't support variadic calls. Only do this in C and do it after merging 07398 // possibly prototyped redeclarations. 07399 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>(); 07400 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) { 07401 CallingConv CC = FT->getExtInfo().getCC(); 07402 if (!supportsVariadicCall(CC)) { 07403 // Windows system headers sometimes accidentally use stdcall without 07404 // (void) parameters, so we relax this to a warning. 07405 int DiagID = 07406 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr; 07407 Diag(NewFD->getLocation(), DiagID) 07408 << FunctionType::getNameForCallConv(CC); 07409 } 07410 } 07411 } else { 07412 // C++11 [replacement.functions]p3: 07413 // The program's definitions shall not be specified as inline. 07414 // 07415 // N.B. We diagnose declarations instead of definitions per LWG issue 2340. 07416 // 07417 // Suppress the diagnostic if the function is __attribute__((used)), since 07418 // that forces an external definition to be emitted. 07419 if (D.getDeclSpec().isInlineSpecified() && 07420 NewFD->isReplaceableGlobalAllocationFunction() && 07421 !NewFD->hasAttr<UsedAttr>()) 07422 Diag(D.getDeclSpec().getInlineSpecLoc(), 07423 diag::ext_operator_new_delete_declared_inline) 07424 << NewFD->getDeclName(); 07425 07426 // If the declarator is a template-id, translate the parser's template 07427 // argument list into our AST format. 07428 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 07429 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 07430 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 07431 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 07432 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 07433 TemplateId->NumArgs); 07434 translateTemplateArguments(TemplateArgsPtr, 07435 TemplateArgs); 07436 07437 HasExplicitTemplateArgs = true; 07438 07439 if (NewFD->isInvalidDecl()) { 07440 HasExplicitTemplateArgs = false; 07441 } else if (FunctionTemplate) { 07442 // Function template with explicit template arguments. 07443 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec) 07444 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc); 07445 07446 HasExplicitTemplateArgs = false; 07447 } else { 07448 assert((isFunctionTemplateSpecialization || 07449 D.getDeclSpec().isFriendSpecified()) && 07450 "should have a 'template<>' for this decl"); 07451 // "friend void foo<>(int);" is an implicit specialization decl. 07452 isFunctionTemplateSpecialization = true; 07453 } 07454 } else if (isFriend && isFunctionTemplateSpecialization) { 07455 // This combination is only possible in a recovery case; the user 07456 // wrote something like: 07457 // template <> friend void foo(int); 07458 // which we're recovering from as if the user had written: 07459 // friend void foo<>(int); 07460 // Go ahead and fake up a template id. 07461 HasExplicitTemplateArgs = true; 07462 TemplateArgs.setLAngleLoc(D.getIdentifierLoc()); 07463 TemplateArgs.setRAngleLoc(D.getIdentifierLoc()); 07464 } 07465 07466 // If it's a friend (and only if it's a friend), it's possible 07467 // that either the specialized function type or the specialized 07468 // template is dependent, and therefore matching will fail. In 07469 // this case, don't check the specialization yet. 07470 bool InstantiationDependent = false; 07471 if (isFunctionTemplateSpecialization && isFriend && 07472 (NewFD->getType()->isDependentType() || DC->isDependentContext() || 07473 TemplateSpecializationType::anyDependentTemplateArguments( 07474 TemplateArgs.getArgumentArray(), TemplateArgs.size(), 07475 InstantiationDependent))) { 07476 assert(HasExplicitTemplateArgs && 07477 "friend function specialization without template args"); 07478 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs, 07479 Previous)) 07480 NewFD->setInvalidDecl(); 07481 } else if (isFunctionTemplateSpecialization) { 07482 if (CurContext->isDependentContext() && CurContext->isRecord() 07483 && !isFriend) { 07484 isDependentClassScopeExplicitSpecialization = true; 07485 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? 07486 diag::ext_function_specialization_in_class : 07487 diag::err_function_specialization_in_class) 07488 << NewFD->getDeclName(); 07489 } else if (CheckFunctionTemplateSpecialization(NewFD, 07490 (HasExplicitTemplateArgs ? &TemplateArgs 07491 : nullptr), 07492 Previous)) 07493 NewFD->setInvalidDecl(); 07494 07495 // C++ [dcl.stc]p1: 07496 // A storage-class-specifier shall not be specified in an explicit 07497 // specialization (14.7.3) 07498 FunctionTemplateSpecializationInfo *Info = 07499 NewFD->getTemplateSpecializationInfo(); 07500 if (Info && SC != SC_None) { 07501 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass()) 07502 Diag(NewFD->getLocation(), 07503 diag::err_explicit_specialization_inconsistent_storage_class) 07504 << SC 07505 << FixItHint::CreateRemoval( 07506 D.getDeclSpec().getStorageClassSpecLoc()); 07507 07508 else 07509 Diag(NewFD->getLocation(), 07510 diag::ext_explicit_specialization_storage_class) 07511 << FixItHint::CreateRemoval( 07512 D.getDeclSpec().getStorageClassSpecLoc()); 07513 } 07514 07515 } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) { 07516 if (CheckMemberSpecialization(NewFD, Previous)) 07517 NewFD->setInvalidDecl(); 07518 } 07519 07520 // Perform semantic checking on the function declaration. 07521 if (!isDependentClassScopeExplicitSpecialization) { 07522 if (!NewFD->isInvalidDecl() && NewFD->isMain()) 07523 CheckMain(NewFD, D.getDeclSpec()); 07524 07525 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) 07526 CheckMSVCRTEntryPoint(NewFD); 07527 07528 if (!NewFD->isInvalidDecl()) 07529 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, 07530 isExplicitSpecialization)); 07531 } 07532 07533 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || 07534 Previous.getResultKind() != LookupResult::FoundOverloaded) && 07535 "previous declaration set still overloaded"); 07536 07537 NamedDecl *PrincipalDecl = (FunctionTemplate 07538 ? cast<NamedDecl>(FunctionTemplate) 07539 : NewFD); 07540 07541 if (isFriend && D.isRedeclaration()) { 07542 AccessSpecifier Access = AS_public; 07543 if (!NewFD->isInvalidDecl()) 07544 Access = NewFD->getPreviousDecl()->getAccess(); 07545 07546 NewFD->setAccess(Access); 07547 if (FunctionTemplate) FunctionTemplate->setAccess(Access); 07548 } 07549 07550 if (NewFD->isOverloadedOperator() && !DC->isRecord() && 07551 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) 07552 PrincipalDecl->setNonMemberOperator(); 07553 07554 // If we have a function template, check the template parameter 07555 // list. This will check and merge default template arguments. 07556 if (FunctionTemplate) { 07557 FunctionTemplateDecl *PrevTemplate = 07558 FunctionTemplate->getPreviousDecl(); 07559 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(), 07560 PrevTemplate ? PrevTemplate->getTemplateParameters() 07561 : nullptr, 07562 D.getDeclSpec().isFriendSpecified() 07563 ? (D.isFunctionDefinition() 07564 ? TPC_FriendFunctionTemplateDefinition 07565 : TPC_FriendFunctionTemplate) 07566 : (D.getCXXScopeSpec().isSet() && 07567 DC && DC->isRecord() && 07568 DC->isDependentContext()) 07569 ? TPC_ClassTemplateMember 07570 : TPC_FunctionTemplate); 07571 } 07572 07573 if (NewFD->isInvalidDecl()) { 07574 // Ignore all the rest of this. 07575 } else if (!D.isRedeclaration()) { 07576 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists, 07577 AddToScope }; 07578 // Fake up an access specifier if it's supposed to be a class member. 07579 if (isa<CXXRecordDecl>(NewFD->getDeclContext())) 07580 NewFD->setAccess(AS_public); 07581 07582 // Qualified decls generally require a previous declaration. 07583 if (D.getCXXScopeSpec().isSet()) { 07584 // ...with the major exception of templated-scope or 07585 // dependent-scope friend declarations. 07586 07587 // TODO: we currently also suppress this check in dependent 07588 // contexts because (1) the parameter depth will be off when 07589 // matching friend templates and (2) we might actually be 07590 // selecting a friend based on a dependent factor. But there 07591 // are situations where these conditions don't apply and we 07592 // can actually do this check immediately. 07593 if (isFriend && 07594 (TemplateParamLists.size() || 07595 D.getCXXScopeSpec().getScopeRep()->isDependent() || 07596 CurContext->isDependentContext())) { 07597 // ignore these 07598 } else { 07599 // The user tried to provide an out-of-line definition for a 07600 // function that is a member of a class or namespace, but there 07601 // was no such member function declared (C++ [class.mfct]p2, 07602 // C++ [namespace.memdef]p2). For example: 07603 // 07604 // class X { 07605 // void f() const; 07606 // }; 07607 // 07608 // void X::f() { } // ill-formed 07609 // 07610 // Complain about this problem, and attempt to suggest close 07611 // matches (e.g., those that differ only in cv-qualifiers and 07612 // whether the parameter types are references). 07613 07614 if (NamedDecl *Result = DiagnoseInvalidRedeclaration( 07615 *this, Previous, NewFD, ExtraArgs, false, nullptr)) { 07616 AddToScope = ExtraArgs.AddToScope; 07617 return Result; 07618 } 07619 } 07620 07621 // Unqualified local friend declarations are required to resolve 07622 // to something. 07623 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) { 07624 if (NamedDecl *Result = DiagnoseInvalidRedeclaration( 07625 *this, Previous, NewFD, ExtraArgs, true, S)) { 07626 AddToScope = ExtraArgs.AddToScope; 07627 return Result; 07628 } 07629 } 07630 07631 } else if (!D.isFunctionDefinition() && 07632 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() && 07633 !isFriend && !isFunctionTemplateSpecialization && 07634 !isExplicitSpecialization) { 07635 // An out-of-line member function declaration must also be a 07636 // definition (C++ [class.mfct]p2). 07637 // Note that this is not the case for explicit specializations of 07638 // function templates or member functions of class templates, per 07639 // C++ [temp.expl.spec]p2. We also allow these declarations as an 07640 // extension for compatibility with old SWIG code which likes to 07641 // generate them. 07642 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) 07643 << D.getCXXScopeSpec().getRange(); 07644 } 07645 } 07646 07647 ProcessPragmaWeak(S, NewFD); 07648 checkAttributesAfterMerging(*this, *NewFD); 07649 07650 AddKnownFunctionAttributes(NewFD); 07651 07652 if (NewFD->hasAttr<OverloadableAttr>() && 07653 !NewFD->getType()->getAs<FunctionProtoType>()) { 07654 Diag(NewFD->getLocation(), 07655 diag::err_attribute_overloadable_no_prototype) 07656 << NewFD; 07657 07658 // Turn this into a variadic function with no parameters. 07659 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>(); 07660 FunctionProtoType::ExtProtoInfo EPI( 07661 Context.getDefaultCallingConvention(true, false)); 07662 EPI.Variadic = true; 07663 EPI.ExtInfo = FT->getExtInfo(); 07664 07665 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI); 07666 NewFD->setType(R); 07667 } 07668 07669 // If there's a #pragma GCC visibility in scope, and this isn't a class 07670 // member, set the visibility of this function. 07671 if (!DC->isRecord() && NewFD->isExternallyVisible()) 07672 AddPushedVisibilityAttribute(NewFD); 07673 07674 // If there's a #pragma clang arc_cf_code_audited in scope, consider 07675 // marking the function. 07676 AddCFAuditedAttribute(NewFD); 07677 07678 // If this is a function definition, check if we have to apply optnone due to 07679 // a pragma. 07680 if(D.isFunctionDefinition()) 07681 AddRangeBasedOptnone(NewFD); 07682 07683 // If this is the first declaration of an extern C variable, update 07684 // the map of such variables. 07685 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() && 07686 isIncompleteDeclExternC(*this, NewFD)) 07687 RegisterLocallyScopedExternCDecl(NewFD, S); 07688 07689 // Set this FunctionDecl's range up to the right paren. 07690 NewFD->setRangeEnd(D.getSourceRange().getEnd()); 07691 07692 if (D.isRedeclaration() && !Previous.empty()) { 07693 checkDLLAttributeRedeclaration( 07694 *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD, 07695 isExplicitSpecialization || isFunctionTemplateSpecialization); 07696 } 07697 07698 if (getLangOpts().CPlusPlus) { 07699 if (FunctionTemplate) { 07700 if (NewFD->isInvalidDecl()) 07701 FunctionTemplate->setInvalidDecl(); 07702 return FunctionTemplate; 07703 } 07704 } 07705 07706 if (NewFD->hasAttr<OpenCLKernelAttr>()) { 07707 // OpenCL v1.2 s6.8 static is invalid for kernel functions. 07708 if ((getLangOpts().OpenCLVersion >= 120) 07709 && (SC == SC_Static)) { 07710 Diag(D.getIdentifierLoc(), diag::err_static_kernel); 07711 D.setInvalidType(); 07712 } 07713 07714 // OpenCL v1.2, s6.9 -- Kernels can only have return type void. 07715 if (!NewFD->getReturnType()->isVoidType()) { 07716 SourceRange RTRange = NewFD->getReturnTypeSourceRange(); 07717 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type) 07718 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") 07719 : FixItHint()); 07720 D.setInvalidType(); 07721 } 07722 07723 llvm::SmallPtrSet<const Type *, 16> ValidTypes; 07724 for (auto Param : NewFD->params()) 07725 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes); 07726 } 07727 07728 MarkUnusedFileScopedDecl(NewFD); 07729 07730 if (getLangOpts().CUDA) 07731 if (IdentifierInfo *II = NewFD->getIdentifier()) 07732 if (!NewFD->isInvalidDecl() && 07733 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 07734 if (II->isStr("cudaConfigureCall")) { 07735 if (!R->getAs<FunctionType>()->getReturnType()->isScalarType()) 07736 Diag(NewFD->getLocation(), diag::err_config_scalar_return); 07737 07738 Context.setcudaConfigureCallDecl(NewFD); 07739 } 07740 } 07741 07742 // Here we have an function template explicit specialization at class scope. 07743 // The actually specialization will be postponed to template instatiation 07744 // time via the ClassScopeFunctionSpecializationDecl node. 07745 if (isDependentClassScopeExplicitSpecialization) { 07746 ClassScopeFunctionSpecializationDecl *NewSpec = 07747 ClassScopeFunctionSpecializationDecl::Create( 07748 Context, CurContext, SourceLocation(), 07749 cast<CXXMethodDecl>(NewFD), 07750 HasExplicitTemplateArgs, TemplateArgs); 07751 CurContext->addDecl(NewSpec); 07752 AddToScope = false; 07753 } 07754 07755 return NewFD; 07756 } 07757 07758 /// \brief Perform semantic checking of a new function declaration. 07759 /// 07760 /// Performs semantic analysis of the new function declaration 07761 /// NewFD. This routine performs all semantic checking that does not 07762 /// require the actual declarator involved in the declaration, and is 07763 /// used both for the declaration of functions as they are parsed 07764 /// (called via ActOnDeclarator) and for the declaration of functions 07765 /// that have been instantiated via C++ template instantiation (called 07766 /// via InstantiateDecl). 07767 /// 07768 /// \param IsExplicitSpecialization whether this new function declaration is 07769 /// an explicit specialization of the previous declaration. 07770 /// 07771 /// This sets NewFD->isInvalidDecl() to true if there was an error. 07772 /// 07773 /// \returns true if the function declaration is a redeclaration. 07774 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, 07775 LookupResult &Previous, 07776 bool IsExplicitSpecialization) { 07777 assert(!NewFD->getReturnType()->isVariablyModifiedType() && 07778 "Variably modified return types are not handled here"); 07779 07780 // Determine whether the type of this function should be merged with 07781 // a previous visible declaration. This never happens for functions in C++, 07782 // and always happens in C if the previous declaration was visible. 07783 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus && 07784 !Previous.isShadowed(); 07785 07786 // Filter out any non-conflicting previous declarations. 07787 filterNonConflictingPreviousDecls(Context, NewFD, Previous); 07788 07789 bool Redeclaration = false; 07790 NamedDecl *OldDecl = nullptr; 07791 07792 // Merge or overload the declaration with an existing declaration of 07793 // the same name, if appropriate. 07794 if (!Previous.empty()) { 07795 // Determine whether NewFD is an overload of PrevDecl or 07796 // a declaration that requires merging. If it's an overload, 07797 // there's no more work to do here; we'll just add the new 07798 // function to the scope. 07799 if (!AllowOverloadingOfFunction(Previous, Context)) { 07800 NamedDecl *Candidate = Previous.getFoundDecl(); 07801 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) { 07802 Redeclaration = true; 07803 OldDecl = Candidate; 07804 } 07805 } else { 07806 switch (CheckOverload(S, NewFD, Previous, OldDecl, 07807 /*NewIsUsingDecl*/ false)) { 07808 case Ovl_Match: 07809 Redeclaration = true; 07810 break; 07811 07812 case Ovl_NonFunction: 07813 Redeclaration = true; 07814 break; 07815 07816 case Ovl_Overload: 07817 Redeclaration = false; 07818 break; 07819 } 07820 07821 if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) { 07822 // If a function name is overloadable in C, then every function 07823 // with that name must be marked "overloadable". 07824 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing) 07825 << Redeclaration << NewFD; 07826 NamedDecl *OverloadedDecl = nullptr; 07827 if (Redeclaration) 07828 OverloadedDecl = OldDecl; 07829 else if (!Previous.empty()) 07830 OverloadedDecl = Previous.getRepresentativeDecl(); 07831 if (OverloadedDecl) 07832 Diag(OverloadedDecl->getLocation(), 07833 diag::note_attribute_overloadable_prev_overload); 07834 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); 07835 } 07836 } 07837 } 07838 07839 // Check for a previous extern "C" declaration with this name. 07840 if (!Redeclaration && 07841 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) { 07842 filterNonConflictingPreviousDecls(Context, NewFD, Previous); 07843 if (!Previous.empty()) { 07844 // This is an extern "C" declaration with the same name as a previous 07845 // declaration, and thus redeclares that entity... 07846 Redeclaration = true; 07847 OldDecl = Previous.getFoundDecl(); 07848 MergeTypeWithPrevious = false; 07849 07850 // ... except in the presence of __attribute__((overloadable)). 07851 if (OldDecl->hasAttr<OverloadableAttr>()) { 07852 if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) { 07853 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing) 07854 << Redeclaration << NewFD; 07855 Diag(Previous.getFoundDecl()->getLocation(), 07856 diag::note_attribute_overloadable_prev_overload); 07857 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); 07858 } 07859 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) { 07860 Redeclaration = false; 07861 OldDecl = nullptr; 07862 } 07863 } 07864 } 07865 } 07866 07867 // C++11 [dcl.constexpr]p8: 07868 // A constexpr specifier for a non-static member function that is not 07869 // a constructor declares that member function to be const. 07870 // 07871 // This needs to be delayed until we know whether this is an out-of-line 07872 // definition of a static member function. 07873 // 07874 // This rule is not present in C++1y, so we produce a backwards 07875 // compatibility warning whenever it happens in C++11. 07876 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 07877 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() && 07878 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) && 07879 (MD->getTypeQualifiers() & Qualifiers::Const) == 0) { 07880 CXXMethodDecl *OldMD = nullptr; 07881 if (OldDecl) 07882 OldMD = dyn_cast<CXXMethodDecl>(OldDecl->getAsFunction()); 07883 if (!OldMD || !OldMD->isStatic()) { 07884 const FunctionProtoType *FPT = 07885 MD->getType()->castAs<FunctionProtoType>(); 07886 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 07887 EPI.TypeQuals |= Qualifiers::Const; 07888 MD->setType(Context.getFunctionType(FPT->getReturnType(), 07889 FPT->getParamTypes(), EPI)); 07890 07891 // Warn that we did this, if we're not performing template instantiation. 07892 // In that case, we'll have warned already when the template was defined. 07893 if (ActiveTemplateInstantiations.empty()) { 07894 SourceLocation AddConstLoc; 07895 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc() 07896 .IgnoreParens().getAs<FunctionTypeLoc>()) 07897 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc()); 07898 07899 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const) 07900 << FixItHint::CreateInsertion(AddConstLoc, " const"); 07901 } 07902 } 07903 } 07904 07905 if (Redeclaration) { 07906 // NewFD and OldDecl represent declarations that need to be 07907 // merged. 07908 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) { 07909 NewFD->setInvalidDecl(); 07910 return Redeclaration; 07911 } 07912 07913 Previous.clear(); 07914 Previous.addDecl(OldDecl); 07915 07916 if (FunctionTemplateDecl *OldTemplateDecl 07917 = dyn_cast<FunctionTemplateDecl>(OldDecl)) { 07918 NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl()); 07919 FunctionTemplateDecl *NewTemplateDecl 07920 = NewFD->getDescribedFunctionTemplate(); 07921 assert(NewTemplateDecl && "Template/non-template mismatch"); 07922 if (CXXMethodDecl *Method 07923 = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) { 07924 Method->setAccess(OldTemplateDecl->getAccess()); 07925 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); 07926 } 07927 07928 // If this is an explicit specialization of a member that is a function 07929 // template, mark it as a member specialization. 07930 if (IsExplicitSpecialization && 07931 NewTemplateDecl->getInstantiatedFromMemberTemplate()) { 07932 NewTemplateDecl->setMemberSpecialization(); 07933 assert(OldTemplateDecl->isMemberSpecialization()); 07934 } 07935 07936 } else { 07937 // This needs to happen first so that 'inline' propagates. 07938 NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl)); 07939 07940 if (isa<CXXMethodDecl>(NewFD)) { 07941 // A valid redeclaration of a C++ method must be out-of-line, 07942 // but (unfortunately) it's not necessarily a definition 07943 // because of templates, which means that the previous 07944 // declaration is not necessarily from the class definition. 07945 07946 // For just setting the access, that doesn't matter. 07947 CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl); 07948 NewFD->setAccess(oldMethod->getAccess()); 07949 07950 // Update the key-function state if necessary for this ABI. 07951 if (NewFD->isInlined() && 07952 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { 07953 // setNonKeyFunction needs to work with the original 07954 // declaration from the class definition, and isVirtual() is 07955 // just faster in that case, so map back to that now. 07956 oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDecl()); 07957 if (oldMethod->isVirtual()) { 07958 Context.setNonKeyFunction(oldMethod); 07959 } 07960 } 07961 } 07962 } 07963 } 07964 07965 // Semantic checking for this function declaration (in isolation). 07966 07967 if (getLangOpts().CPlusPlus) { 07968 // C++-specific checks. 07969 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) { 07970 CheckConstructor(Constructor); 07971 } else if (CXXDestructorDecl *Destructor = 07972 dyn_cast<CXXDestructorDecl>(NewFD)) { 07973 CXXRecordDecl *Record = Destructor->getParent(); 07974 QualType ClassType = Context.getTypeDeclType(Record); 07975 07976 // FIXME: Shouldn't we be able to perform this check even when the class 07977 // type is dependent? Both gcc and edg can handle that. 07978 if (!ClassType->isDependentType()) { 07979 DeclarationName Name 07980 = Context.DeclarationNames.getCXXDestructorName( 07981 Context.getCanonicalType(ClassType)); 07982 if (NewFD->getDeclName() != Name) { 07983 Diag(NewFD->getLocation(), diag::err_destructor_name); 07984 NewFD->setInvalidDecl(); 07985 return Redeclaration; 07986 } 07987 } 07988 } else if (CXXConversionDecl *Conversion 07989 = dyn_cast<CXXConversionDecl>(NewFD)) { 07990 ActOnConversionDeclarator(Conversion); 07991 } 07992 07993 // Find any virtual functions that this function overrides. 07994 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) { 07995 if (!Method->isFunctionTemplateSpecialization() && 07996 !Method->getDescribedFunctionTemplate() && 07997 Method->isCanonicalDecl()) { 07998 if (AddOverriddenMethods(Method->getParent(), Method)) { 07999 // If the function was marked as "static", we have a problem. 08000 if (NewFD->getStorageClass() == SC_Static) { 08001 ReportOverrides(*this, diag::err_static_overrides_virtual, Method); 08002 } 08003 } 08004 } 08005 08006 if (Method->isStatic()) 08007 checkThisInStaticMemberFunctionType(Method); 08008 } 08009 08010 // Extra checking for C++ overloaded operators (C++ [over.oper]). 08011 if (NewFD->isOverloadedOperator() && 08012 CheckOverloadedOperatorDeclaration(NewFD)) { 08013 NewFD->setInvalidDecl(); 08014 return Redeclaration; 08015 } 08016 08017 // Extra checking for C++0x literal operators (C++0x [over.literal]). 08018 if (NewFD->getLiteralIdentifier() && 08019 CheckLiteralOperatorDeclaration(NewFD)) { 08020 NewFD->setInvalidDecl(); 08021 return Redeclaration; 08022 } 08023 08024 // In C++, check default arguments now that we have merged decls. Unless 08025 // the lexical context is the class, because in this case this is done 08026 // during delayed parsing anyway. 08027 if (!CurContext->isRecord()) 08028 CheckCXXDefaultArguments(NewFD); 08029 08030 // If this function declares a builtin function, check the type of this 08031 // declaration against the expected type for the builtin. 08032 if (unsigned BuiltinID = NewFD->getBuiltinID()) { 08033 ASTContext::GetBuiltinTypeError Error; 08034 LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier()); 08035 QualType T = Context.GetBuiltinType(BuiltinID, Error); 08036 if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) { 08037 // The type of this function differs from the type of the builtin, 08038 // so forget about the builtin entirely. 08039 Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents); 08040 } 08041 } 08042 08043 // If this function is declared as being extern "C", then check to see if 08044 // the function returns a UDT (class, struct, or union type) that is not C 08045 // compatible, and if it does, warn the user. 08046 // But, issue any diagnostic on the first declaration only. 08047 if (NewFD->isExternC() && Previous.empty()) { 08048 QualType R = NewFD->getReturnType(); 08049 if (R->isIncompleteType() && !R->isVoidType()) 08050 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete) 08051 << NewFD << R; 08052 else if (!R.isPODType(Context) && !R->isVoidType() && 08053 !R->isObjCObjectPointerType()) 08054 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R; 08055 } 08056 } 08057 return Redeclaration; 08058 } 08059 08060 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) { 08061 // C++11 [basic.start.main]p3: 08062 // A program that [...] declares main to be inline, static or 08063 // constexpr is ill-formed. 08064 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall 08065 // appear in a declaration of main. 08066 // static main is not an error under C99, but we should warn about it. 08067 // We accept _Noreturn main as an extension. 08068 if (FD->getStorageClass() == SC_Static) 08069 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus 08070 ? diag::err_static_main : diag::warn_static_main) 08071 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 08072 if (FD->isInlineSpecified()) 08073 Diag(DS.getInlineSpecLoc(), diag::err_inline_main) 08074 << FixItHint::CreateRemoval(DS.getInlineSpecLoc()); 08075 if (DS.isNoreturnSpecified()) { 08076 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc(); 08077 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc)); 08078 Diag(NoreturnLoc, diag::ext_noreturn_main); 08079 Diag(NoreturnLoc, diag::note_main_remove_noreturn) 08080 << FixItHint::CreateRemoval(NoreturnRange); 08081 } 08082 if (FD->isConstexpr()) { 08083 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main) 08084 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc()); 08085 FD->setConstexpr(false); 08086 } 08087 08088 if (getLangOpts().OpenCL) { 08089 Diag(FD->getLocation(), diag::err_opencl_no_main) 08090 << FD->hasAttr<OpenCLKernelAttr>(); 08091 FD->setInvalidDecl(); 08092 return; 08093 } 08094 08095 QualType T = FD->getType(); 08096 assert(T->isFunctionType() && "function decl is not of function type"); 08097 const FunctionType* FT = T->castAs<FunctionType>(); 08098 08099 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) { 08100 // In C with GNU extensions we allow main() to have non-integer return 08101 // type, but we should warn about the extension, and we disable the 08102 // implicit-return-zero rule. 08103 08104 // GCC in C mode accepts qualified 'int'. 08105 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy)) 08106 FD->setHasImplicitReturnZero(true); 08107 else { 08108 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint); 08109 SourceRange RTRange = FD->getReturnTypeSourceRange(); 08110 if (RTRange.isValid()) 08111 Diag(RTRange.getBegin(), diag::note_main_change_return_type) 08112 << FixItHint::CreateReplacement(RTRange, "int"); 08113 } 08114 } else { 08115 // In C and C++, main magically returns 0 if you fall off the end; 08116 // set the flag which tells us that. 08117 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3. 08118 08119 // All the standards say that main() should return 'int'. 08120 if (Context.hasSameType(FT->getReturnType(), Context.IntTy)) 08121 FD->setHasImplicitReturnZero(true); 08122 else { 08123 // Otherwise, this is just a flat-out error. 08124 SourceRange RTRange = FD->getReturnTypeSourceRange(); 08125 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint) 08126 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int") 08127 : FixItHint()); 08128 FD->setInvalidDecl(true); 08129 } 08130 } 08131 08132 // Treat protoless main() as nullary. 08133 if (isa<FunctionNoProtoType>(FT)) return; 08134 08135 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT); 08136 unsigned nparams = FTP->getNumParams(); 08137 assert(FD->getNumParams() == nparams); 08138 08139 bool HasExtraParameters = (nparams > 3); 08140 08141 // Darwin passes an undocumented fourth argument of type char**. If 08142 // other platforms start sprouting these, the logic below will start 08143 // getting shifty. 08144 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin()) 08145 HasExtraParameters = false; 08146 08147 if (HasExtraParameters) { 08148 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; 08149 FD->setInvalidDecl(true); 08150 nparams = 3; 08151 } 08152 08153 // FIXME: a lot of the following diagnostics would be improved 08154 // if we had some location information about types. 08155 08156 QualType CharPP = 08157 Context.getPointerType(Context.getPointerType(Context.CharTy)); 08158 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; 08159 08160 for (unsigned i = 0; i < nparams; ++i) { 08161 QualType AT = FTP->getParamType(i); 08162 08163 bool mismatch = true; 08164 08165 if (Context.hasSameUnqualifiedType(AT, Expected[i])) 08166 mismatch = false; 08167 else if (Expected[i] == CharPP) { 08168 // As an extension, the following forms are okay: 08169 // char const ** 08170 // char const * const * 08171 // char * const * 08172 08173 QualifierCollector qs; 08174 const PointerType* PT; 08175 if ((PT = qs.strip(AT)->getAs<PointerType>()) && 08176 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) && 08177 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0), 08178 Context.CharTy)) { 08179 qs.removeConst(); 08180 mismatch = !qs.empty(); 08181 } 08182 } 08183 08184 if (mismatch) { 08185 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; 08186 // TODO: suggest replacing given type with expected type 08187 FD->setInvalidDecl(true); 08188 } 08189 } 08190 08191 if (nparams == 1 && !FD->isInvalidDecl()) { 08192 Diag(FD->getLocation(), diag::warn_main_one_arg); 08193 } 08194 08195 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { 08196 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; 08197 FD->setInvalidDecl(); 08198 } 08199 } 08200 08201 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) { 08202 QualType T = FD->getType(); 08203 assert(T->isFunctionType() && "function decl is not of function type"); 08204 const FunctionType *FT = T->castAs<FunctionType>(); 08205 08206 // Set an implicit return of 'zero' if the function can return some integral, 08207 // enumeration, pointer or nullptr type. 08208 if (FT->getReturnType()->isIntegralOrEnumerationType() || 08209 FT->getReturnType()->isAnyPointerType() || 08210 FT->getReturnType()->isNullPtrType()) 08211 // DllMain is exempt because a return value of zero means it failed. 08212 if (FD->getName() != "DllMain") 08213 FD->setHasImplicitReturnZero(true); 08214 08215 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { 08216 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; 08217 FD->setInvalidDecl(); 08218 } 08219 } 08220 08221 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { 08222 // FIXME: Need strict checking. In C89, we need to check for 08223 // any assignment, increment, decrement, function-calls, or 08224 // commas outside of a sizeof. In C99, it's the same list, 08225 // except that the aforementioned are allowed in unevaluated 08226 // expressions. Everything else falls under the 08227 // "may accept other forms of constant expressions" exception. 08228 // (We never end up here for C++, so the constant expression 08229 // rules there don't matter.) 08230 const Expr *Culprit; 08231 if (Init->isConstantInitializer(Context, false, &Culprit)) 08232 return false; 08233 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant) 08234 << Culprit->getSourceRange(); 08235 return true; 08236 } 08237 08238 namespace { 08239 // Visits an initialization expression to see if OrigDecl is evaluated in 08240 // its own initialization and throws a warning if it does. 08241 class SelfReferenceChecker 08242 : public EvaluatedExprVisitor<SelfReferenceChecker> { 08243 Sema &S; 08244 Decl *OrigDecl; 08245 bool isRecordType; 08246 bool isPODType; 08247 bool isReferenceType; 08248 08249 bool isInitList; 08250 llvm::SmallVector<unsigned, 4> InitFieldIndex; 08251 public: 08252 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited; 08253 08254 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context), 08255 S(S), OrigDecl(OrigDecl) { 08256 isPODType = false; 08257 isRecordType = false; 08258 isReferenceType = false; 08259 isInitList = false; 08260 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) { 08261 isPODType = VD->getType().isPODType(S.Context); 08262 isRecordType = VD->getType()->isRecordType(); 08263 isReferenceType = VD->getType()->isReferenceType(); 08264 } 08265 } 08266 08267 // For most expressions, just call the visitor. For initializer lists, 08268 // track the index of the field being initialized since fields are 08269 // initialized in order allowing use of previously initialized fields. 08270 void CheckExpr(Expr *E) { 08271 InitListExpr *InitList = dyn_cast<InitListExpr>(E); 08272 if (!InitList) { 08273 Visit(E); 08274 return; 08275 } 08276 08277 // Track and increment the index here. 08278 isInitList = true; 08279 InitFieldIndex.push_back(0); 08280 for (auto Child : InitList->children()) { 08281 CheckExpr(cast<Expr>(Child)); 08282 ++InitFieldIndex.back(); 08283 } 08284 InitFieldIndex.pop_back(); 08285 } 08286 08287 // Returns true if MemberExpr is checked and no futher checking is needed. 08288 // Returns false if additional checking is required. 08289 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) { 08290 llvm::SmallVector<FieldDecl*, 4> Fields; 08291 Expr *Base = E; 08292 bool ReferenceField = false; 08293 08294 // Get the field memebers used. 08295 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 08296 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 08297 if (!FD) 08298 return false; 08299 Fields.push_back(FD); 08300 if (FD->getType()->isReferenceType()) 08301 ReferenceField = true; 08302 Base = ME->getBase()->IgnoreParenImpCasts(); 08303 } 08304 08305 // Keep checking only if the base Decl is the same. 08306 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base); 08307 if (!DRE || DRE->getDecl() != OrigDecl) 08308 return false; 08309 08310 // A reference field can be bound to an unininitialized field. 08311 if (CheckReference && !ReferenceField) 08312 return true; 08313 08314 // Convert FieldDecls to their index number. 08315 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 08316 for (auto I = Fields.rbegin(), E = Fields.rend(); I != E; ++I) { 08317 UsedFieldIndex.push_back((*I)->getFieldIndex()); 08318 } 08319 08320 // See if a warning is needed by checking the first difference in index 08321 // numbers. If field being used has index less than the field being 08322 // initialized, then the use is safe. 08323 for (auto UsedIter = UsedFieldIndex.begin(), 08324 UsedEnd = UsedFieldIndex.end(), 08325 OrigIter = InitFieldIndex.begin(), 08326 OrigEnd = InitFieldIndex.end(); 08327 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 08328 if (*UsedIter < *OrigIter) 08329 return true; 08330 if (*UsedIter > *OrigIter) 08331 break; 08332 } 08333 08334 // TODO: Add a different warning which will print the field names. 08335 HandleDeclRefExpr(DRE); 08336 return true; 08337 } 08338 08339 // For most expressions, the cast is directly above the DeclRefExpr. 08340 // For conditional operators, the cast can be outside the conditional 08341 // operator if both expressions are DeclRefExpr's. 08342 void HandleValue(Expr *E) { 08343 E = E->IgnoreParens(); 08344 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) { 08345 HandleDeclRefExpr(DRE); 08346 return; 08347 } 08348 08349 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 08350 Visit(CO->getCond()); 08351 HandleValue(CO->getTrueExpr()); 08352 HandleValue(CO->getFalseExpr()); 08353 return; 08354 } 08355 08356 if (BinaryConditionalOperator *BCO = 08357 dyn_cast<BinaryConditionalOperator>(E)) { 08358 Visit(BCO->getCond()); 08359 HandleValue(BCO->getFalseExpr()); 08360 return; 08361 } 08362 08363 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 08364 HandleValue(OVE->getSourceExpr()); 08365 return; 08366 } 08367 08368 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 08369 if (BO->getOpcode() == BO_Comma) { 08370 Visit(BO->getLHS()); 08371 HandleValue(BO->getRHS()); 08372 return; 08373 } 08374 } 08375 08376 if (isa<MemberExpr>(E)) { 08377 if (isInitList) { 08378 if (CheckInitListMemberExpr(cast<MemberExpr>(E), 08379 false /*CheckReference*/)) 08380 return; 08381 } 08382 08383 Expr *Base = E->IgnoreParenImpCasts(); 08384 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 08385 // Check for static member variables and don't warn on them. 08386 if (!isa<FieldDecl>(ME->getMemberDecl())) 08387 return; 08388 Base = ME->getBase()->IgnoreParenImpCasts(); 08389 } 08390 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) 08391 HandleDeclRefExpr(DRE); 08392 return; 08393 } 08394 08395 Visit(E); 08396 } 08397 08398 // Reference types not handled in HandleValue are handled here since all 08399 // uses of references are bad, not just r-value uses. 08400 void VisitDeclRefExpr(DeclRefExpr *E) { 08401 if (isReferenceType) 08402 HandleDeclRefExpr(E); 08403 } 08404 08405 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 08406 if (E->getCastKind() == CK_LValueToRValue) { 08407 HandleValue(E->getSubExpr()); 08408 return; 08409 } 08410 08411 Inherited::VisitImplicitCastExpr(E); 08412 } 08413 08414 void VisitMemberExpr(MemberExpr *E) { 08415 if (isInitList) { 08416 if (CheckInitListMemberExpr(E, true /*CheckReference*/)) 08417 return; 08418 } 08419 08420 // Don't warn on arrays since they can be treated as pointers. 08421 if (E->getType()->canDecayToPointerType()) return; 08422 08423 // Warn when a non-static method call is followed by non-static member 08424 // field accesses, which is followed by a DeclRefExpr. 08425 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl()); 08426 bool Warn = (MD && !MD->isStatic()); 08427 Expr *Base = E->getBase()->IgnoreParenImpCasts(); 08428 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 08429 if (!isa<FieldDecl>(ME->getMemberDecl())) 08430 Warn = false; 08431 Base = ME->getBase()->IgnoreParenImpCasts(); 08432 } 08433 08434 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 08435 if (Warn) 08436 HandleDeclRefExpr(DRE); 08437 return; 08438 } 08439 08440 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr. 08441 // Visit that expression. 08442 Visit(Base); 08443 } 08444 08445 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 08446 Expr *Callee = E->getCallee(); 08447 08448 if (isa<UnresolvedLookupExpr>(Callee)) 08449 return Inherited::VisitCXXOperatorCallExpr(E); 08450 08451 Visit(Callee); 08452 for (auto Arg: E->arguments()) 08453 HandleValue(Arg->IgnoreParenImpCasts()); 08454 } 08455 08456 void VisitUnaryOperator(UnaryOperator *E) { 08457 // For POD record types, addresses of its own members are well-defined. 08458 if (E->getOpcode() == UO_AddrOf && isRecordType && 08459 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) { 08460 if (!isPODType) 08461 HandleValue(E->getSubExpr()); 08462 return; 08463 } 08464 08465 if (E->isIncrementDecrementOp()) { 08466 HandleValue(E->getSubExpr()); 08467 return; 08468 } 08469 08470 Inherited::VisitUnaryOperator(E); 08471 } 08472 08473 void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; } 08474 08475 void VisitCXXConstructExpr(CXXConstructExpr *E) { 08476 if (E->getConstructor()->isCopyConstructor()) { 08477 Expr *ArgExpr = E->getArg(0); 08478 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 08479 if (ILE->getNumInits() == 1) 08480 ArgExpr = ILE->getInit(0); 08481 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 08482 if (ICE->getCastKind() == CK_NoOp) 08483 ArgExpr = ICE->getSubExpr(); 08484 HandleValue(ArgExpr); 08485 return; 08486 } 08487 Inherited::VisitCXXConstructExpr(E); 08488 } 08489 08490 void VisitCallExpr(CallExpr *E) { 08491 // Treat std::move as a use. 08492 if (E->getNumArgs() == 1) { 08493 if (FunctionDecl *FD = E->getDirectCallee()) { 08494 if (FD->getIdentifier() && FD->getIdentifier()->isStr("move")) { 08495 HandleValue(E->getArg(0)); 08496 return; 08497 } 08498 } 08499 } 08500 08501 Inherited::VisitCallExpr(E); 08502 } 08503 08504 void VisitBinaryOperator(BinaryOperator *E) { 08505 if (E->isCompoundAssignmentOp()) { 08506 HandleValue(E->getLHS()); 08507 Visit(E->getRHS()); 08508 return; 08509 } 08510 08511 Inherited::VisitBinaryOperator(E); 08512 } 08513 08514 // A custom visitor for BinaryConditionalOperator is needed because the 08515 // regular visitor would check the condition and true expression separately 08516 // but both point to the same place giving duplicate diagnostics. 08517 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { 08518 Visit(E->getCond()); 08519 Visit(E->getFalseExpr()); 08520 } 08521 08522 void HandleDeclRefExpr(DeclRefExpr *DRE) { 08523 Decl* ReferenceDecl = DRE->getDecl(); 08524 if (OrigDecl != ReferenceDecl) return; 08525 unsigned diag; 08526 if (isReferenceType) { 08527 diag = diag::warn_uninit_self_reference_in_reference_init; 08528 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) { 08529 diag = diag::warn_static_self_reference_in_init; 08530 } else { 08531 diag = diag::warn_uninit_self_reference_in_init; 08532 } 08533 08534 S.DiagRuntimeBehavior(DRE->getLocStart(), DRE, 08535 S.PDiag(diag) 08536 << DRE->getNameInfo().getName() 08537 << OrigDecl->getLocation() 08538 << DRE->getSourceRange()); 08539 } 08540 }; 08541 08542 /// CheckSelfReference - Warns if OrigDecl is used in expression E. 08543 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E, 08544 bool DirectInit) { 08545 // Parameters arguments are occassionially constructed with itself, 08546 // for instance, in recursive functions. Skip them. 08547 if (isa<ParmVarDecl>(OrigDecl)) 08548 return; 08549 08550 E = E->IgnoreParens(); 08551 08552 // Skip checking T a = a where T is not a record or reference type. 08553 // Doing so is a way to silence uninitialized warnings. 08554 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType()) 08555 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 08556 if (ICE->getCastKind() == CK_LValueToRValue) 08557 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) 08558 if (DRE->getDecl() == OrigDecl) 08559 return; 08560 08561 SelfReferenceChecker(S, OrigDecl).CheckExpr(E); 08562 } 08563 } 08564 08565 /// AddInitializerToDecl - Adds the initializer Init to the 08566 /// declaration dcl. If DirectInit is true, this is C++ direct 08567 /// initialization rather than copy initialization. 08568 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, 08569 bool DirectInit, bool TypeMayContainAuto) { 08570 // If there is no declaration, there was an error parsing it. Just ignore 08571 // the initializer. 08572 if (!RealDecl || RealDecl->isInvalidDecl()) 08573 return; 08574 08575 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) { 08576 // With declarators parsed the way they are, the parser cannot 08577 // distinguish between a normal initializer and a pure-specifier. 08578 // Thus this grotesque test. 08579 IntegerLiteral *IL; 08580 if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 && 08581 Context.getCanonicalType(IL->getType()) == Context.IntTy) 08582 CheckPureMethod(Method, Init->getSourceRange()); 08583 else { 08584 Diag(Method->getLocation(), diag::err_member_function_initialization) 08585 << Method->getDeclName() << Init->getSourceRange(); 08586 Method->setInvalidDecl(); 08587 } 08588 return; 08589 } 08590 08591 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); 08592 if (!VDecl) { 08593 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"); 08594 Diag(RealDecl->getLocation(), diag::err_illegal_initializer); 08595 RealDecl->setInvalidDecl(); 08596 return; 08597 } 08598 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 08599 08600 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. 08601 if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) { 08602 Expr *DeduceInit = Init; 08603 // Initializer could be a C++ direct-initializer. Deduction only works if it 08604 // contains exactly one expression. 08605 if (CXXDirectInit) { 08606 if (CXXDirectInit->getNumExprs() == 0) { 08607 // It isn't possible to write this directly, but it is possible to 08608 // end up in this situation with "auto x(some_pack...);" 08609 Diag(CXXDirectInit->getLocStart(), 08610 VDecl->isInitCapture() ? diag::err_init_capture_no_expression 08611 : diag::err_auto_var_init_no_expression) 08612 << VDecl->getDeclName() << VDecl->getType() 08613 << VDecl->getSourceRange(); 08614 RealDecl->setInvalidDecl(); 08615 return; 08616 } else if (CXXDirectInit->getNumExprs() > 1) { 08617 Diag(CXXDirectInit->getExpr(1)->getLocStart(), 08618 VDecl->isInitCapture() 08619 ? diag::err_init_capture_multiple_expressions 08620 : diag::err_auto_var_init_multiple_expressions) 08621 << VDecl->getDeclName() << VDecl->getType() 08622 << VDecl->getSourceRange(); 08623 RealDecl->setInvalidDecl(); 08624 return; 08625 } else { 08626 DeduceInit = CXXDirectInit->getExpr(0); 08627 if (isa<InitListExpr>(DeduceInit)) 08628 Diag(CXXDirectInit->getLocStart(), 08629 diag::err_auto_var_init_paren_braces) 08630 << VDecl->getDeclName() << VDecl->getType() 08631 << VDecl->getSourceRange(); 08632 } 08633 } 08634 08635 // Expressions default to 'id' when we're in a debugger. 08636 bool DefaultedToAuto = false; 08637 if (getLangOpts().DebuggerCastResultToId && 08638 Init->getType() == Context.UnknownAnyTy) { 08639 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); 08640 if (Result.isInvalid()) { 08641 VDecl->setInvalidDecl(); 08642 return; 08643 } 08644 Init = Result.get(); 08645 DefaultedToAuto = true; 08646 } 08647 08648 QualType DeducedType; 08649 if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) == 08650 DAR_Failed) 08651 DiagnoseAutoDeductionFailure(VDecl, DeduceInit); 08652 if (DeducedType.isNull()) { 08653 RealDecl->setInvalidDecl(); 08654 return; 08655 } 08656 VDecl->setType(DeducedType); 08657 assert(VDecl->isLinkageValid()); 08658 08659 // In ARC, infer lifetime. 08660 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl)) 08661 VDecl->setInvalidDecl(); 08662 08663 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using 08664 // 'id' instead of a specific object type prevents most of our usual checks. 08665 // We only want to warn outside of template instantiations, though: 08666 // inside a template, the 'id' could have come from a parameter. 08667 if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto && 08668 DeducedType->isObjCIdType()) { 08669 SourceLocation Loc = 08670 VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc(); 08671 Diag(Loc, diag::warn_auto_var_is_id) 08672 << VDecl->getDeclName() << DeduceInit->getSourceRange(); 08673 } 08674 08675 // If this is a redeclaration, check that the type we just deduced matches 08676 // the previously declared type. 08677 if (VarDecl *Old = VDecl->getPreviousDecl()) { 08678 // We never need to merge the type, because we cannot form an incomplete 08679 // array of auto, nor deduce such a type. 08680 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false); 08681 } 08682 08683 // Check the deduced type is valid for a variable declaration. 08684 CheckVariableDeclarationType(VDecl); 08685 if (VDecl->isInvalidDecl()) 08686 return; 08687 } 08688 08689 // dllimport cannot be used on variable definitions. 08690 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) { 08691 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition); 08692 VDecl->setInvalidDecl(); 08693 return; 08694 } 08695 08696 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) { 08697 // C99 6.7.8p5. C++ has no such restriction, but that is a defect. 08698 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); 08699 VDecl->setInvalidDecl(); 08700 return; 08701 } 08702 08703 if (!VDecl->getType()->isDependentType()) { 08704 // A definition must end up with a complete type, which means it must be 08705 // complete with the restriction that an array type might be completed by 08706 // the initializer; note that later code assumes this restriction. 08707 QualType BaseDeclType = VDecl->getType(); 08708 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType)) 08709 BaseDeclType = Array->getElementType(); 08710 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, 08711 diag::err_typecheck_decl_incomplete_type)) { 08712 RealDecl->setInvalidDecl(); 08713 return; 08714 } 08715 08716 // The variable can not have an abstract class type. 08717 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), 08718 diag::err_abstract_type_in_decl, 08719 AbstractVariableType)) 08720 VDecl->setInvalidDecl(); 08721 } 08722 08723 const VarDecl *Def; 08724 if ((Def = VDecl->getDefinition()) && Def != VDecl) { 08725 Diag(VDecl->getLocation(), diag::err_redefinition) 08726 << VDecl->getDeclName(); 08727 Diag(Def->getLocation(), diag::note_previous_definition); 08728 VDecl->setInvalidDecl(); 08729 return; 08730 } 08731 08732 const VarDecl *PrevInit = nullptr; 08733 if (getLangOpts().CPlusPlus) { 08734 // C++ [class.static.data]p4 08735 // If a static data member is of const integral or const 08736 // enumeration type, its declaration in the class definition can 08737 // specify a constant-initializer which shall be an integral 08738 // constant expression (5.19). In that case, the member can appear 08739 // in integral constant expressions. The member shall still be 08740 // defined in a namespace scope if it is used in the program and the 08741 // namespace scope definition shall not contain an initializer. 08742 // 08743 // We already performed a redefinition check above, but for static 08744 // data members we also need to check whether there was an in-class 08745 // declaration with an initializer. 08746 if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) { 08747 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization) 08748 << VDecl->getDeclName(); 08749 Diag(PrevInit->getInit()->getExprLoc(), diag::note_previous_initializer) << 0; 08750 return; 08751 } 08752 08753 if (VDecl->hasLocalStorage()) 08754 getCurFunction()->setHasBranchProtectedScope(); 08755 08756 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) { 08757 VDecl->setInvalidDecl(); 08758 return; 08759 } 08760 } 08761 08762 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside 08763 // a kernel function cannot be initialized." 08764 if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) { 08765 Diag(VDecl->getLocation(), diag::err_local_cant_init); 08766 VDecl->setInvalidDecl(); 08767 return; 08768 } 08769 08770 // Get the decls type and save a reference for later, since 08771 // CheckInitializerTypes may change it. 08772 QualType DclT = VDecl->getType(), SavT = DclT; 08773 08774 // Expressions default to 'id' when we're in a debugger 08775 // and we are assigning it to a variable of Objective-C pointer type. 08776 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() && 08777 Init->getType() == Context.UnknownAnyTy) { 08778 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); 08779 if (Result.isInvalid()) { 08780 VDecl->setInvalidDecl(); 08781 return; 08782 } 08783 Init = Result.get(); 08784 } 08785 08786 // Perform the initialization. 08787 if (!VDecl->isInvalidDecl()) { 08788 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); 08789 InitializationKind Kind 08790 = DirectInit ? 08791 CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(), 08792 Init->getLocStart(), 08793 Init->getLocEnd()) 08794 : InitializationKind::CreateDirectList( 08795 VDecl->getLocation()) 08796 : InitializationKind::CreateCopy(VDecl->getLocation(), 08797 Init->getLocStart()); 08798 08799 MultiExprArg Args = Init; 08800 if (CXXDirectInit) 08801 Args = MultiExprArg(CXXDirectInit->getExprs(), 08802 CXXDirectInit->getNumExprs()); 08803 08804 InitializationSequence InitSeq(*this, Entity, Kind, Args); 08805 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 08806 if (Result.isInvalid()) { 08807 VDecl->setInvalidDecl(); 08808 return; 08809 } 08810 08811 Init = Result.getAs<Expr>(); 08812 } 08813 08814 // Check for self-references within variable initializers. 08815 // Variables declared within a function/method body (except for references) 08816 // are handled by a dataflow analysis. 08817 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() || 08818 VDecl->getType()->isReferenceType()) { 08819 CheckSelfReference(*this, RealDecl, Init, DirectInit); 08820 } 08821 08822 // If the type changed, it means we had an incomplete type that was 08823 // completed by the initializer. For example: 08824 // int ary[] = { 1, 3, 5 }; 08825 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType. 08826 if (!VDecl->isInvalidDecl() && (DclT != SavT)) 08827 VDecl->setType(DclT); 08828 08829 if (!VDecl->isInvalidDecl()) { 08830 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init); 08831 08832 if (VDecl->hasAttr<BlocksAttr>()) 08833 checkRetainCycles(VDecl, Init); 08834 08835 // It is safe to assign a weak reference into a strong variable. 08836 // Although this code can still have problems: 08837 // id x = self.weakProp; 08838 // id y = self.weakProp; 08839 // we do not warn to warn spuriously when 'x' and 'y' are on separate 08840 // paths through the function. This should be revisited if 08841 // -Wrepeated-use-of-weak is made flow-sensitive. 08842 if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong && 08843 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, 08844 Init->getLocStart())) 08845 getCurFunction()->markSafeWeakUse(Init); 08846 } 08847 08848 // The initialization is usually a full-expression. 08849 // 08850 // FIXME: If this is a braced initialization of an aggregate, it is not 08851 // an expression, and each individual field initializer is a separate 08852 // full-expression. For instance, in: 08853 // 08854 // struct Temp { ~Temp(); }; 08855 // struct S { S(Temp); }; 08856 // struct T { S a, b; } t = { Temp(), Temp() } 08857 // 08858 // we should destroy the first Temp before constructing the second. 08859 ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(), 08860 false, 08861 VDecl->isConstexpr()); 08862 if (Result.isInvalid()) { 08863 VDecl->setInvalidDecl(); 08864 return; 08865 } 08866 Init = Result.get(); 08867 08868 // Attach the initializer to the decl. 08869 VDecl->setInit(Init); 08870 08871 if (VDecl->isLocalVarDecl()) { 08872 // C99 6.7.8p4: All the expressions in an initializer for an object that has 08873 // static storage duration shall be constant expressions or string literals. 08874 // C++ does not have this restriction. 08875 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) { 08876 const Expr *Culprit; 08877 if (VDecl->getStorageClass() == SC_Static) 08878 CheckForConstantInitializer(Init, DclT); 08879 // C89 is stricter than C99 for non-static aggregate types. 08880 // C89 6.5.7p3: All the expressions [...] in an initializer list 08881 // for an object that has aggregate or union type shall be 08882 // constant expressions. 08883 else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() && 08884 isa<InitListExpr>(Init) && 08885 !Init->isConstantInitializer(Context, false, &Culprit)) 08886 Diag(Culprit->getExprLoc(), 08887 diag::ext_aggregate_init_not_constant) 08888 << Culprit->getSourceRange(); 08889 } 08890 } else if (VDecl->isStaticDataMember() && 08891 VDecl->getLexicalDeclContext()->isRecord()) { 08892 // This is an in-class initialization for a static data member, e.g., 08893 // 08894 // struct S { 08895 // static const int value = 17; 08896 // }; 08897 08898 // C++ [class.mem]p4: 08899 // A member-declarator can contain a constant-initializer only 08900 // if it declares a static member (9.4) of const integral or 08901 // const enumeration type, see 9.4.2. 08902 // 08903 // C++11 [class.static.data]p3: 08904 // If a non-volatile const static data member is of integral or 08905 // enumeration type, its declaration in the class definition can 08906 // specify a brace-or-equal-initializer in which every initalizer-clause 08907 // that is an assignment-expression is a constant expression. A static 08908 // data member of literal type can be declared in the class definition 08909 // with the constexpr specifier; if so, its declaration shall specify a 08910 // brace-or-equal-initializer in which every initializer-clause that is 08911 // an assignment-expression is a constant expression. 08912 08913 // Do nothing on dependent types. 08914 if (DclT->isDependentType()) { 08915 08916 // Allow any 'static constexpr' members, whether or not they are of literal 08917 // type. We separately check that every constexpr variable is of literal 08918 // type. 08919 } else if (VDecl->isConstexpr()) { 08920 08921 // Require constness. 08922 } else if (!DclT.isConstQualified()) { 08923 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) 08924 << Init->getSourceRange(); 08925 VDecl->setInvalidDecl(); 08926 08927 // We allow integer constant expressions in all cases. 08928 } else if (DclT->isIntegralOrEnumerationType()) { 08929 // Check whether the expression is a constant expression. 08930 SourceLocation Loc; 08931 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified()) 08932 // In C++11, a non-constexpr const static data member with an 08933 // in-class initializer cannot be volatile. 08934 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile); 08935 else if (Init->isValueDependent()) 08936 ; // Nothing to check. 08937 else if (Init->isIntegerConstantExpr(Context, &Loc)) 08938 ; // Ok, it's an ICE! 08939 else if (Init->isEvaluatable(Context)) { 08940 // If we can constant fold the initializer through heroics, accept it, 08941 // but report this as a use of an extension for -pedantic. 08942 Diag(Loc, diag::ext_in_class_initializer_non_constant) 08943 << Init->getSourceRange(); 08944 } else { 08945 // Otherwise, this is some crazy unknown case. Report the issue at the 08946 // location provided by the isIntegerConstantExpr failed check. 08947 Diag(Loc, diag::err_in_class_initializer_non_constant) 08948 << Init->getSourceRange(); 08949 VDecl->setInvalidDecl(); 08950 } 08951 08952 // We allow foldable floating-point constants as an extension. 08953 } else if (DclT->isFloatingType()) { // also permits complex, which is ok 08954 // In C++98, this is a GNU extension. In C++11, it is not, but we support 08955 // it anyway and provide a fixit to add the 'constexpr'. 08956 if (getLangOpts().CPlusPlus11) { 08957 Diag(VDecl->getLocation(), 08958 diag::ext_in_class_initializer_float_type_cxx11) 08959 << DclT << Init->getSourceRange(); 08960 Diag(VDecl->getLocStart(), 08961 diag::note_in_class_initializer_float_type_cxx11) 08962 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr "); 08963 } else { 08964 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) 08965 << DclT << Init->getSourceRange(); 08966 08967 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) { 08968 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) 08969 << Init->getSourceRange(); 08970 VDecl->setInvalidDecl(); 08971 } 08972 } 08973 08974 // Suggest adding 'constexpr' in C++11 for literal types. 08975 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) { 08976 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type) 08977 << DclT << Init->getSourceRange() 08978 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr "); 08979 VDecl->setConstexpr(true); 08980 08981 } else { 08982 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) 08983 << DclT << Init->getSourceRange(); 08984 VDecl->setInvalidDecl(); 08985 } 08986 } else if (VDecl->isFileVarDecl()) { 08987 if (VDecl->getStorageClass() == SC_Extern && 08988 (!getLangOpts().CPlusPlus || 08989 !(Context.getBaseElementType(VDecl->getType()).isConstQualified() || 08990 VDecl->isExternC())) && 08991 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind())) 08992 Diag(VDecl->getLocation(), diag::warn_extern_init); 08993 08994 // C99 6.7.8p4. All file scoped initializers need to be constant. 08995 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) 08996 CheckForConstantInitializer(Init, DclT); 08997 } 08998 08999 // We will represent direct-initialization similarly to copy-initialization: 09000 // int x(1); -as-> int x = 1; 09001 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); 09002 // 09003 // Clients that want to distinguish between the two forms, can check for 09004 // direct initializer using VarDecl::getInitStyle(). 09005 // A major benefit is that clients that don't particularly care about which 09006 // exactly form was it (like the CodeGen) can handle both cases without 09007 // special case code. 09008 09009 // C++ 8.5p11: 09010 // The form of initialization (using parentheses or '=') is generally 09011 // insignificant, but does matter when the entity being initialized has a 09012 // class type. 09013 if (CXXDirectInit) { 09014 assert(DirectInit && "Call-style initializer must be direct init."); 09015 VDecl->setInitStyle(VarDecl::CallInit); 09016 } else if (DirectInit) { 09017 // This must be list-initialization. No other way is direct-initialization. 09018 VDecl->setInitStyle(VarDecl::ListInit); 09019 } 09020 09021 CheckCompleteVariableDeclaration(VDecl); 09022 } 09023 09024 /// ActOnInitializerError - Given that there was an error parsing an 09025 /// initializer for the given declaration, try to return to some form 09026 /// of sanity. 09027 void Sema::ActOnInitializerError(Decl *D) { 09028 // Our main concern here is re-establishing invariants like "a 09029 // variable's type is either dependent or complete". 09030 if (!D || D->isInvalidDecl()) return; 09031 09032 VarDecl *VD = dyn_cast<VarDecl>(D); 09033 if (!VD) return; 09034 09035 // Auto types are meaningless if we can't make sense of the initializer. 09036 if (ParsingInitForAutoVars.count(D)) { 09037 D->setInvalidDecl(); 09038 return; 09039 } 09040 09041 QualType Ty = VD->getType(); 09042 if (Ty->isDependentType()) return; 09043 09044 // Require a complete type. 09045 if (RequireCompleteType(VD->getLocation(), 09046 Context.getBaseElementType(Ty), 09047 diag::err_typecheck_decl_incomplete_type)) { 09048 VD->setInvalidDecl(); 09049 return; 09050 } 09051 09052 // Require a non-abstract type. 09053 if (RequireNonAbstractType(VD->getLocation(), Ty, 09054 diag::err_abstract_type_in_decl, 09055 AbstractVariableType)) { 09056 VD->setInvalidDecl(); 09057 return; 09058 } 09059 09060 // Don't bother complaining about constructors or destructors, 09061 // though. 09062 } 09063 09064 void Sema::ActOnUninitializedDecl(Decl *RealDecl, 09065 bool TypeMayContainAuto) { 09066 // If there is no declaration, there was an error parsing it. Just ignore it. 09067 if (!RealDecl) 09068 return; 09069 09070 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { 09071 QualType Type = Var->getType(); 09072 09073 // C++11 [dcl.spec.auto]p3 09074 if (TypeMayContainAuto && Type->getContainedAutoType()) { 09075 Diag(Var->getLocation(), diag::err_auto_var_requires_init) 09076 << Var->getDeclName() << Type; 09077 Var->setInvalidDecl(); 09078 return; 09079 } 09080 09081 // C++11 [class.static.data]p3: A static data member can be declared with 09082 // the constexpr specifier; if so, its declaration shall specify 09083 // a brace-or-equal-initializer. 09084 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to 09085 // the definition of a variable [...] or the declaration of a static data 09086 // member. 09087 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) { 09088 if (Var->isStaticDataMember()) 09089 Diag(Var->getLocation(), 09090 diag::err_constexpr_static_mem_var_requires_init) 09091 << Var->getDeclName(); 09092 else 09093 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl); 09094 Var->setInvalidDecl(); 09095 return; 09096 } 09097 09098 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must 09099 // be initialized. 09100 if (!Var->isInvalidDecl() && 09101 Var->getType().getAddressSpace() == LangAS::opencl_constant && 09102 Var->getStorageClass() != SC_Extern && !Var->getInit()) { 09103 Diag(Var->getLocation(), diag::err_opencl_constant_no_init); 09104 Var->setInvalidDecl(); 09105 return; 09106 } 09107 09108 switch (Var->isThisDeclarationADefinition()) { 09109 case VarDecl::Definition: 09110 if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) 09111 break; 09112 09113 // We have an out-of-line definition of a static data member 09114 // that has an in-class initializer, so we type-check this like 09115 // a declaration. 09116 // 09117 // Fall through 09118 09119 case VarDecl::DeclarationOnly: 09120 // It's only a declaration. 09121 09122 // Block scope. C99 6.7p7: If an identifier for an object is 09123 // declared with no linkage (C99 6.2.2p6), the type for the 09124 // object shall be complete. 09125 if (!Type->isDependentType() && Var->isLocalVarDecl() && 09126 !Var->hasLinkage() && !Var->isInvalidDecl() && 09127 RequireCompleteType(Var->getLocation(), Type, 09128 diag::err_typecheck_decl_incomplete_type)) 09129 Var->setInvalidDecl(); 09130 09131 // Make sure that the type is not abstract. 09132 if (!Type->isDependentType() && !Var->isInvalidDecl() && 09133 RequireNonAbstractType(Var->getLocation(), Type, 09134 diag::err_abstract_type_in_decl, 09135 AbstractVariableType)) 09136 Var->setInvalidDecl(); 09137 if (!Type->isDependentType() && !Var->isInvalidDecl() && 09138 Var->getStorageClass() == SC_PrivateExtern) { 09139 Diag(Var->getLocation(), diag::warn_private_extern); 09140 Diag(Var->getLocation(), diag::note_private_extern); 09141 } 09142 09143 return; 09144 09145 case VarDecl::TentativeDefinition: 09146 // File scope. C99 6.9.2p2: A declaration of an identifier for an 09147 // object that has file scope without an initializer, and without a 09148 // storage-class specifier or with the storage-class specifier "static", 09149 // constitutes a tentative definition. Note: A tentative definition with 09150 // external linkage is valid (C99 6.2.2p5). 09151 if (!Var->isInvalidDecl()) { 09152 if (const IncompleteArrayType *ArrayT 09153 = Context.getAsIncompleteArrayType(Type)) { 09154 if (RequireCompleteType(Var->getLocation(), 09155 ArrayT->getElementType(), 09156 diag::err_illegal_decl_array_incomplete_type)) 09157 Var->setInvalidDecl(); 09158 } else if (Var->getStorageClass() == SC_Static) { 09159 // C99 6.9.2p3: If the declaration of an identifier for an object is 09160 // a tentative definition and has internal linkage (C99 6.2.2p3), the 09161 // declared type shall not be an incomplete type. 09162 // NOTE: code such as the following 09163 // static struct s; 09164 // struct s { int a; }; 09165 // is accepted by gcc. Hence here we issue a warning instead of 09166 // an error and we do not invalidate the static declaration. 09167 // NOTE: to avoid multiple warnings, only check the first declaration. 09168 if (Var->isFirstDecl()) 09169 RequireCompleteType(Var->getLocation(), Type, 09170 diag::ext_typecheck_decl_incomplete_type); 09171 } 09172 } 09173 09174 // Record the tentative definition; we're done. 09175 if (!Var->isInvalidDecl()) 09176 TentativeDefinitions.push_back(Var); 09177 return; 09178 } 09179 09180 // Provide a specific diagnostic for uninitialized variable 09181 // definitions with incomplete array type. 09182 if (Type->isIncompleteArrayType()) { 09183 Diag(Var->getLocation(), 09184 diag::err_typecheck_incomplete_array_needs_initializer); 09185 Var->setInvalidDecl(); 09186 return; 09187 } 09188 09189 // Provide a specific diagnostic for uninitialized variable 09190 // definitions with reference type. 09191 if (Type->isReferenceType()) { 09192 Diag(Var->getLocation(), diag::err_reference_var_requires_init) 09193 << Var->getDeclName() 09194 << SourceRange(Var->getLocation(), Var->getLocation()); 09195 Var->setInvalidDecl(); 09196 return; 09197 } 09198 09199 // Do not attempt to type-check the default initializer for a 09200 // variable with dependent type. 09201 if (Type->isDependentType()) 09202 return; 09203 09204 if (Var->isInvalidDecl()) 09205 return; 09206 09207 if (!Var->hasAttr<AliasAttr>()) { 09208 if (RequireCompleteType(Var->getLocation(), 09209 Context.getBaseElementType(Type), 09210 diag::err_typecheck_decl_incomplete_type)) { 09211 Var->setInvalidDecl(); 09212 return; 09213 } 09214 } 09215 09216 // The variable can not have an abstract class type. 09217 if (RequireNonAbstractType(Var->getLocation(), Type, 09218 diag::err_abstract_type_in_decl, 09219 AbstractVariableType)) { 09220 Var->setInvalidDecl(); 09221 return; 09222 } 09223 09224 // Check for jumps past the implicit initializer. C++0x 09225 // clarifies that this applies to a "variable with automatic 09226 // storage duration", not a "local variable". 09227 // C++11 [stmt.dcl]p3 09228 // A program that jumps from a point where a variable with automatic 09229 // storage duration is not in scope to a point where it is in scope is 09230 // ill-formed unless the variable has scalar type, class type with a 09231 // trivial default constructor and a trivial destructor, a cv-qualified 09232 // version of one of these types, or an array of one of the preceding 09233 // types and is declared without an initializer. 09234 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) { 09235 if (const RecordType *Record 09236 = Context.getBaseElementType(Type)->getAs<RecordType>()) { 09237 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl()); 09238 // Mark the function for further checking even if the looser rules of 09239 // C++11 do not require such checks, so that we can diagnose 09240 // incompatibilities with C++98. 09241 if (!CXXRecord->isPOD()) 09242 getCurFunction()->setHasBranchProtectedScope(); 09243 } 09244 } 09245 09246 // C++03 [dcl.init]p9: 09247 // If no initializer is specified for an object, and the 09248 // object is of (possibly cv-qualified) non-POD class type (or 09249 // array thereof), the object shall be default-initialized; if 09250 // the object is of const-qualified type, the underlying class 09251 // type shall have a user-declared default 09252 // constructor. Otherwise, if no initializer is specified for 09253 // a non- static object, the object and its subobjects, if 09254 // any, have an indeterminate initial value); if the object 09255 // or any of its subobjects are of const-qualified type, the 09256 // program is ill-formed. 09257 // C++0x [dcl.init]p11: 09258 // If no initializer is specified for an object, the object is 09259 // default-initialized; [...]. 09260 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); 09261 InitializationKind Kind 09262 = InitializationKind::CreateDefault(Var->getLocation()); 09263 09264 InitializationSequence InitSeq(*this, Entity, Kind, None); 09265 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None); 09266 if (Init.isInvalid()) 09267 Var->setInvalidDecl(); 09268 else if (Init.get()) { 09269 Var->setInit(MaybeCreateExprWithCleanups(Init.get())); 09270 // This is important for template substitution. 09271 Var->setInitStyle(VarDecl::CallInit); 09272 } 09273 09274 CheckCompleteVariableDeclaration(Var); 09275 } 09276 } 09277 09278 void Sema::ActOnCXXForRangeDecl(Decl *D) { 09279 VarDecl *VD = dyn_cast<VarDecl>(D); 09280 if (!VD) { 09281 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var); 09282 D->setInvalidDecl(); 09283 return; 09284 } 09285 09286 VD->setCXXForRangeDecl(true); 09287 09288 // for-range-declaration cannot be given a storage class specifier. 09289 int Error = -1; 09290 switch (VD->getStorageClass()) { 09291 case SC_None: 09292 break; 09293 case SC_Extern: 09294 Error = 0; 09295 break; 09296 case SC_Static: 09297 Error = 1; 09298 break; 09299 case SC_PrivateExtern: 09300 Error = 2; 09301 break; 09302 case SC_Auto: 09303 Error = 3; 09304 break; 09305 case SC_Register: 09306 Error = 4; 09307 break; 09308 case SC_OpenCLWorkGroupLocal: 09309 llvm_unreachable("Unexpected storage class"); 09310 } 09311 if (VD->isConstexpr()) 09312 Error = 5; 09313 if (Error != -1) { 09314 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class) 09315 << VD->getDeclName() << Error; 09316 D->setInvalidDecl(); 09317 } 09318 } 09319 09320 StmtResult 09321 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, 09322 IdentifierInfo *Ident, 09323 ParsedAttributes &Attrs, 09324 SourceLocation AttrEnd) { 09325 // C++1y [stmt.iter]p1: 09326 // A range-based for statement of the form 09327 // for ( for-range-identifier : for-range-initializer ) statement 09328 // is equivalent to 09329 // for ( auto&& for-range-identifier : for-range-initializer ) statement 09330 DeclSpec DS(Attrs.getPool().getFactory()); 09331 09332 const char *PrevSpec; 09333 unsigned DiagID; 09334 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID, 09335 getPrintingPolicy()); 09336 09337 Declarator D(DS, Declarator::ForContext); 09338 D.SetIdentifier(Ident, IdentLoc); 09339 D.takeAttributes(Attrs, AttrEnd); 09340 09341 ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory()); 09342 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false), 09343 EmptyAttrs, IdentLoc); 09344 Decl *Var = ActOnDeclarator(S, D); 09345 cast<VarDecl>(Var)->setCXXForRangeDecl(true); 09346 FinalizeDeclaration(Var); 09347 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc, 09348 AttrEnd.isValid() ? AttrEnd : IdentLoc); 09349 } 09350 09351 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) { 09352 if (var->isInvalidDecl()) return; 09353 09354 // In ARC, don't allow jumps past the implicit initialization of a 09355 // local retaining variable. 09356 if (getLangOpts().ObjCAutoRefCount && 09357 var->hasLocalStorage()) { 09358 switch (var->getType().getObjCLifetime()) { 09359 case Qualifiers::OCL_None: 09360 case Qualifiers::OCL_ExplicitNone: 09361 case Qualifiers::OCL_Autoreleasing: 09362 break; 09363 09364 case Qualifiers::OCL_Weak: 09365 case Qualifiers::OCL_Strong: 09366 getCurFunction()->setHasBranchProtectedScope(); 09367 break; 09368 } 09369 } 09370 09371 // Warn about externally-visible variables being defined without a 09372 // prior declaration. We only want to do this for global 09373 // declarations, but we also specifically need to avoid doing it for 09374 // class members because the linkage of an anonymous class can 09375 // change if it's later given a typedef name. 09376 if (var->isThisDeclarationADefinition() && 09377 var->getDeclContext()->getRedeclContext()->isFileContext() && 09378 var->isExternallyVisible() && var->hasLinkage() && 09379 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations, 09380 var->getLocation())) { 09381 // Find a previous declaration that's not a definition. 09382 VarDecl *prev = var->getPreviousDecl(); 09383 while (prev && prev->isThisDeclarationADefinition()) 09384 prev = prev->getPreviousDecl(); 09385 09386 if (!prev) 09387 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var; 09388 } 09389 09390 if (var->getTLSKind() == VarDecl::TLS_Static) { 09391 const Expr *Culprit; 09392 if (var->getType().isDestructedType()) { 09393 // GNU C++98 edits for __thread, [basic.start.term]p3: 09394 // The type of an object with thread storage duration shall not 09395 // have a non-trivial destructor. 09396 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor); 09397 if (getLangOpts().CPlusPlus11) 09398 Diag(var->getLocation(), diag::note_use_thread_local); 09399 } else if (getLangOpts().CPlusPlus && var->hasInit() && 09400 !var->getInit()->isConstantInitializer( 09401 Context, var->getType()->isReferenceType(), &Culprit)) { 09402 // GNU C++98 edits for __thread, [basic.start.init]p4: 09403 // An object of thread storage duration shall not require dynamic 09404 // initialization. 09405 // FIXME: Need strict checking here. 09406 Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init) 09407 << Culprit->getSourceRange(); 09408 if (getLangOpts().CPlusPlus11) 09409 Diag(var->getLocation(), diag::note_use_thread_local); 09410 } 09411 09412 } 09413 09414 if (var->isThisDeclarationADefinition() && 09415 ActiveTemplateInstantiations.empty()) { 09416 PragmaStack<StringLiteral *> *Stack = nullptr; 09417 int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read; 09418 if (var->getType().isConstQualified()) 09419 Stack = &ConstSegStack; 09420 else if (!var->getInit()) { 09421 Stack = &BSSSegStack; 09422 SectionFlags |= ASTContext::PSF_Write; 09423 } else { 09424 Stack = &DataSegStack; 09425 SectionFlags |= ASTContext::PSF_Write; 09426 } 09427 if (!var->hasAttr<SectionAttr>() && Stack->CurrentValue) 09428 var->addAttr( 09429 SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate, 09430 Stack->CurrentValue->getString(), 09431 Stack->CurrentPragmaLocation)); 09432 if (const SectionAttr *SA = var->getAttr<SectionAttr>()) 09433 if (UnifySection(SA->getName(), SectionFlags, var)) 09434 var->dropAttr<SectionAttr>(); 09435 09436 // Apply the init_seg attribute if this has an initializer. If the 09437 // initializer turns out to not be dynamic, we'll end up ignoring this 09438 // attribute. 09439 if (CurInitSeg && var->getInit()) 09440 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(), 09441 CurInitSegLoc)); 09442 } 09443 09444 // All the following checks are C++ only. 09445 if (!getLangOpts().CPlusPlus) return; 09446 09447 QualType type = var->getType(); 09448 if (type->isDependentType()) return; 09449 09450 // __block variables might require us to capture a copy-initializer. 09451 if (var->hasAttr<BlocksAttr>()) { 09452 // It's currently invalid to ever have a __block variable with an 09453 // array type; should we diagnose that here? 09454 09455 // Regardless, we don't want to ignore array nesting when 09456 // constructing this copy. 09457 if (type->isStructureOrClassType()) { 09458 EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated); 09459 SourceLocation poi = var->getLocation(); 09460 Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi); 09461 ExprResult result 09462 = PerformMoveOrCopyInitialization( 09463 InitializedEntity::InitializeBlock(poi, type, false), 09464 var, var->getType(), varRef, /*AllowNRVO=*/true); 09465 if (!result.isInvalid()) { 09466 result = MaybeCreateExprWithCleanups(result); 09467 Expr *init = result.getAs<Expr>(); 09468 Context.setBlockVarCopyInits(var, init); 09469 } 09470 } 09471 } 09472 09473 Expr *Init = var->getInit(); 09474 bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal(); 09475 QualType baseType = Context.getBaseElementType(type); 09476 09477 if (!var->getDeclContext()->isDependentContext() && 09478 Init && !Init->isValueDependent()) { 09479 if (IsGlobal && !var->isConstexpr() && 09480 !getDiagnostics().isIgnored(diag::warn_global_constructor, 09481 var->getLocation())) { 09482 // Warn about globals which don't have a constant initializer. Don't 09483 // warn about globals with a non-trivial destructor because we already 09484 // warned about them. 09485 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl(); 09486 if (!(RD && !RD->hasTrivialDestructor()) && 09487 !Init->isConstantInitializer(Context, baseType->isReferenceType())) 09488 Diag(var->getLocation(), diag::warn_global_constructor) 09489 << Init->getSourceRange(); 09490 } 09491 09492 if (var->isConstexpr()) { 09493 SmallVector<PartialDiagnosticAt, 8> Notes; 09494 if (!var->evaluateValue(Notes) || !var->isInitICE()) { 09495 SourceLocation DiagLoc = var->getLocation(); 09496 // If the note doesn't add any useful information other than a source 09497 // location, fold it into the primary diagnostic. 09498 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 09499 diag::note_invalid_subexpr_in_const_expr) { 09500 DiagLoc = Notes[0].first; 09501 Notes.clear(); 09502 } 09503 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init) 09504 << var << Init->getSourceRange(); 09505 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 09506 Diag(Notes[I].first, Notes[I].second); 09507 } 09508 } else if (var->isUsableInConstantExpressions(Context)) { 09509 // Check whether the initializer of a const variable of integral or 09510 // enumeration type is an ICE now, since we can't tell whether it was 09511 // initialized by a constant expression if we check later. 09512 var->checkInitIsICE(); 09513 } 09514 } 09515 09516 // Require the destructor. 09517 if (const RecordType *recordType = baseType->getAs<RecordType>()) 09518 FinalizeVarWithDestructor(var, recordType); 09519 } 09520 09521 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform 09522 /// any semantic actions necessary after any initializer has been attached. 09523 void 09524 Sema::FinalizeDeclaration(Decl *ThisDecl) { 09525 // Note that we are no longer parsing the initializer for this declaration. 09526 ParsingInitForAutoVars.erase(ThisDecl); 09527 09528 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl); 09529 if (!VD) 09530 return; 09531 09532 checkAttributesAfterMerging(*this, *VD); 09533 09534 // Static locals inherit dll attributes from their function. 09535 if (VD->isStaticLocal()) { 09536 if (FunctionDecl *FD = 09537 dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) { 09538 if (Attr *A = getDLLAttr(FD)) { 09539 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext())); 09540 NewAttr->setInherited(true); 09541 VD->addAttr(NewAttr); 09542 } 09543 } 09544 } 09545 09546 // Grab the dllimport or dllexport attribute off of the VarDecl. 09547 const InheritableAttr *DLLAttr = getDLLAttr(VD); 09548 09549 // Imported static data members cannot be defined out-of-line. 09550 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) { 09551 if (VD->isStaticDataMember() && VD->isOutOfLine() && 09552 VD->isThisDeclarationADefinition()) { 09553 // We allow definitions of dllimport class template static data members 09554 // with a warning. 09555 CXXRecordDecl *Context = 09556 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext()); 09557 bool IsClassTemplateMember = 09558 isa<ClassTemplatePartialSpecializationDecl>(Context) || 09559 Context->getDescribedClassTemplate(); 09560 09561 Diag(VD->getLocation(), 09562 IsClassTemplateMember 09563 ? diag::warn_attribute_dllimport_static_field_definition 09564 : diag::err_attribute_dllimport_static_field_definition); 09565 Diag(IA->getLocation(), diag::note_attribute); 09566 if (!IsClassTemplateMember) 09567 VD->setInvalidDecl(); 09568 } 09569 } 09570 09571 // dllimport/dllexport variables cannot be thread local, their TLS index 09572 // isn't exported with the variable. 09573 if (DLLAttr && VD->getTLSKind()) { 09574 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD 09575 << DLLAttr; 09576 VD->setInvalidDecl(); 09577 } 09578 09579 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) { 09580 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { 09581 Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr; 09582 VD->dropAttr<UsedAttr>(); 09583 } 09584 } 09585 09586 if (!VD->isInvalidDecl() && 09587 VD->isThisDeclarationADefinition() == VarDecl::TentativeDefinition) { 09588 if (const VarDecl *Def = VD->getDefinition()) { 09589 if (Def->hasAttr<AliasAttr>()) { 09590 Diag(VD->getLocation(), diag::err_tentative_after_alias) 09591 << VD->getDeclName(); 09592 Diag(Def->getLocation(), diag::note_previous_definition); 09593 VD->setInvalidDecl(); 09594 } 09595 } 09596 } 09597 09598 const DeclContext *DC = VD->getDeclContext(); 09599 // If there's a #pragma GCC visibility in scope, and this isn't a class 09600 // member, set the visibility of this variable. 09601 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible()) 09602 AddPushedVisibilityAttribute(VD); 09603 09604 // FIXME: Warn on unused templates. 09605 if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() && 09606 !isa<VarTemplatePartialSpecializationDecl>(VD)) 09607 MarkUnusedFileScopedDecl(VD); 09608 09609 // Now we have parsed the initializer and can update the table of magic 09610 // tag values. 09611 if (!VD->hasAttr<TypeTagForDatatypeAttr>() || 09612 !VD->getType()->isIntegralOrEnumerationType()) 09613 return; 09614 09615 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) { 09616 const Expr *MagicValueExpr = VD->getInit(); 09617 if (!MagicValueExpr) { 09618 continue; 09619 } 09620 llvm::APSInt MagicValueInt; 09621 if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) { 09622 Diag(I->getRange().getBegin(), 09623 diag::err_type_tag_for_datatype_not_ice) 09624 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); 09625 continue; 09626 } 09627 if (MagicValueInt.getActiveBits() > 64) { 09628 Diag(I->getRange().getBegin(), 09629 diag::err_type_tag_for_datatype_too_large) 09630 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); 09631 continue; 09632 } 09633 uint64_t MagicValue = MagicValueInt.getZExtValue(); 09634 RegisterTypeTagForDatatype(I->getArgumentKind(), 09635 MagicValue, 09636 I->getMatchingCType(), 09637 I->getLayoutCompatible(), 09638 I->getMustBeNull()); 09639 } 09640 } 09641 09642 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, 09643 ArrayRef<Decl *> Group) { 09644 SmallVector<Decl*, 8> Decls; 09645 09646 if (DS.isTypeSpecOwned()) 09647 Decls.push_back(DS.getRepAsDecl()); 09648 09649 DeclaratorDecl *FirstDeclaratorInGroup = nullptr; 09650 for (unsigned i = 0, e = Group.size(); i != e; ++i) 09651 if (Decl *D = Group[i]) { 09652 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) 09653 if (!FirstDeclaratorInGroup) 09654 FirstDeclaratorInGroup = DD; 09655 Decls.push_back(D); 09656 } 09657 09658 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) { 09659 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) { 09660 HandleTagNumbering(*this, Tag, S); 09661 if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl()) 09662 Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup); 09663 } 09664 } 09665 09666 return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType()); 09667 } 09668 09669 /// BuildDeclaratorGroup - convert a list of declarations into a declaration 09670 /// group, performing any necessary semantic checking. 09671 Sema::DeclGroupPtrTy 09672 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group, 09673 bool TypeMayContainAuto) { 09674 // C++0x [dcl.spec.auto]p7: 09675 // If the type deduced for the template parameter U is not the same in each 09676 // deduction, the program is ill-formed. 09677 // FIXME: When initializer-list support is added, a distinction is needed 09678 // between the deduced type U and the deduced type which 'auto' stands for. 09679 // auto a = 0, b = { 1, 2, 3 }; 09680 // is legal because the deduced type U is 'int' in both cases. 09681 if (TypeMayContainAuto && Group.size() > 1) { 09682 QualType Deduced; 09683 CanQualType DeducedCanon; 09684 VarDecl *DeducedDecl = nullptr; 09685 for (unsigned i = 0, e = Group.size(); i != e; ++i) { 09686 if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) { 09687 AutoType *AT = D->getType()->getContainedAutoType(); 09688 // Don't reissue diagnostics when instantiating a template. 09689 if (AT && D->isInvalidDecl()) 09690 break; 09691 QualType U = AT ? AT->getDeducedType() : QualType(); 09692 if (!U.isNull()) { 09693 CanQualType UCanon = Context.getCanonicalType(U); 09694 if (Deduced.isNull()) { 09695 Deduced = U; 09696 DeducedCanon = UCanon; 09697 DeducedDecl = D; 09698 } else if (DeducedCanon != UCanon) { 09699 Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 09700 diag::err_auto_different_deductions) 09701 << (AT->isDecltypeAuto() ? 1 : 0) 09702 << Deduced << DeducedDecl->getDeclName() 09703 << U << D->getDeclName() 09704 << DeducedDecl->getInit()->getSourceRange() 09705 << D->getInit()->getSourceRange(); 09706 D->setInvalidDecl(); 09707 break; 09708 } 09709 } 09710 } 09711 } 09712 } 09713 09714 ActOnDocumentableDecls(Group); 09715 09716 return DeclGroupPtrTy::make( 09717 DeclGroupRef::Create(Context, Group.data(), Group.size())); 09718 } 09719 09720 void Sema::ActOnDocumentableDecl(Decl *D) { 09721 ActOnDocumentableDecls(D); 09722 } 09723 09724 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) { 09725 // Don't parse the comment if Doxygen diagnostics are ignored. 09726 if (Group.empty() || !Group[0]) 09727 return; 09728 09729 if (Diags.isIgnored(diag::warn_doc_param_not_found, Group[0]->getLocation())) 09730 return; 09731 09732 if (Group.size() >= 2) { 09733 // This is a decl group. Normally it will contain only declarations 09734 // produced from declarator list. But in case we have any definitions or 09735 // additional declaration references: 09736 // 'typedef struct S {} S;' 09737 // 'typedef struct S *S;' 09738 // 'struct S *pS;' 09739 // FinalizeDeclaratorGroup adds these as separate declarations. 09740 Decl *MaybeTagDecl = Group[0]; 09741 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) { 09742 Group = Group.slice(1); 09743 } 09744 } 09745 09746 // See if there are any new comments that are not attached to a decl. 09747 ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments(); 09748 if (!Comments.empty() && 09749 !Comments.back()->isAttached()) { 09750 // There is at least one comment that not attached to a decl. 09751 // Maybe it should be attached to one of these decls? 09752 // 09753 // Note that this way we pick up not only comments that precede the 09754 // declaration, but also comments that *follow* the declaration -- thanks to 09755 // the lookahead in the lexer: we've consumed the semicolon and looked 09756 // ahead through comments. 09757 for (unsigned i = 0, e = Group.size(); i != e; ++i) 09758 Context.getCommentForDecl(Group[i], &PP); 09759 } 09760 } 09761 09762 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() 09763 /// to introduce parameters into function prototype scope. 09764 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { 09765 const DeclSpec &DS = D.getDeclSpec(); 09766 09767 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. 09768 09769 // C++03 [dcl.stc]p2 also permits 'auto'. 09770 StorageClass SC = SC_None; 09771 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 09772 SC = SC_Register; 09773 } else if (getLangOpts().CPlusPlus && 09774 DS.getStorageClassSpec() == DeclSpec::SCS_auto) { 09775 SC = SC_Auto; 09776 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 09777 Diag(DS.getStorageClassSpecLoc(), 09778 diag::err_invalid_storage_class_in_func_decl); 09779 D.getMutableDeclSpec().ClearStorageClassSpecs(); 09780 } 09781 09782 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) 09783 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread) 09784 << DeclSpec::getSpecifierName(TSCS); 09785 if (DS.isConstexprSpecified()) 09786 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr) 09787 << 0; 09788 09789 DiagnoseFunctionSpecifiers(DS); 09790 09791 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 09792 QualType parmDeclType = TInfo->getType(); 09793 09794 if (getLangOpts().CPlusPlus) { 09795 // Check that there are no default arguments inside the type of this 09796 // parameter. 09797 CheckExtraCXXDefaultArguments(D); 09798 09799 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 09800 if (D.getCXXScopeSpec().isSet()) { 09801 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) 09802 << D.getCXXScopeSpec().getRange(); 09803 D.getCXXScopeSpec().clear(); 09804 } 09805 } 09806 09807 // Ensure we have a valid name 09808 IdentifierInfo *II = nullptr; 09809 if (D.hasName()) { 09810 II = D.getIdentifier(); 09811 if (!II) { 09812 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name) 09813 << GetNameForDeclarator(D).getName(); 09814 D.setInvalidType(true); 09815 } 09816 } 09817 09818 // Check for redeclaration of parameters, e.g. int foo(int x, int x); 09819 if (II) { 09820 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, 09821 ForRedeclaration); 09822 LookupName(R, S); 09823 if (R.isSingleResult()) { 09824 NamedDecl *PrevDecl = R.getFoundDecl(); 09825 if (PrevDecl->isTemplateParameter()) { 09826 // Maybe we will complain about the shadowed template parameter. 09827 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 09828 // Just pretend that we didn't see the previous declaration. 09829 PrevDecl = nullptr; 09830 } else if (S->isDeclScope(PrevDecl)) { 09831 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; 09832 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 09833 09834 // Recover by removing the name 09835 II = nullptr; 09836 D.SetIdentifier(nullptr, D.getIdentifierLoc()); 09837 D.setInvalidType(true); 09838 } 09839 } 09840 } 09841 09842 // Temporarily put parameter variables in the translation unit, not 09843 // the enclosing context. This prevents them from accidentally 09844 // looking like class members in C++. 09845 ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(), 09846 D.getLocStart(), 09847 D.getIdentifierLoc(), II, 09848 parmDeclType, TInfo, 09849 SC); 09850 09851 if (D.isInvalidType()) 09852 New->setInvalidDecl(); 09853 09854 assert(S->isFunctionPrototypeScope()); 09855 assert(S->getFunctionPrototypeDepth() >= 1); 09856 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1, 09857 S->getNextFunctionPrototypeIndex()); 09858 09859 // Add the parameter declaration into this scope. 09860 S->AddDecl(New); 09861 if (II) 09862 IdResolver.AddDecl(New); 09863 09864 ProcessDeclAttributes(S, New, D); 09865 09866 if (D.getDeclSpec().isModulePrivateSpecified()) 09867 Diag(New->getLocation(), diag::err_module_private_local) 09868 << 1 << New->getDeclName() 09869 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 09870 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 09871 09872 if (New->hasAttr<BlocksAttr>()) { 09873 Diag(New->getLocation(), diag::err_block_on_nonlocal); 09874 } 09875 return New; 09876 } 09877 09878 /// \brief Synthesizes a variable for a parameter arising from a 09879 /// typedef. 09880 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, 09881 SourceLocation Loc, 09882 QualType T) { 09883 /* FIXME: setting StartLoc == Loc. 09884 Would it be worth to modify callers so as to provide proper source 09885 location for the unnamed parameters, embedding the parameter's type? */ 09886 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr, 09887 T, Context.getTrivialTypeSourceInfo(T, Loc), 09888 SC_None, nullptr); 09889 Param->setImplicit(); 09890 return Param; 09891 } 09892 09893 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param, 09894 ParmVarDecl * const *ParamEnd) { 09895 // Don't diagnose unused-parameter errors in template instantiations; we 09896 // will already have done so in the template itself. 09897 if (!ActiveTemplateInstantiations.empty()) 09898 return; 09899 09900 for (; Param != ParamEnd; ++Param) { 09901 if (!(*Param)->isReferenced() && (*Param)->getDeclName() && 09902 !(*Param)->hasAttr<UnusedAttr>()) { 09903 Diag((*Param)->getLocation(), diag::warn_unused_parameter) 09904 << (*Param)->getDeclName(); 09905 } 09906 } 09907 } 09908 09909 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param, 09910 ParmVarDecl * const *ParamEnd, 09911 QualType ReturnTy, 09912 NamedDecl *D) { 09913 if (LangOpts.NumLargeByValueCopy == 0) // No check. 09914 return; 09915 09916 // Warn if the return value is pass-by-value and larger than the specified 09917 // threshold. 09918 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) { 09919 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity(); 09920 if (Size > LangOpts.NumLargeByValueCopy) 09921 Diag(D->getLocation(), diag::warn_return_value_size) 09922 << D->getDeclName() << Size; 09923 } 09924 09925 // Warn if any parameter is pass-by-value and larger than the specified 09926 // threshold. 09927 for (; Param != ParamEnd; ++Param) { 09928 QualType T = (*Param)->getType(); 09929 if (T->isDependentType() || !T.isPODType(Context)) 09930 continue; 09931 unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); 09932 if (Size > LangOpts.NumLargeByValueCopy) 09933 Diag((*Param)->getLocation(), diag::warn_parameter_size) 09934 << (*Param)->getDeclName() << Size; 09935 } 09936 } 09937 09938 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc, 09939 SourceLocation NameLoc, IdentifierInfo *Name, 09940 QualType T, TypeSourceInfo *TSInfo, 09941 StorageClass SC) { 09942 // In ARC, infer a lifetime qualifier for appropriate parameter types. 09943 if (getLangOpts().ObjCAutoRefCount && 09944 T.getObjCLifetime() == Qualifiers::OCL_None && 09945 T->isObjCLifetimeType()) { 09946 09947 Qualifiers::ObjCLifetime lifetime; 09948 09949 // Special cases for arrays: 09950 // - if it's const, use __unsafe_unretained 09951 // - otherwise, it's an error 09952 if (T->isArrayType()) { 09953 if (!T.isConstQualified()) { 09954 DelayedDiagnostics.add( 09955 sema::DelayedDiagnostic::makeForbiddenType( 09956 NameLoc, diag::err_arc_array_param_no_ownership, T, false)); 09957 } 09958 lifetime = Qualifiers::OCL_ExplicitNone; 09959 } else { 09960 lifetime = T->getObjCARCImplicitLifetime(); 09961 } 09962 T = Context.getLifetimeQualifiedType(T, lifetime); 09963 } 09964 09965 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name, 09966 Context.getAdjustedParameterType(T), 09967 TSInfo, SC, nullptr); 09968 09969 // Parameters can not be abstract class types. 09970 // For record types, this is done by the AbstractClassUsageDiagnoser once 09971 // the class has been completely parsed. 09972 if (!CurContext->isRecord() && 09973 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl, 09974 AbstractParamType)) 09975 New->setInvalidDecl(); 09976 09977 // Parameter declarators cannot be interface types. All ObjC objects are 09978 // passed by reference. 09979 if (T->isObjCObjectType()) { 09980 SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd(); 09981 Diag(NameLoc, 09982 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T 09983 << FixItHint::CreateInsertion(TypeEndLoc, "*"); 09984 T = Context.getObjCObjectPointerType(T); 09985 New->setType(T); 09986 } 09987 09988 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 09989 // duration shall not be qualified by an address-space qualifier." 09990 // Since all parameters have automatic store duration, they can not have 09991 // an address space. 09992 if (T.getAddressSpace() != 0) { 09993 // OpenCL allows function arguments declared to be an array of a type 09994 // to be qualified with an address space. 09995 if (!(getLangOpts().OpenCL && T->isArrayType())) { 09996 Diag(NameLoc, diag::err_arg_with_address_space); 09997 New->setInvalidDecl(); 09998 } 09999 } 10000 10001 return New; 10002 } 10003 10004 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, 10005 SourceLocation LocAfterDecls) { 10006 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10007 10008 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' 10009 // for a K&R function. 10010 if (!FTI.hasPrototype) { 10011 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) { 10012 --i; 10013 if (FTI.Params[i].Param == nullptr) { 10014 SmallString<256> Code; 10015 llvm::raw_svector_ostream(Code) 10016 << " int " << FTI.Params[i].Ident->getName() << ";\n"; 10017 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared) 10018 << FTI.Params[i].Ident 10019 << FixItHint::CreateInsertion(LocAfterDecls, Code.str()); 10020 10021 // Implicitly declare the argument as type 'int' for lack of a better 10022 // type. 10023 AttributeFactory attrs; 10024 DeclSpec DS(attrs); 10025 const char* PrevSpec; // unused 10026 unsigned DiagID; // unused 10027 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec, 10028 DiagID, Context.getPrintingPolicy()); 10029 // Use the identifier location for the type source range. 10030 DS.SetRangeStart(FTI.Params[i].IdentLoc); 10031 DS.SetRangeEnd(FTI.Params[i].IdentLoc); 10032 Declarator ParamD(DS, Declarator::KNRTypeListContext); 10033 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc); 10034 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD); 10035 } 10036 } 10037 } 10038 } 10039 10040 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) { 10041 assert(getCurFunctionDecl() == nullptr && "Function parsing confused"); 10042 assert(D.isFunctionDeclarator() && "Not a function declarator!"); 10043 Scope *ParentScope = FnBodyScope->getParent(); 10044 10045 D.setFunctionDefinitionKind(FDK_Definition); 10046 Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg()); 10047 return ActOnStartOfFunctionDef(FnBodyScope, DP); 10048 } 10049 10050 void Sema::ActOnFinishInlineMethodDef(CXXMethodDecl *D) { 10051 Consumer.HandleInlineMethodDefinition(D); 10052 } 10053 10054 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD, 10055 const FunctionDecl*& PossibleZeroParamPrototype) { 10056 // Don't warn about invalid declarations. 10057 if (FD->isInvalidDecl()) 10058 return false; 10059 10060 // Or declarations that aren't global. 10061 if (!FD->isGlobal()) 10062 return false; 10063 10064 // Don't warn about C++ member functions. 10065 if (isa<CXXMethodDecl>(FD)) 10066 return false; 10067 10068 // Don't warn about 'main'. 10069 if (FD->isMain()) 10070 return false; 10071 10072 // Don't warn about inline functions. 10073 if (FD->isInlined()) 10074 return false; 10075 10076 // Don't warn about function templates. 10077 if (FD->getDescribedFunctionTemplate()) 10078 return false; 10079 10080 // Don't warn about function template specializations. 10081 if (FD->isFunctionTemplateSpecialization()) 10082 return false; 10083 10084 // Don't warn for OpenCL kernels. 10085 if (FD->hasAttr<OpenCLKernelAttr>()) 10086 return false; 10087 10088 bool MissingPrototype = true; 10089 for (const FunctionDecl *Prev = FD->getPreviousDecl(); 10090 Prev; Prev = Prev->getPreviousDecl()) { 10091 // Ignore any declarations that occur in function or method 10092 // scope, because they aren't visible from the header. 10093 if (Prev->getLexicalDeclContext()->isFunctionOrMethod()) 10094 continue; 10095 10096 MissingPrototype = !Prev->getType()->isFunctionProtoType(); 10097 if (FD->getNumParams() == 0) 10098 PossibleZeroParamPrototype = Prev; 10099 break; 10100 } 10101 10102 return MissingPrototype; 10103 } 10104 10105 void 10106 Sema::CheckForFunctionRedefinition(FunctionDecl *FD, 10107 const FunctionDecl *EffectiveDefinition) { 10108 // Don't complain if we're in GNU89 mode and the previous definition 10109 // was an extern inline function. 10110 const FunctionDecl *Definition = EffectiveDefinition; 10111 if (!Definition) 10112 if (!FD->isDefined(Definition)) 10113 return; 10114 10115 if (canRedefineFunction(Definition, getLangOpts())) 10116 return; 10117 10118 if (getLangOpts().GNUMode && Definition->isInlineSpecified() && 10119 Definition->getStorageClass() == SC_Extern) 10120 Diag(FD->getLocation(), diag::err_redefinition_extern_inline) 10121 << FD->getDeclName() << getLangOpts().CPlusPlus; 10122 else 10123 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName(); 10124 10125 Diag(Definition->getLocation(), diag::note_previous_definition); 10126 FD->setInvalidDecl(); 10127 } 10128 10129 10130 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator, 10131 Sema &S) { 10132 CXXRecordDecl *const LambdaClass = CallOperator->getParent(); 10133 10134 LambdaScopeInfo *LSI = S.PushLambdaScope(); 10135 LSI->CallOperator = CallOperator; 10136 LSI->Lambda = LambdaClass; 10137 LSI->ReturnType = CallOperator->getReturnType(); 10138 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault(); 10139 10140 if (LCD == LCD_None) 10141 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None; 10142 else if (LCD == LCD_ByCopy) 10143 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval; 10144 else if (LCD == LCD_ByRef) 10145 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref; 10146 DeclarationNameInfo DNI = CallOperator->getNameInfo(); 10147 10148 LSI->IntroducerRange = DNI.getCXXOperatorNameRange(); 10149 LSI->Mutable = !CallOperator->isConst(); 10150 10151 // Add the captures to the LSI so they can be noted as already 10152 // captured within tryCaptureVar. 10153 auto I = LambdaClass->field_begin(); 10154 for (const auto &C : LambdaClass->captures()) { 10155 if (C.capturesVariable()) { 10156 VarDecl *VD = C.getCapturedVar(); 10157 if (VD->isInitCapture()) 10158 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD); 10159 QualType CaptureType = VD->getType(); 10160 const bool ByRef = C.getCaptureKind() == LCK_ByRef; 10161 LSI->addCapture(VD, /*IsBlock*/false, ByRef, 10162 /*RefersToEnclosingLocal*/true, C.getLocation(), 10163 /*EllipsisLoc*/C.isPackExpansion() 10164 ? C.getEllipsisLoc() : SourceLocation(), 10165 CaptureType, /*Expr*/ nullptr); 10166 10167 } else if (C.capturesThis()) { 10168 LSI->addThisCapture(/*Nested*/ false, C.getLocation(), 10169 S.getCurrentThisType(), /*Expr*/ nullptr); 10170 } else { 10171 LSI->addVLATypeCapture(C.getLocation(), I->getType()); 10172 } 10173 ++I; 10174 } 10175 } 10176 10177 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) { 10178 // Clear the last template instantiation error context. 10179 LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation(); 10180 10181 if (!D) 10182 return D; 10183 FunctionDecl *FD = nullptr; 10184 10185 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) 10186 FD = FunTmpl->getTemplatedDecl(); 10187 else 10188 FD = cast<FunctionDecl>(D); 10189 // If we are instantiating a generic lambda call operator, push 10190 // a LambdaScopeInfo onto the function stack. But use the information 10191 // that's already been calculated (ActOnLambdaExpr) to prime the current 10192 // LambdaScopeInfo. 10193 // When the template operator is being specialized, the LambdaScopeInfo, 10194 // has to be properly restored so that tryCaptureVariable doesn't try 10195 // and capture any new variables. In addition when calculating potential 10196 // captures during transformation of nested lambdas, it is necessary to 10197 // have the LSI properly restored. 10198 if (isGenericLambdaCallOperatorSpecialization(FD)) { 10199 assert(ActiveTemplateInstantiations.size() && 10200 "There should be an active template instantiation on the stack " 10201 "when instantiating a generic lambda!"); 10202 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this); 10203 } 10204 else 10205 // Enter a new function scope 10206 PushFunctionScope(); 10207 10208 // See if this is a redefinition. 10209 if (!FD->isLateTemplateParsed()) 10210 CheckForFunctionRedefinition(FD); 10211 10212 // Builtin functions cannot be defined. 10213 if (unsigned BuiltinID = FD->getBuiltinID()) { 10214 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 10215 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) { 10216 Diag(FD->getLocation(), diag::err_builtin_definition) << FD; 10217 FD->setInvalidDecl(); 10218 } 10219 } 10220 10221 // The return type of a function definition must be complete 10222 // (C99 6.9.1p3, C++ [dcl.fct]p6). 10223 QualType ResultType = FD->getReturnType(); 10224 if (!ResultType->isDependentType() && !ResultType->isVoidType() && 10225 !FD->isInvalidDecl() && 10226 RequireCompleteType(FD->getLocation(), ResultType, 10227 diag::err_func_def_incomplete_result)) 10228 FD->setInvalidDecl(); 10229 10230 // GNU warning -Wmissing-prototypes: 10231 // Warn if a global function is defined without a previous 10232 // prototype declaration. This warning is issued even if the 10233 // definition itself provides a prototype. The aim is to detect 10234 // global functions that fail to be declared in header files. 10235 const FunctionDecl *PossibleZeroParamPrototype = nullptr; 10236 if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) { 10237 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; 10238 10239 if (PossibleZeroParamPrototype) { 10240 // We found a declaration that is not a prototype, 10241 // but that could be a zero-parameter prototype 10242 if (TypeSourceInfo *TI = 10243 PossibleZeroParamPrototype->getTypeSourceInfo()) { 10244 TypeLoc TL = TI->getTypeLoc(); 10245 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>()) 10246 Diag(PossibleZeroParamPrototype->getLocation(), 10247 diag::note_declaration_not_a_prototype) 10248 << PossibleZeroParamPrototype 10249 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void"); 10250 } 10251 } 10252 } 10253 10254 if (FnBodyScope) 10255 PushDeclContext(FnBodyScope, FD); 10256 10257 // Check the validity of our function parameters 10258 CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(), 10259 /*CheckParameterNames=*/true); 10260 10261 // Introduce our parameters into the function scope 10262 for (auto Param : FD->params()) { 10263 Param->setOwningFunction(FD); 10264 10265 // If this has an identifier, add it to the scope stack. 10266 if (Param->getIdentifier() && FnBodyScope) { 10267 CheckShadow(FnBodyScope, Param); 10268 10269 PushOnScopeChains(Param, FnBodyScope); 10270 } 10271 } 10272 10273 // If we had any tags defined in the function prototype, 10274 // introduce them into the function scope. 10275 if (FnBodyScope) { 10276 for (ArrayRef<NamedDecl *>::iterator 10277 I = FD->getDeclsInPrototypeScope().begin(), 10278 E = FD->getDeclsInPrototypeScope().end(); 10279 I != E; ++I) { 10280 NamedDecl *D = *I; 10281 10282 // Some of these decls (like enums) may have been pinned to the translation unit 10283 // for lack of a real context earlier. If so, remove from the translation unit 10284 // and reattach to the current context. 10285 if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) { 10286 // Is the decl actually in the context? 10287 for (const auto *DI : Context.getTranslationUnitDecl()->decls()) { 10288 if (DI == D) { 10289 Context.getTranslationUnitDecl()->removeDecl(D); 10290 break; 10291 } 10292 } 10293 // Either way, reassign the lexical decl context to our FunctionDecl. 10294 D->setLexicalDeclContext(CurContext); 10295 } 10296 10297 // If the decl has a non-null name, make accessible in the current scope. 10298 if (!D->getName().empty()) 10299 PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false); 10300 10301 // Similarly, dive into enums and fish their constants out, making them 10302 // accessible in this scope. 10303 if (auto *ED = dyn_cast<EnumDecl>(D)) { 10304 for (auto *EI : ED->enumerators()) 10305 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false); 10306 } 10307 } 10308 } 10309 10310 // Ensure that the function's exception specification is instantiated. 10311 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>()) 10312 ResolveExceptionSpec(D->getLocation(), FPT); 10313 10314 // dllimport cannot be applied to non-inline function definitions. 10315 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() && 10316 !FD->isTemplateInstantiation()) { 10317 assert(!FD->hasAttr<DLLExportAttr>()); 10318 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition); 10319 FD->setInvalidDecl(); 10320 return D; 10321 } 10322 // We want to attach documentation to original Decl (which might be 10323 // a function template). 10324 ActOnDocumentableDecl(D); 10325 if (getCurLexicalContext()->isObjCContainer() && 10326 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl && 10327 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation) 10328 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container); 10329 10330 return D; 10331 } 10332 10333 /// \brief Given the set of return statements within a function body, 10334 /// compute the variables that are subject to the named return value 10335 /// optimization. 10336 /// 10337 /// Each of the variables that is subject to the named return value 10338 /// optimization will be marked as NRVO variables in the AST, and any 10339 /// return statement that has a marked NRVO variable as its NRVO candidate can 10340 /// use the named return value optimization. 10341 /// 10342 /// This function applies a very simplistic algorithm for NRVO: if every return 10343 /// statement in the scope of a variable has the same NRVO candidate, that 10344 /// candidate is an NRVO variable. 10345 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { 10346 ReturnStmt **Returns = Scope->Returns.data(); 10347 10348 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { 10349 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) { 10350 if (!NRVOCandidate->isNRVOVariable()) 10351 Returns[I]->setNRVOCandidate(nullptr); 10352 } 10353 } 10354 } 10355 10356 bool Sema::canDelayFunctionBody(const Declarator &D) { 10357 // We can't delay parsing the body of a constexpr function template (yet). 10358 if (D.getDeclSpec().isConstexprSpecified()) 10359 return false; 10360 10361 // We can't delay parsing the body of a function template with a deduced 10362 // return type (yet). 10363 if (D.getDeclSpec().containsPlaceholderType()) { 10364 // If the placeholder introduces a non-deduced trailing return type, 10365 // we can still delay parsing it. 10366 if (D.getNumTypeObjects()) { 10367 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1); 10368 if (Outer.Kind == DeclaratorChunk::Function && 10369 Outer.Fun.hasTrailingReturnType()) { 10370 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType()); 10371 return Ty.isNull() || !Ty->isUndeducedType(); 10372 } 10373 } 10374 return false; 10375 } 10376 10377 return true; 10378 } 10379 10380 bool Sema::canSkipFunctionBody(Decl *D) { 10381 // We cannot skip the body of a function (or function template) which is 10382 // constexpr, since we may need to evaluate its body in order to parse the 10383 // rest of the file. 10384 // We cannot skip the body of a function with an undeduced return type, 10385 // because any callers of that function need to know the type. 10386 if (const FunctionDecl *FD = D->getAsFunction()) 10387 if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType()) 10388 return false; 10389 return Consumer.shouldSkipFunctionBody(D); 10390 } 10391 10392 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) { 10393 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl)) 10394 FD->setHasSkippedBody(); 10395 else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl)) 10396 MD->setHasSkippedBody(); 10397 return ActOnFinishFunctionBody(Decl, nullptr); 10398 } 10399 10400 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { 10401 return ActOnFinishFunctionBody(D, BodyArg, false); 10402 } 10403 10404 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, 10405 bool IsInstantiation) { 10406 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr; 10407 10408 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); 10409 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr; 10410 10411 if (FD) { 10412 FD->setBody(Body); 10413 10414 if (getLangOpts().CPlusPlus14 && !FD->isInvalidDecl() && Body && 10415 !FD->isDependentContext() && FD->getReturnType()->isUndeducedType()) { 10416 // If the function has a deduced result type but contains no 'return' 10417 // statements, the result type as written must be exactly 'auto', and 10418 // the deduced result type is 'void'. 10419 if (!FD->getReturnType()->getAs<AutoType>()) { 10420 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto) 10421 << FD->getReturnType(); 10422 FD->setInvalidDecl(); 10423 } else { 10424 // Substitute 'void' for the 'auto' in the type. 10425 TypeLoc ResultType = getReturnTypeLoc(FD); 10426 Context.adjustDeducedFunctionResultType( 10427 FD, SubstAutoType(ResultType.getType(), Context.VoidTy)); 10428 } 10429 } 10430 10431 // The only way to be included in UndefinedButUsed is if there is an 10432 // ODR use before the definition. Avoid the expensive map lookup if this 10433 // is the first declaration. 10434 if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) { 10435 if (!FD->isExternallyVisible()) 10436 UndefinedButUsed.erase(FD); 10437 else if (FD->isInlined() && 10438 (LangOpts.CPlusPlus || !LangOpts.GNUInline) && 10439 (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>())) 10440 UndefinedButUsed.erase(FD); 10441 } 10442 10443 // If the function implicitly returns zero (like 'main') or is naked, 10444 // don't complain about missing return statements. 10445 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>()) 10446 WP.disableCheckFallThrough(); 10447 10448 // MSVC permits the use of pure specifier (=0) on function definition, 10449 // defined at class scope, warn about this non-standard construct. 10450 if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl()) 10451 Diag(FD->getLocation(), diag::ext_pure_function_definition); 10452 10453 if (!FD->isInvalidDecl()) { 10454 // Don't diagnose unused parameters of defaulted or deleted functions. 10455 if (Body) 10456 DiagnoseUnusedParameters(FD->param_begin(), FD->param_end()); 10457 DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(), 10458 FD->getReturnType(), FD); 10459 10460 // If this is a constructor, we need a vtable. 10461 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD)) 10462 MarkVTableUsed(FD->getLocation(), Constructor->getParent()); 10463 10464 // Try to apply the named return value optimization. We have to check 10465 // if we can do this here because lambdas keep return statements around 10466 // to deduce an implicit return type. 10467 if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() && 10468 !FD->isDependentContext()) 10469 computeNRVO(Body, getCurFunction()); 10470 } 10471 10472 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && 10473 "Function parsing confused"); 10474 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { 10475 assert(MD == getCurMethodDecl() && "Method parsing confused"); 10476 MD->setBody(Body); 10477 if (!MD->isInvalidDecl()) { 10478 DiagnoseUnusedParameters(MD->param_begin(), MD->param_end()); 10479 DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(), 10480 MD->getReturnType(), MD); 10481 10482 if (Body) 10483 computeNRVO(Body, getCurFunction()); 10484 } 10485 if (getCurFunction()->ObjCShouldCallSuper) { 10486 Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call) 10487 << MD->getSelector().getAsString(); 10488 getCurFunction()->ObjCShouldCallSuper = false; 10489 } 10490 if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) { 10491 const ObjCMethodDecl *InitMethod = nullptr; 10492 bool isDesignated = 10493 MD->isDesignatedInitializerForTheInterface(&InitMethod); 10494 assert(isDesignated && InitMethod); 10495 (void)isDesignated; 10496 10497 auto superIsNSObject = [&](const ObjCMethodDecl *MD) { 10498 auto IFace = MD->getClassInterface(); 10499 if (!IFace) 10500 return false; 10501 auto SuperD = IFace->getSuperClass(); 10502 if (!SuperD) 10503 return false; 10504 return SuperD->getIdentifier() == 10505 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); 10506 }; 10507 // Don't issue this warning for unavailable inits or direct subclasses 10508 // of NSObject. 10509 if (!MD->isUnavailable() && !superIsNSObject(MD)) { 10510 Diag(MD->getLocation(), 10511 diag::warn_objc_designated_init_missing_super_call); 10512 Diag(InitMethod->getLocation(), 10513 diag::note_objc_designated_init_marked_here); 10514 } 10515 getCurFunction()->ObjCWarnForNoDesignatedInitChain = false; 10516 } 10517 if (getCurFunction()->ObjCWarnForNoInitDelegation) { 10518 // Don't issue this warning for unavaialable inits. 10519 if (!MD->isUnavailable()) 10520 Diag(MD->getLocation(), diag::warn_objc_secondary_init_missing_init_call); 10521 getCurFunction()->ObjCWarnForNoInitDelegation = false; 10522 } 10523 } else { 10524 return nullptr; 10525 } 10526 10527 assert(!getCurFunction()->ObjCShouldCallSuper && 10528 "This should only be set for ObjC methods, which should have been " 10529 "handled in the block above."); 10530 10531 // Verify and clean out per-function state. 10532 if (Body) { 10533 // C++ constructors that have function-try-blocks can't have return 10534 // statements in the handlers of that block. (C++ [except.handle]p14) 10535 // Verify this. 10536 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body)) 10537 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body)); 10538 10539 // Verify that gotos and switch cases don't jump into scopes illegally. 10540 if (getCurFunction()->NeedsScopeChecking() && 10541 !PP.isCodeCompletionEnabled()) 10542 DiagnoseInvalidJumps(Body); 10543 10544 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) { 10545 if (!Destructor->getParent()->isDependentType()) 10546 CheckDestructor(Destructor); 10547 10548 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 10549 Destructor->getParent()); 10550 } 10551 10552 // If any errors have occurred, clear out any temporaries that may have 10553 // been leftover. This ensures that these temporaries won't be picked up for 10554 // deletion in some later function. 10555 if (getDiagnostics().hasErrorOccurred() || 10556 getDiagnostics().getSuppressAllDiagnostics()) { 10557 DiscardCleanupsInEvaluationContext(); 10558 } 10559 if (!getDiagnostics().hasUncompilableErrorOccurred() && 10560 !isa<FunctionTemplateDecl>(dcl)) { 10561 // Since the body is valid, issue any analysis-based warnings that are 10562 // enabled. 10563 ActivePolicy = &WP; 10564 } 10565 10566 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() && 10567 (!CheckConstexprFunctionDecl(FD) || 10568 !CheckConstexprFunctionBody(FD, Body))) 10569 FD->setInvalidDecl(); 10570 10571 if (FD && FD->hasAttr<NakedAttr>()) { 10572 for (const Stmt *S : Body->children()) { 10573 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) { 10574 Diag(S->getLocStart(), diag::err_non_asm_stmt_in_naked_function); 10575 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 10576 FD->setInvalidDecl(); 10577 break; 10578 } 10579 } 10580 } 10581 10582 assert(ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects 10583 && "Leftover temporaries in function"); 10584 assert(!ExprNeedsCleanups && "Unaccounted cleanups in function"); 10585 assert(MaybeODRUseExprs.empty() && 10586 "Leftover expressions for odr-use checking"); 10587 } 10588 10589 if (!IsInstantiation) 10590 PopDeclContext(); 10591 10592 PopFunctionScopeInfo(ActivePolicy, dcl); 10593 // If any errors have occurred, clear out any temporaries that may have 10594 // been leftover. This ensures that these temporaries won't be picked up for 10595 // deletion in some later function. 10596 if (getDiagnostics().hasErrorOccurred()) { 10597 DiscardCleanupsInEvaluationContext(); 10598 } 10599 10600 return dcl; 10601 } 10602 10603 10604 /// When we finish delayed parsing of an attribute, we must attach it to the 10605 /// relevant Decl. 10606 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D, 10607 ParsedAttributes &Attrs) { 10608 // Always attach attributes to the underlying decl. 10609 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) 10610 D = TD->getTemplatedDecl(); 10611 ProcessDeclAttributeList(S, D, Attrs.getList()); 10612 10613 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D)) 10614 if (Method->isStatic()) 10615 checkThisInStaticMemberFunctionAttributes(Method); 10616 } 10617 10618 10619 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function 10620 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). 10621 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, 10622 IdentifierInfo &II, Scope *S) { 10623 // Before we produce a declaration for an implicitly defined 10624 // function, see whether there was a locally-scoped declaration of 10625 // this name as a function or variable. If so, use that 10626 // (non-visible) declaration, and complain about it. 10627 if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) { 10628 Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev; 10629 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration); 10630 return ExternCPrev; 10631 } 10632 10633 // Extension in C99. Legal in C90, but warn about it. 10634 unsigned diag_id; 10635 if (II.getName().startswith("__builtin_")) 10636 diag_id = diag::warn_builtin_unknown; 10637 else if (getLangOpts().C99) 10638 diag_id = diag::ext_implicit_function_decl; 10639 else 10640 diag_id = diag::warn_implicit_function_decl; 10641 Diag(Loc, diag_id) << &II; 10642 10643 // Because typo correction is expensive, only do it if the implicit 10644 // function declaration is going to be treated as an error. 10645 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) { 10646 TypoCorrection Corrected; 10647 if (S && 10648 (Corrected = CorrectTypo( 10649 DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr, 10650 llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError))) 10651 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion), 10652 /*ErrorRecovery*/false); 10653 } 10654 10655 // Set a Declarator for the implicit definition: int foo(); 10656 const char *Dummy; 10657 AttributeFactory attrFactory; 10658 DeclSpec DS(attrFactory); 10659 unsigned DiagID; 10660 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID, 10661 Context.getPrintingPolicy()); 10662 (void)Error; // Silence warning. 10663 assert(!Error && "Error setting up implicit decl!"); 10664 SourceLocation NoLoc; 10665 Declarator D(DS, Declarator::BlockContext); 10666 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false, 10667 /*IsAmbiguous=*/false, 10668 /*LParenLoc=*/NoLoc, 10669 /*Params=*/nullptr, 10670 /*NumParams=*/0, 10671 /*EllipsisLoc=*/NoLoc, 10672 /*RParenLoc=*/NoLoc, 10673 /*TypeQuals=*/0, 10674 /*RefQualifierIsLvalueRef=*/true, 10675 /*RefQualifierLoc=*/NoLoc, 10676 /*ConstQualifierLoc=*/NoLoc, 10677 /*VolatileQualifierLoc=*/NoLoc, 10678 /*RestrictQualifierLoc=*/NoLoc, 10679 /*MutableLoc=*/NoLoc, 10680 EST_None, 10681 /*ESpecLoc=*/NoLoc, 10682 /*Exceptions=*/nullptr, 10683 /*ExceptionRanges=*/nullptr, 10684 /*NumExceptions=*/0, 10685 /*NoexceptExpr=*/nullptr, 10686 /*ExceptionSpecTokens=*/nullptr, 10687 Loc, Loc, D), 10688 DS.getAttributes(), 10689 SourceLocation()); 10690 D.SetIdentifier(&II, Loc); 10691 10692 // Insert this function into translation-unit scope. 10693 10694 DeclContext *PrevDC = CurContext; 10695 CurContext = Context.getTranslationUnitDecl(); 10696 10697 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D)); 10698 FD->setImplicit(); 10699 10700 CurContext = PrevDC; 10701 10702 AddKnownFunctionAttributes(FD); 10703 10704 return FD; 10705 } 10706 10707 /// \brief Adds any function attributes that we know a priori based on 10708 /// the declaration of this function. 10709 /// 10710 /// These attributes can apply both to implicitly-declared builtins 10711 /// (like __builtin___printf_chk) or to library-declared functions 10712 /// like NSLog or printf. 10713 /// 10714 /// We need to check for duplicate attributes both here and where user-written 10715 /// attributes are applied to declarations. 10716 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { 10717 if (FD->isInvalidDecl()) 10718 return; 10719 10720 // If this is a built-in function, map its builtin attributes to 10721 // actual attributes. 10722 if (unsigned BuiltinID = FD->getBuiltinID()) { 10723 // Handle printf-formatting attributes. 10724 unsigned FormatIdx; 10725 bool HasVAListArg; 10726 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { 10727 if (!FD->hasAttr<FormatAttr>()) { 10728 const char *fmt = "printf"; 10729 unsigned int NumParams = FD->getNumParams(); 10730 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf) 10731 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType()) 10732 fmt = "NSString"; 10733 FD->addAttr(FormatAttr::CreateImplicit(Context, 10734 &Context.Idents.get(fmt), 10735 FormatIdx+1, 10736 HasVAListArg ? 0 : FormatIdx+2, 10737 FD->getLocation())); 10738 } 10739 } 10740 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx, 10741 HasVAListArg)) { 10742 if (!FD->hasAttr<FormatAttr>()) 10743 FD->addAttr(FormatAttr::CreateImplicit(Context, 10744 &Context.Idents.get("scanf"), 10745 FormatIdx+1, 10746 HasVAListArg ? 0 : FormatIdx+2, 10747 FD->getLocation())); 10748 } 10749 10750 // Mark const if we don't care about errno and that is the only 10751 // thing preventing the function from being const. This allows 10752 // IRgen to use LLVM intrinsics for such functions. 10753 if (!getLangOpts().MathErrno && 10754 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) { 10755 if (!FD->hasAttr<ConstAttr>()) 10756 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 10757 } 10758 10759 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) && 10760 !FD->hasAttr<ReturnsTwiceAttr>()) 10761 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context, 10762 FD->getLocation())); 10763 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>()) 10764 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); 10765 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>()) 10766 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 10767 } 10768 10769 IdentifierInfo *Name = FD->getIdentifier(); 10770 if (!Name) 10771 return; 10772 if ((!getLangOpts().CPlusPlus && 10773 FD->getDeclContext()->isTranslationUnit()) || 10774 (isa<LinkageSpecDecl>(FD->getDeclContext()) && 10775 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == 10776 LinkageSpecDecl::lang_c)) { 10777 // Okay: this could be a libc/libm/Objective-C function we know 10778 // about. 10779 } else 10780 return; 10781 10782 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) { 10783 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be 10784 // target-specific builtins, perhaps? 10785 if (!FD->hasAttr<FormatAttr>()) 10786 FD->addAttr(FormatAttr::CreateImplicit(Context, 10787 &Context.Idents.get("printf"), 2, 10788 Name->isStr("vasprintf") ? 0 : 3, 10789 FD->getLocation())); 10790 } 10791 10792 if (Name->isStr("__CFStringMakeConstantString")) { 10793 // We already have a __builtin___CFStringMakeConstantString, 10794 // but builds that use -fno-constant-cfstrings don't go through that. 10795 if (!FD->hasAttr<FormatArgAttr>()) 10796 FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1, 10797 FD->getLocation())); 10798 } 10799 } 10800 10801 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, 10802 TypeSourceInfo *TInfo) { 10803 assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); 10804 assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); 10805 10806 if (!TInfo) { 10807 assert(D.isInvalidType() && "no declarator info for valid type"); 10808 TInfo = Context.getTrivialTypeSourceInfo(T); 10809 } 10810 10811 // Scope manipulation handled by caller. 10812 TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext, 10813 D.getLocStart(), 10814 D.getIdentifierLoc(), 10815 D.getIdentifier(), 10816 TInfo); 10817 10818 // Bail out immediately if we have an invalid declaration. 10819 if (D.isInvalidType()) { 10820 NewTD->setInvalidDecl(); 10821 return NewTD; 10822 } 10823 10824 if (D.getDeclSpec().isModulePrivateSpecified()) { 10825 if (CurContext->isFunctionOrMethod()) 10826 Diag(NewTD->getLocation(), diag::err_module_private_local) 10827 << 2 << NewTD->getDeclName() 10828 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 10829 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 10830 else 10831 NewTD->setModulePrivate(); 10832 } 10833 10834 // C++ [dcl.typedef]p8: 10835 // If the typedef declaration defines an unnamed class (or 10836 // enum), the first typedef-name declared by the declaration 10837 // to be that class type (or enum type) is used to denote the 10838 // class type (or enum type) for linkage purposes only. 10839 // We need to check whether the type was declared in the declaration. 10840 switch (D.getDeclSpec().getTypeSpecType()) { 10841 case TST_enum: 10842 case TST_struct: 10843 case TST_interface: 10844 case TST_union: 10845 case TST_class: { 10846 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); 10847 10848 // Do nothing if the tag is not anonymous or already has an 10849 // associated typedef (from an earlier typedef in this decl group). 10850 if (tagFromDeclSpec->getIdentifier()) break; 10851 if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break; 10852 10853 // A well-formed anonymous tag must always be a TUK_Definition. 10854 assert(tagFromDeclSpec->isThisDeclarationADefinition()); 10855 10856 // The type must match the tag exactly; no qualifiers allowed. 10857 if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec))) 10858 break; 10859 10860 // If we've already computed linkage for the anonymous tag, then 10861 // adding a typedef name for the anonymous decl can change that 10862 // linkage, which might be a serious problem. Diagnose this as 10863 // unsupported and ignore the typedef name. TODO: we should 10864 // pursue this as a language defect and establish a formal rule 10865 // for how to handle it. 10866 if (tagFromDeclSpec->hasLinkageBeenComputed()) { 10867 Diag(D.getIdentifierLoc(), diag::err_typedef_changes_linkage); 10868 10869 SourceLocation tagLoc = D.getDeclSpec().getTypeSpecTypeLoc(); 10870 tagLoc = getLocForEndOfToken(tagLoc); 10871 10872 llvm::SmallString<40> textToInsert; 10873 textToInsert += ' '; 10874 textToInsert += D.getIdentifier()->getName(); 10875 Diag(tagLoc, diag::note_typedef_changes_linkage) 10876 << FixItHint::CreateInsertion(tagLoc, textToInsert); 10877 break; 10878 } 10879 10880 // Otherwise, set this is the anon-decl typedef for the tag. 10881 tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); 10882 break; 10883 } 10884 10885 default: 10886 break; 10887 } 10888 10889 return NewTD; 10890 } 10891 10892 10893 /// \brief Check that this is a valid underlying type for an enum declaration. 10894 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) { 10895 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 10896 QualType T = TI->getType(); 10897 10898 if (T->isDependentType()) 10899 return false; 10900 10901 if (const BuiltinType *BT = T->getAs<BuiltinType>()) 10902 if (BT->isInteger()) 10903 return false; 10904 10905 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T; 10906 return true; 10907 } 10908 10909 /// Check whether this is a valid redeclaration of a previous enumeration. 10910 /// \return true if the redeclaration was invalid. 10911 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, 10912 QualType EnumUnderlyingTy, 10913 const EnumDecl *Prev) { 10914 bool IsFixed = !EnumUnderlyingTy.isNull(); 10915 10916 if (IsScoped != Prev->isScoped()) { 10917 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch) 10918 << Prev->isScoped(); 10919 Diag(Prev->getLocation(), diag::note_previous_declaration); 10920 return true; 10921 } 10922 10923 if (IsFixed && Prev->isFixed()) { 10924 if (!EnumUnderlyingTy->isDependentType() && 10925 !Prev->getIntegerType()->isDependentType() && 10926 !Context.hasSameUnqualifiedType(EnumUnderlyingTy, 10927 Prev->getIntegerType())) { 10928 // TODO: Highlight the underlying type of the redeclaration. 10929 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch) 10930 << EnumUnderlyingTy << Prev->getIntegerType(); 10931 Diag(Prev->getLocation(), diag::note_previous_declaration) 10932 << Prev->getIntegerTypeRange(); 10933 return true; 10934 } 10935 } else if (IsFixed != Prev->isFixed()) { 10936 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch) 10937 << Prev->isFixed(); 10938 Diag(Prev->getLocation(), diag::note_previous_declaration); 10939 return true; 10940 } 10941 10942 return false; 10943 } 10944 10945 /// \brief Get diagnostic %select index for tag kind for 10946 /// redeclaration diagnostic message. 10947 /// WARNING: Indexes apply to particular diagnostics only! 10948 /// 10949 /// \returns diagnostic %select index. 10950 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) { 10951 switch (Tag) { 10952 case TTK_Struct: return 0; 10953 case TTK_Interface: return 1; 10954 case TTK_Class: return 2; 10955 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!"); 10956 } 10957 } 10958 10959 /// \brief Determine if tag kind is a class-key compatible with 10960 /// class for redeclaration (class, struct, or __interface). 10961 /// 10962 /// \returns true iff the tag kind is compatible. 10963 static bool isClassCompatTagKind(TagTypeKind Tag) 10964 { 10965 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface; 10966 } 10967 10968 /// \brief Determine whether a tag with a given kind is acceptable 10969 /// as a redeclaration of the given tag declaration. 10970 /// 10971 /// \returns true if the new tag kind is acceptable, false otherwise. 10972 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, 10973 TagTypeKind NewTag, bool isDefinition, 10974 SourceLocation NewTagLoc, 10975 const IdentifierInfo &Name) { 10976 // C++ [dcl.type.elab]p3: 10977 // The class-key or enum keyword present in the 10978 // elaborated-type-specifier shall agree in kind with the 10979 // declaration to which the name in the elaborated-type-specifier 10980 // refers. This rule also applies to the form of 10981 // elaborated-type-specifier that declares a class-name or 10982 // friend class since it can be construed as referring to the 10983 // definition of the class. Thus, in any 10984 // elaborated-type-specifier, the enum keyword shall be used to 10985 // refer to an enumeration (7.2), the union class-key shall be 10986 // used to refer to a union (clause 9), and either the class or 10987 // struct class-key shall be used to refer to a class (clause 9) 10988 // declared using the class or struct class-key. 10989 TagTypeKind OldTag = Previous->getTagKind(); 10990 if (!isDefinition || !isClassCompatTagKind(NewTag)) 10991 if (OldTag == NewTag) 10992 return true; 10993 10994 if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) { 10995 // Warn about the struct/class tag mismatch. 10996 bool isTemplate = false; 10997 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous)) 10998 isTemplate = Record->getDescribedClassTemplate(); 10999 11000 if (!ActiveTemplateInstantiations.empty()) { 11001 // In a template instantiation, do not offer fix-its for tag mismatches 11002 // since they usually mess up the template instead of fixing the problem. 11003 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) 11004 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name 11005 << getRedeclDiagFromTagKind(OldTag); 11006 return true; 11007 } 11008 11009 if (isDefinition) { 11010 // On definitions, check previous tags and issue a fix-it for each 11011 // one that doesn't match the current tag. 11012 if (Previous->getDefinition()) { 11013 // Don't suggest fix-its for redefinitions. 11014 return true; 11015 } 11016 11017 bool previousMismatch = false; 11018 for (auto I : Previous->redecls()) { 11019 if (I->getTagKind() != NewTag) { 11020 if (!previousMismatch) { 11021 previousMismatch = true; 11022 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch) 11023 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name 11024 << getRedeclDiagFromTagKind(I->getTagKind()); 11025 } 11026 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion) 11027 << getRedeclDiagFromTagKind(NewTag) 11028 << FixItHint::CreateReplacement(I->getInnerLocStart(), 11029 TypeWithKeyword::getTagTypeKindName(NewTag)); 11030 } 11031 } 11032 return true; 11033 } 11034 11035 // Check for a previous definition. If current tag and definition 11036 // are same type, do nothing. If no definition, but disagree with 11037 // with previous tag type, give a warning, but no fix-it. 11038 const TagDecl *Redecl = Previous->getDefinition() ? 11039 Previous->getDefinition() : Previous; 11040 if (Redecl->getTagKind() == NewTag) { 11041 return true; 11042 } 11043 11044 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) 11045 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name 11046 << getRedeclDiagFromTagKind(OldTag); 11047 Diag(Redecl->getLocation(), diag::note_previous_use); 11048 11049 // If there is a previous definition, suggest a fix-it. 11050 if (Previous->getDefinition()) { 11051 Diag(NewTagLoc, diag::note_struct_class_suggestion) 11052 << getRedeclDiagFromTagKind(Redecl->getTagKind()) 11053 << FixItHint::CreateReplacement(SourceRange(NewTagLoc), 11054 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind())); 11055 } 11056 11057 return true; 11058 } 11059 return false; 11060 } 11061 11062 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name 11063 /// from an outer enclosing namespace or file scope inside a friend declaration. 11064 /// This should provide the commented out code in the following snippet: 11065 /// namespace N { 11066 /// struct X; 11067 /// namespace M { 11068 /// struct Y { friend struct /*N::*/ X; }; 11069 /// } 11070 /// } 11071 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S, 11072 SourceLocation NameLoc) { 11073 // While the decl is in a namespace, do repeated lookup of that name and see 11074 // if we get the same namespace back. If we do not, continue until 11075 // translation unit scope, at which point we have a fully qualified NNS. 11076 SmallVector<IdentifierInfo *, 4> Namespaces; 11077 DeclContext *DC = ND->getDeclContext()->getRedeclContext(); 11078 for (; !DC->isTranslationUnit(); DC = DC->getParent()) { 11079 // This tag should be declared in a namespace, which can only be enclosed by 11080 // other namespaces. Bail if there's an anonymous namespace in the chain. 11081 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC); 11082 if (!Namespace || Namespace->isAnonymousNamespace()) 11083 return FixItHint(); 11084 IdentifierInfo *II = Namespace->getIdentifier(); 11085 Namespaces.push_back(II); 11086 NamedDecl *Lookup = SemaRef.LookupSingleName( 11087 S, II, NameLoc, Sema::LookupNestedNameSpecifierName); 11088 if (Lookup == Namespace) 11089 break; 11090 } 11091 11092 // Once we have all the namespaces, reverse them to go outermost first, and 11093 // build an NNS. 11094 SmallString<64> Insertion; 11095 llvm::raw_svector_ostream OS(Insertion); 11096 if (DC->isTranslationUnit()) 11097 OS << "::"; 11098 std::reverse(Namespaces.begin(), Namespaces.end()); 11099 for (auto *II : Namespaces) 11100 OS << II->getName() << "::"; 11101 OS.flush(); 11102 return FixItHint::CreateInsertion(NameLoc, Insertion); 11103 } 11104 11105 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the 11106 /// former case, Name will be non-null. In the later case, Name will be null. 11107 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a 11108 /// reference/declaration/definition of a tag. 11109 /// 11110 /// IsTypeSpecifier is true if this is a type-specifier (or 11111 /// trailing-type-specifier) other than one in an alias-declaration. 11112 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 11113 SourceLocation KWLoc, CXXScopeSpec &SS, 11114 IdentifierInfo *Name, SourceLocation NameLoc, 11115 AttributeList *Attr, AccessSpecifier AS, 11116 SourceLocation ModulePrivateLoc, 11117 MultiTemplateParamsArg TemplateParameterLists, 11118 bool &OwnedDecl, bool &IsDependent, 11119 SourceLocation ScopedEnumKWLoc, 11120 bool ScopedEnumUsesClassTag, 11121 TypeResult UnderlyingType, 11122 bool IsTypeSpecifier) { 11123 // If this is not a definition, it must have a name. 11124 IdentifierInfo *OrigName = Name; 11125 assert((Name != nullptr || TUK == TUK_Definition) && 11126 "Nameless record must be a definition!"); 11127 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference); 11128 11129 OwnedDecl = false; 11130 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 11131 bool ScopedEnum = ScopedEnumKWLoc.isValid(); 11132 11133 // FIXME: Check explicit specializations more carefully. 11134 bool isExplicitSpecialization = false; 11135 bool Invalid = false; 11136 11137 // We only need to do this matching if we have template parameters 11138 // or a scope specifier, which also conveniently avoids this work 11139 // for non-C++ cases. 11140 if (TemplateParameterLists.size() > 0 || 11141 (SS.isNotEmpty() && TUK != TUK_Reference)) { 11142 if (TemplateParameterList *TemplateParams = 11143 MatchTemplateParametersToScopeSpecifier( 11144 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists, 11145 TUK == TUK_Friend, isExplicitSpecialization, Invalid)) { 11146 if (Kind == TTK_Enum) { 11147 Diag(KWLoc, diag::err_enum_template); 11148 return nullptr; 11149 } 11150 11151 if (TemplateParams->size() > 0) { 11152 // This is a declaration or definition of a class template (which may 11153 // be a member of another template). 11154 11155 if (Invalid) 11156 return nullptr; 11157 11158 OwnedDecl = false; 11159 DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc, 11160 SS, Name, NameLoc, Attr, 11161 TemplateParams, AS, 11162 ModulePrivateLoc, 11163 /*FriendLoc*/SourceLocation(), 11164 TemplateParameterLists.size()-1, 11165 TemplateParameterLists.data()); 11166 return Result.get(); 11167 } else { 11168 // The "template<>" header is extraneous. 11169 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 11170 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 11171 isExplicitSpecialization = true; 11172 } 11173 } 11174 } 11175 11176 // Figure out the underlying type if this a enum declaration. We need to do 11177 // this early, because it's needed to detect if this is an incompatible 11178 // redeclaration. 11179 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; 11180 11181 if (Kind == TTK_Enum) { 11182 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) 11183 // No underlying type explicitly specified, or we failed to parse the 11184 // type, default to int. 11185 EnumUnderlying = Context.IntTy.getTypePtr(); 11186 else if (UnderlyingType.get()) { 11187 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an 11188 // integral type; any cv-qualification is ignored. 11189 TypeSourceInfo *TI = nullptr; 11190 GetTypeFromParser(UnderlyingType.get(), &TI); 11191 EnumUnderlying = TI; 11192 11193 if (CheckEnumUnderlyingType(TI)) 11194 // Recover by falling back to int. 11195 EnumUnderlying = Context.IntTy.getTypePtr(); 11196 11197 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI, 11198 UPPC_FixedUnderlyingType)) 11199 EnumUnderlying = Context.IntTy.getTypePtr(); 11200 11201 } else if (getLangOpts().MSVCCompat) 11202 // Microsoft enums are always of int type. 11203 EnumUnderlying = Context.IntTy.getTypePtr(); 11204 } 11205 11206 DeclContext *SearchDC = CurContext; 11207 DeclContext *DC = CurContext; 11208 bool isStdBadAlloc = false; 11209 11210 RedeclarationKind Redecl = ForRedeclaration; 11211 if (TUK == TUK_Friend || TUK == TUK_Reference) 11212 Redecl = NotForRedeclaration; 11213 11214 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); 11215 if (Name && SS.isNotEmpty()) { 11216 // We have a nested-name tag ('struct foo::bar'). 11217 11218 // Check for invalid 'foo::'. 11219 if (SS.isInvalid()) { 11220 Name = nullptr; 11221 goto CreateNewDecl; 11222 } 11223 11224 // If this is a friend or a reference to a class in a dependent 11225 // context, don't try to make a decl for it. 11226 if (TUK == TUK_Friend || TUK == TUK_Reference) { 11227 DC = computeDeclContext(SS, false); 11228 if (!DC) { 11229 IsDependent = true; 11230 return nullptr; 11231 } 11232 } else { 11233 DC = computeDeclContext(SS, true); 11234 if (!DC) { 11235 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) 11236 << SS.getRange(); 11237 return nullptr; 11238 } 11239 } 11240 11241 if (RequireCompleteDeclContext(SS, DC)) 11242 return nullptr; 11243 11244 SearchDC = DC; 11245 // Look-up name inside 'foo::'. 11246 LookupQualifiedName(Previous, DC); 11247 11248 if (Previous.isAmbiguous()) 11249 return nullptr; 11250 11251 if (Previous.empty()) { 11252 // Name lookup did not find anything. However, if the 11253 // nested-name-specifier refers to the current instantiation, 11254 // and that current instantiation has any dependent base 11255 // classes, we might find something at instantiation time: treat 11256 // this as a dependent elaborated-type-specifier. 11257 // But this only makes any sense for reference-like lookups. 11258 if (Previous.wasNotFoundInCurrentInstantiation() && 11259 (TUK == TUK_Reference || TUK == TUK_Friend)) { 11260 IsDependent = true; 11261 return nullptr; 11262 } 11263 11264 // A tag 'foo::bar' must already exist. 11265 Diag(NameLoc, diag::err_not_tag_in_scope) 11266 << Kind << Name << DC << SS.getRange(); 11267 Name = nullptr; 11268 Invalid = true; 11269 goto CreateNewDecl; 11270 } 11271 } else if (Name) { 11272 // If this is a named struct, check to see if there was a previous forward 11273 // declaration or definition. 11274 // FIXME: We're looking into outer scopes here, even when we 11275 // shouldn't be. Doing so can result in ambiguities that we 11276 // shouldn't be diagnosing. 11277 LookupName(Previous, S); 11278 11279 // When declaring or defining a tag, ignore ambiguities introduced 11280 // by types using'ed into this scope. 11281 if (Previous.isAmbiguous() && 11282 (TUK == TUK_Definition || TUK == TUK_Declaration)) { 11283 LookupResult::Filter F = Previous.makeFilter(); 11284 while (F.hasNext()) { 11285 NamedDecl *ND = F.next(); 11286 if (ND->getDeclContext()->getRedeclContext() != SearchDC) 11287 F.erase(); 11288 } 11289 F.done(); 11290 } 11291 11292 // C++11 [namespace.memdef]p3: 11293 // If the name in a friend declaration is neither qualified nor 11294 // a template-id and the declaration is a function or an 11295 // elaborated-type-specifier, the lookup to determine whether 11296 // the entity has been previously declared shall not consider 11297 // any scopes outside the innermost enclosing namespace. 11298 // 11299 // MSVC doesn't implement the above rule for types, so a friend tag 11300 // declaration may be a redeclaration of a type declared in an enclosing 11301 // scope. They do implement this rule for friend functions. 11302 // 11303 // Does it matter that this should be by scope instead of by 11304 // semantic context? 11305 if (!Previous.empty() && TUK == TUK_Friend) { 11306 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext(); 11307 LookupResult::Filter F = Previous.makeFilter(); 11308 bool FriendSawTagOutsideEnclosingNamespace = false; 11309 while (F.hasNext()) { 11310 NamedDecl *ND = F.next(); 11311 DeclContext *DC = ND->getDeclContext()->getRedeclContext(); 11312 if (DC->isFileContext() && 11313 !EnclosingNS->Encloses(ND->getDeclContext())) { 11314 if (getLangOpts().MSVCCompat) 11315 FriendSawTagOutsideEnclosingNamespace = true; 11316 else 11317 F.erase(); 11318 } 11319 } 11320 F.done(); 11321 11322 // Diagnose this MSVC extension in the easy case where lookup would have 11323 // unambiguously found something outside the enclosing namespace. 11324 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) { 11325 NamedDecl *ND = Previous.getFoundDecl(); 11326 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace) 11327 << createFriendTagNNSFixIt(*this, ND, S, NameLoc); 11328 } 11329 } 11330 11331 // Note: there used to be some attempt at recovery here. 11332 if (Previous.isAmbiguous()) 11333 return nullptr; 11334 11335 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) { 11336 // FIXME: This makes sure that we ignore the contexts associated 11337 // with C structs, unions, and enums when looking for a matching 11338 // tag declaration or definition. See the similar lookup tweak 11339 // in Sema::LookupName; is there a better way to deal with this? 11340 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC)) 11341 SearchDC = SearchDC->getParent(); 11342 } 11343 } 11344 11345 if (Previous.isSingleResult() && 11346 Previous.getFoundDecl()->isTemplateParameter()) { 11347 // Maybe we will complain about the shadowed template parameter. 11348 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); 11349 // Just pretend that we didn't see the previous declaration. 11350 Previous.clear(); 11351 } 11352 11353 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace && 11354 DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) { 11355 // This is a declaration of or a reference to "std::bad_alloc". 11356 isStdBadAlloc = true; 11357 11358 if (Previous.empty() && StdBadAlloc) { 11359 // std::bad_alloc has been implicitly declared (but made invisible to 11360 // name lookup). Fill in this implicit declaration as the previous 11361 // declaration, so that the declarations get chained appropriately. 11362 Previous.addDecl(getStdBadAlloc()); 11363 } 11364 } 11365 11366 // If we didn't find a previous declaration, and this is a reference 11367 // (or friend reference), move to the correct scope. In C++, we 11368 // also need to do a redeclaration lookup there, just in case 11369 // there's a shadow friend decl. 11370 if (Name && Previous.empty() && 11371 (TUK == TUK_Reference || TUK == TUK_Friend)) { 11372 if (Invalid) goto CreateNewDecl; 11373 assert(SS.isEmpty()); 11374 11375 if (TUK == TUK_Reference) { 11376 // C++ [basic.scope.pdecl]p5: 11377 // -- for an elaborated-type-specifier of the form 11378 // 11379 // class-key identifier 11380 // 11381 // if the elaborated-type-specifier is used in the 11382 // decl-specifier-seq or parameter-declaration-clause of a 11383 // function defined in namespace scope, the identifier is 11384 // declared as a class-name in the namespace that contains 11385 // the declaration; otherwise, except as a friend 11386 // declaration, the identifier is declared in the smallest 11387 // non-class, non-function-prototype scope that contains the 11388 // declaration. 11389 // 11390 // C99 6.7.2.3p8 has a similar (but not identical!) provision for 11391 // C structs and unions. 11392 // 11393 // It is an error in C++ to declare (rather than define) an enum 11394 // type, including via an elaborated type specifier. We'll 11395 // diagnose that later; for now, declare the enum in the same 11396 // scope as we would have picked for any other tag type. 11397 // 11398 // GNU C also supports this behavior as part of its incomplete 11399 // enum types extension, while GNU C++ does not. 11400 // 11401 // Find the context where we'll be declaring the tag. 11402 // FIXME: We would like to maintain the current DeclContext as the 11403 // lexical context, 11404 while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod()) 11405 SearchDC = SearchDC->getParent(); 11406 11407 // Find the scope where we'll be declaring the tag. 11408 while (S->isClassScope() || 11409 (getLangOpts().CPlusPlus && 11410 S->isFunctionPrototypeScope()) || 11411 ((S->getFlags() & Scope::DeclScope) == 0) || 11412 (S->getEntity() && S->getEntity()->isTransparentContext())) 11413 S = S->getParent(); 11414 } else { 11415 assert(TUK == TUK_Friend); 11416 // C++ [namespace.memdef]p3: 11417 // If a friend declaration in a non-local class first declares a 11418 // class or function, the friend class or function is a member of 11419 // the innermost enclosing namespace. 11420 SearchDC = SearchDC->getEnclosingNamespaceContext(); 11421 } 11422 11423 // In C++, we need to do a redeclaration lookup to properly 11424 // diagnose some problems. 11425 if (getLangOpts().CPlusPlus) { 11426 Previous.setRedeclarationKind(ForRedeclaration); 11427 LookupQualifiedName(Previous, SearchDC); 11428 } 11429 } 11430 11431 if (!Previous.empty()) { 11432 NamedDecl *PrevDecl = Previous.getFoundDecl(); 11433 NamedDecl *DirectPrevDecl = 11434 getLangOpts().MSVCCompat ? *Previous.begin() : PrevDecl; 11435 11436 // It's okay to have a tag decl in the same scope as a typedef 11437 // which hides a tag decl in the same scope. Finding this 11438 // insanity with a redeclaration lookup can only actually happen 11439 // in C++. 11440 // 11441 // This is also okay for elaborated-type-specifiers, which is 11442 // technically forbidden by the current standard but which is 11443 // okay according to the likely resolution of an open issue; 11444 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 11445 if (getLangOpts().CPlusPlus) { 11446 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) { 11447 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { 11448 TagDecl *Tag = TT->getDecl(); 11449 if (Tag->getDeclName() == Name && 11450 Tag->getDeclContext()->getRedeclContext() 11451 ->Equals(TD->getDeclContext()->getRedeclContext())) { 11452 PrevDecl = Tag; 11453 Previous.clear(); 11454 Previous.addDecl(Tag); 11455 Previous.resolveKind(); 11456 } 11457 } 11458 } 11459 } 11460 11461 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { 11462 // If this is a use of a previous tag, or if the tag is already declared 11463 // in the same scope (so that the definition/declaration completes or 11464 // rementions the tag), reuse the decl. 11465 if (TUK == TUK_Reference || TUK == TUK_Friend || 11466 isDeclInScope(DirectPrevDecl, SearchDC, S, 11467 SS.isNotEmpty() || isExplicitSpecialization)) { 11468 // Make sure that this wasn't declared as an enum and now used as a 11469 // struct or something similar. 11470 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, 11471 TUK == TUK_Definition, KWLoc, 11472 *Name)) { 11473 bool SafeToContinue 11474 = (PrevTagDecl->getTagKind() != TTK_Enum && 11475 Kind != TTK_Enum); 11476 if (SafeToContinue) 11477 Diag(KWLoc, diag::err_use_with_wrong_tag) 11478 << Name 11479 << FixItHint::CreateReplacement(SourceRange(KWLoc), 11480 PrevTagDecl->getKindName()); 11481 else 11482 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; 11483 Diag(PrevTagDecl->getLocation(), diag::note_previous_use); 11484 11485 if (SafeToContinue) 11486 Kind = PrevTagDecl->getTagKind(); 11487 else { 11488 // Recover by making this an anonymous redefinition. 11489 Name = nullptr; 11490 Previous.clear(); 11491 Invalid = true; 11492 } 11493 } 11494 11495 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) { 11496 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); 11497 11498 // If this is an elaborated-type-specifier for a scoped enumeration, 11499 // the 'class' keyword is not necessary and not permitted. 11500 if (TUK == TUK_Reference || TUK == TUK_Friend) { 11501 if (ScopedEnum) 11502 Diag(ScopedEnumKWLoc, diag::err_enum_class_reference) 11503 << PrevEnum->isScoped() 11504 << FixItHint::CreateRemoval(ScopedEnumKWLoc); 11505 return PrevTagDecl; 11506 } 11507 11508 QualType EnumUnderlyingTy; 11509 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) 11510 EnumUnderlyingTy = TI->getType().getUnqualifiedType(); 11511 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>()) 11512 EnumUnderlyingTy = QualType(T, 0); 11513 11514 // All conflicts with previous declarations are recovered by 11515 // returning the previous declaration, unless this is a definition, 11516 // in which case we want the caller to bail out. 11517 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc, 11518 ScopedEnum, EnumUnderlyingTy, PrevEnum)) 11519 return TUK == TUK_Declaration ? PrevTagDecl : nullptr; 11520 } 11521 11522 // C++11 [class.mem]p1: 11523 // A member shall not be declared twice in the member-specification, 11524 // except that a nested class or member class template can be declared 11525 // and then later defined. 11526 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() && 11527 S->isDeclScope(PrevDecl)) { 11528 Diag(NameLoc, diag::ext_member_redeclared); 11529 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration); 11530 } 11531 11532 if (!Invalid) { 11533 // If this is a use, just return the declaration we found, unless 11534 // we have attributes. 11535 11536 // FIXME: In the future, return a variant or some other clue 11537 // for the consumer of this Decl to know it doesn't own it. 11538 // For our current ASTs this shouldn't be a problem, but will 11539 // need to be changed with DeclGroups. 11540 if (!Attr && 11541 ((TUK == TUK_Reference && 11542 (!PrevTagDecl->getFriendObjectKind() || getLangOpts().MicrosoftExt)) 11543 || TUK == TUK_Friend)) 11544 return PrevTagDecl; 11545 11546 // Diagnose attempts to redefine a tag. 11547 if (TUK == TUK_Definition) { 11548 if (TagDecl *Def = PrevTagDecl->getDefinition()) { 11549 // If we're defining a specialization and the previous definition 11550 // is from an implicit instantiation, don't emit an error 11551 // here; we'll catch this in the general case below. 11552 bool IsExplicitSpecializationAfterInstantiation = false; 11553 if (isExplicitSpecialization) { 11554 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def)) 11555 IsExplicitSpecializationAfterInstantiation = 11556 RD->getTemplateSpecializationKind() != 11557 TSK_ExplicitSpecialization; 11558 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def)) 11559 IsExplicitSpecializationAfterInstantiation = 11560 ED->getTemplateSpecializationKind() != 11561 TSK_ExplicitSpecialization; 11562 } 11563 11564 if (!IsExplicitSpecializationAfterInstantiation) { 11565 // A redeclaration in function prototype scope in C isn't 11566 // visible elsewhere, so merely issue a warning. 11567 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope()) 11568 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name; 11569 else 11570 Diag(NameLoc, diag::err_redefinition) << Name; 11571 Diag(Def->getLocation(), diag::note_previous_definition); 11572 // If this is a redefinition, recover by making this 11573 // struct be anonymous, which will make any later 11574 // references get the previous definition. 11575 Name = nullptr; 11576 Previous.clear(); 11577 Invalid = true; 11578 } 11579 } else { 11580 // If the type is currently being defined, complain 11581 // about a nested redefinition. 11582 const TagType *Tag 11583 = cast<TagType>(Context.getTagDeclType(PrevTagDecl)); 11584 if (Tag->isBeingDefined()) { 11585 Diag(NameLoc, diag::err_nested_redefinition) << Name; 11586 Diag(PrevTagDecl->getLocation(), 11587 diag::note_previous_definition); 11588 Name = nullptr; 11589 Previous.clear(); 11590 Invalid = true; 11591 } 11592 } 11593 11594 // Okay, this is definition of a previously declared or referenced 11595 // tag. We're going to create a new Decl for it. 11596 } 11597 11598 // Okay, we're going to make a redeclaration. If this is some kind 11599 // of reference, make sure we build the redeclaration in the same DC 11600 // as the original, and ignore the current access specifier. 11601 if (TUK == TUK_Friend || TUK == TUK_Reference) { 11602 SearchDC = PrevTagDecl->getDeclContext(); 11603 AS = AS_none; 11604 } 11605 } 11606 // If we get here we have (another) forward declaration or we 11607 // have a definition. Just create a new decl. 11608 11609 } else { 11610 // If we get here, this is a definition of a new tag type in a nested 11611 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a 11612 // new decl/type. We set PrevDecl to NULL so that the entities 11613 // have distinct types. 11614 Previous.clear(); 11615 } 11616 // If we get here, we're going to create a new Decl. If PrevDecl 11617 // is non-NULL, it's a definition of the tag declared by 11618 // PrevDecl. If it's NULL, we have a new definition. 11619 11620 11621 // Otherwise, PrevDecl is not a tag, but was found with tag 11622 // lookup. This is only actually possible in C++, where a few 11623 // things like templates still live in the tag namespace. 11624 } else { 11625 // Use a better diagnostic if an elaborated-type-specifier 11626 // found the wrong kind of type on the first 11627 // (non-redeclaration) lookup. 11628 if ((TUK == TUK_Reference || TUK == TUK_Friend) && 11629 !Previous.isForRedeclaration()) { 11630 unsigned Kind = 0; 11631 if (isa<TypedefDecl>(PrevDecl)) Kind = 1; 11632 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2; 11633 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3; 11634 Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind; 11635 Diag(PrevDecl->getLocation(), diag::note_declared_at); 11636 Invalid = true; 11637 11638 // Otherwise, only diagnose if the declaration is in scope. 11639 } else if (!isDeclInScope(PrevDecl, SearchDC, S, 11640 SS.isNotEmpty() || isExplicitSpecialization)) { 11641 // do nothing 11642 11643 // Diagnose implicit declarations introduced by elaborated types. 11644 } else if (TUK == TUK_Reference || TUK == TUK_Friend) { 11645 unsigned Kind = 0; 11646 if (isa<TypedefDecl>(PrevDecl)) Kind = 1; 11647 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2; 11648 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3; 11649 Diag(NameLoc, diag::err_tag_reference_conflict) << Kind; 11650 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; 11651 Invalid = true; 11652 11653 // Otherwise it's a declaration. Call out a particularly common 11654 // case here. 11655 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) { 11656 unsigned Kind = 0; 11657 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1; 11658 Diag(NameLoc, diag::err_tag_definition_of_typedef) 11659 << Name << Kind << TND->getUnderlyingType(); 11660 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; 11661 Invalid = true; 11662 11663 // Otherwise, diagnose. 11664 } else { 11665 // The tag name clashes with something else in the target scope, 11666 // issue an error and recover by making this tag be anonymous. 11667 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 11668 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 11669 Name = nullptr; 11670 Invalid = true; 11671 } 11672 11673 // The existing declaration isn't relevant to us; we're in a 11674 // new scope, so clear out the previous declaration. 11675 Previous.clear(); 11676 } 11677 } 11678 11679 CreateNewDecl: 11680 11681 TagDecl *PrevDecl = nullptr; 11682 if (Previous.isSingleResult()) 11683 PrevDecl = cast<TagDecl>(Previous.getFoundDecl()); 11684 11685 // If there is an identifier, use the location of the identifier as the 11686 // location of the decl, otherwise use the location of the struct/union 11687 // keyword. 11688 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; 11689 11690 // Otherwise, create a new declaration. If there is a previous 11691 // declaration of the same entity, the two will be linked via 11692 // PrevDecl. 11693 TagDecl *New; 11694 11695 bool IsForwardReference = false; 11696 if (Kind == TTK_Enum) { 11697 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: 11698 // enum X { A, B, C } D; D should chain to X. 11699 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, 11700 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum, 11701 ScopedEnumUsesClassTag, !EnumUnderlying.isNull()); 11702 // If this is an undefined enum, warn. 11703 if (TUK != TUK_Definition && !Invalid) { 11704 TagDecl *Def; 11705 if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) && 11706 cast<EnumDecl>(New)->isFixed()) { 11707 // C++0x: 7.2p2: opaque-enum-declaration. 11708 // Conflicts are diagnosed above. Do nothing. 11709 } 11710 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) { 11711 Diag(Loc, diag::ext_forward_ref_enum_def) 11712 << New; 11713 Diag(Def->getLocation(), diag::note_previous_definition); 11714 } else { 11715 unsigned DiagID = diag::ext_forward_ref_enum; 11716 if (getLangOpts().MSVCCompat) 11717 DiagID = diag::ext_ms_forward_ref_enum; 11718 else if (getLangOpts().CPlusPlus) 11719 DiagID = diag::err_forward_ref_enum; 11720 Diag(Loc, DiagID); 11721 11722 // If this is a forward-declared reference to an enumeration, make a 11723 // note of it; we won't actually be introducing the declaration into 11724 // the declaration context. 11725 if (TUK == TUK_Reference) 11726 IsForwardReference = true; 11727 } 11728 } 11729 11730 if (EnumUnderlying) { 11731 EnumDecl *ED = cast<EnumDecl>(New); 11732 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) 11733 ED->setIntegerTypeSourceInfo(TI); 11734 else 11735 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0)); 11736 ED->setPromotionType(ED->getIntegerType()); 11737 } 11738 11739 } else { 11740 // struct/union/class 11741 11742 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: 11743 // struct X { int A; } D; D should chain to X. 11744 if (getLangOpts().CPlusPlus) { 11745 // FIXME: Look for a way to use RecordDecl for simple structs. 11746 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 11747 cast_or_null<CXXRecordDecl>(PrevDecl)); 11748 11749 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) 11750 StdBadAlloc = cast<CXXRecordDecl>(New); 11751 } else 11752 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 11753 cast_or_null<RecordDecl>(PrevDecl)); 11754 } 11755 11756 // C++11 [dcl.type]p3: 11757 // A type-specifier-seq shall not define a class or enumeration [...]. 11758 if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) { 11759 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier) 11760 << Context.getTagDeclType(New); 11761 Invalid = true; 11762 } 11763 11764 // Maybe add qualifier info. 11765 if (SS.isNotEmpty()) { 11766 if (SS.isSet()) { 11767 // If this is either a declaration or a definition, check the 11768 // nested-name-specifier against the current context. We don't do this 11769 // for explicit specializations, because they have similar checking 11770 // (with more specific diagnostics) in the call to 11771 // CheckMemberSpecialization, below. 11772 if (!isExplicitSpecialization && 11773 (TUK == TUK_Definition || TUK == TUK_Declaration) && 11774 diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc)) 11775 Invalid = true; 11776 11777 New->setQualifierInfo(SS.getWithLocInContext(Context)); 11778 if (TemplateParameterLists.size() > 0) { 11779 New->setTemplateParameterListsInfo(Context, 11780 TemplateParameterLists.size(), 11781 TemplateParameterLists.data()); 11782 } 11783 } 11784 else 11785 Invalid = true; 11786 } 11787 11788 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { 11789 // Add alignment attributes if necessary; these attributes are checked when 11790 // the ASTContext lays out the structure. 11791 // 11792 // It is important for implementing the correct semantics that this 11793 // happen here (in act on tag decl). The #pragma pack stack is 11794 // maintained as a result of parser callbacks which can occur at 11795 // many points during the parsing of a struct declaration (because 11796 // the #pragma tokens are effectively skipped over during the 11797 // parsing of the struct). 11798 if (TUK == TUK_Definition) { 11799 AddAlignmentAttributesForRecord(RD); 11800 AddMsStructLayoutForRecord(RD); 11801 } 11802 } 11803 11804 if (ModulePrivateLoc.isValid()) { 11805 if (isExplicitSpecialization) 11806 Diag(New->getLocation(), diag::err_module_private_specialization) 11807 << 2 11808 << FixItHint::CreateRemoval(ModulePrivateLoc); 11809 // __module_private__ does not apply to local classes. However, we only 11810 // diagnose this as an error when the declaration specifiers are 11811 // freestanding. Here, we just ignore the __module_private__. 11812 else if (!SearchDC->isFunctionOrMethod()) 11813 New->setModulePrivate(); 11814 } 11815 11816 // If this is a specialization of a member class (of a class template), 11817 // check the specialization. 11818 if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous)) 11819 Invalid = true; 11820 11821 // If we're declaring or defining a tag in function prototype scope in C, 11822 // note that this type can only be used within the function and add it to 11823 // the list of decls to inject into the function definition scope. 11824 if ((Name || Kind == TTK_Enum) && 11825 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) { 11826 if (getLangOpts().CPlusPlus) { 11827 // C++ [dcl.fct]p6: 11828 // Types shall not be defined in return or parameter types. 11829 if (TUK == TUK_Definition && !IsTypeSpecifier) { 11830 Diag(Loc, diag::err_type_defined_in_param_type) 11831 << Name; 11832 Invalid = true; 11833 } 11834 } else { 11835 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); 11836 } 11837 DeclsInPrototypeScope.push_back(New); 11838 } 11839 11840 if (Invalid) 11841 New->setInvalidDecl(); 11842 11843 if (Attr) 11844 ProcessDeclAttributeList(S, New, Attr); 11845 11846 // Set the lexical context. If the tag has a C++ scope specifier, the 11847 // lexical context will be different from the semantic context. 11848 New->setLexicalDeclContext(CurContext); 11849 11850 // Mark this as a friend decl if applicable. 11851 // In Microsoft mode, a friend declaration also acts as a forward 11852 // declaration so we always pass true to setObjectOfFriendDecl to make 11853 // the tag name visible. 11854 if (TUK == TUK_Friend) 11855 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat); 11856 11857 // Set the access specifier. 11858 if (!Invalid && SearchDC->isRecord()) 11859 SetMemberAccessSpecifier(New, PrevDecl, AS); 11860 11861 if (TUK == TUK_Definition) 11862 New->startDefinition(); 11863 11864 // If this has an identifier, add it to the scope stack. 11865 if (TUK == TUK_Friend) { 11866 // We might be replacing an existing declaration in the lookup tables; 11867 // if so, borrow its access specifier. 11868 if (PrevDecl) 11869 New->setAccess(PrevDecl->getAccess()); 11870 11871 DeclContext *DC = New->getDeclContext()->getRedeclContext(); 11872 DC->makeDeclVisibleInContext(New); 11873 if (Name) // can be null along some error paths 11874 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 11875 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); 11876 } else if (Name) { 11877 S = getNonFieldDeclScope(S); 11878 PushOnScopeChains(New, S, !IsForwardReference); 11879 if (IsForwardReference) 11880 SearchDC->makeDeclVisibleInContext(New); 11881 11882 } else { 11883 CurContext->addDecl(New); 11884 } 11885 11886 // If this is the C FILE type, notify the AST context. 11887 if (IdentifierInfo *II = New->getIdentifier()) 11888 if (!New->isInvalidDecl() && 11889 New->getDeclContext()->getRedeclContext()->isTranslationUnit() && 11890 II->isStr("FILE")) 11891 Context.setFILEDecl(New); 11892 11893 if (PrevDecl) 11894 mergeDeclAttributes(New, PrevDecl); 11895 11896 // If there's a #pragma GCC visibility in scope, set the visibility of this 11897 // record. 11898 AddPushedVisibilityAttribute(New); 11899 11900 OwnedDecl = true; 11901 // In C++, don't return an invalid declaration. We can't recover well from 11902 // the cases where we make the type anonymous. 11903 return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New; 11904 } 11905 11906 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { 11907 AdjustDeclIfTemplate(TagD); 11908 TagDecl *Tag = cast<TagDecl>(TagD); 11909 11910 // Enter the tag context. 11911 PushDeclContext(S, Tag); 11912 11913 ActOnDocumentableDecl(TagD); 11914 11915 // If there's a #pragma GCC visibility in scope, set the visibility of this 11916 // record. 11917 AddPushedVisibilityAttribute(Tag); 11918 } 11919 11920 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) { 11921 assert(isa<ObjCContainerDecl>(IDecl) && 11922 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"); 11923 DeclContext *OCD = cast<DeclContext>(IDecl); 11924 assert(getContainingDC(OCD) == CurContext && 11925 "The next DeclContext should be lexically contained in the current one."); 11926 CurContext = OCD; 11927 return IDecl; 11928 } 11929 11930 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD, 11931 SourceLocation FinalLoc, 11932 bool IsFinalSpelledSealed, 11933 SourceLocation LBraceLoc) { 11934 AdjustDeclIfTemplate(TagD); 11935 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD); 11936 11937 FieldCollector->StartClass(); 11938 11939 if (!Record->getIdentifier()) 11940 return; 11941 11942 if (FinalLoc.isValid()) 11943 Record->addAttr(new (Context) 11944 FinalAttr(FinalLoc, Context, IsFinalSpelledSealed)); 11945 11946 // C++ [class]p2: 11947 // [...] The class-name is also inserted into the scope of the 11948 // class itself; this is known as the injected-class-name. For 11949 // purposes of access checking, the injected-class-name is treated 11950 // as if it were a public member name. 11951 CXXRecordDecl *InjectedClassName 11952 = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext, 11953 Record->getLocStart(), Record->getLocation(), 11954 Record->getIdentifier(), 11955 /*PrevDecl=*/nullptr, 11956 /*DelayTypeCreation=*/true); 11957 Context.getTypeDeclType(InjectedClassName, Record); 11958 InjectedClassName->setImplicit(); 11959 InjectedClassName->setAccess(AS_public); 11960 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) 11961 InjectedClassName->setDescribedClassTemplate(Template); 11962 PushOnScopeChains(InjectedClassName, S); 11963 assert(InjectedClassName->isInjectedClassName() && 11964 "Broken injected-class-name"); 11965 } 11966 11967 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, 11968 SourceLocation RBraceLoc) { 11969 AdjustDeclIfTemplate(TagD); 11970 TagDecl *Tag = cast<TagDecl>(TagD); 11971 Tag->setRBraceLoc(RBraceLoc); 11972 11973 // Make sure we "complete" the definition even it is invalid. 11974 if (Tag->isBeingDefined()) { 11975 assert(Tag->isInvalidDecl() && "We should already have completed it"); 11976 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) 11977 RD->completeDefinition(); 11978 } 11979 11980 if (isa<CXXRecordDecl>(Tag)) 11981 FieldCollector->FinishClass(); 11982 11983 // Exit this scope of this tag's definition. 11984 PopDeclContext(); 11985 11986 if (getCurLexicalContext()->isObjCContainer() && 11987 Tag->getDeclContext()->isFileContext()) 11988 Tag->setTopLevelDeclInObjCContainer(); 11989 11990 // Notify the consumer that we've defined a tag. 11991 if (!Tag->isInvalidDecl()) 11992 Consumer.HandleTagDeclDefinition(Tag); 11993 } 11994 11995 void Sema::ActOnObjCContainerFinishDefinition() { 11996 // Exit this scope of this interface definition. 11997 PopDeclContext(); 11998 } 11999 12000 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) { 12001 assert(DC == CurContext && "Mismatch of container contexts"); 12002 OriginalLexicalContext = DC; 12003 ActOnObjCContainerFinishDefinition(); 12004 } 12005 12006 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) { 12007 ActOnObjCContainerStartDefinition(cast<Decl>(DC)); 12008 OriginalLexicalContext = nullptr; 12009 } 12010 12011 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { 12012 AdjustDeclIfTemplate(TagD); 12013 TagDecl *Tag = cast<TagDecl>(TagD); 12014 Tag->setInvalidDecl(); 12015 12016 // Make sure we "complete" the definition even it is invalid. 12017 if (Tag->isBeingDefined()) { 12018 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) 12019 RD->completeDefinition(); 12020 } 12021 12022 // We're undoing ActOnTagStartDefinition here, not 12023 // ActOnStartCXXMemberDeclarations, so we don't have to mess with 12024 // the FieldCollector. 12025 12026 PopDeclContext(); 12027 } 12028 12029 // Note that FieldName may be null for anonymous bitfields. 12030 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc, 12031 IdentifierInfo *FieldName, 12032 QualType FieldTy, bool IsMsStruct, 12033 Expr *BitWidth, bool *ZeroWidth) { 12034 // Default to true; that shouldn't confuse checks for emptiness 12035 if (ZeroWidth) 12036 *ZeroWidth = true; 12037 12038 // C99 6.7.2.1p4 - verify the field type. 12039 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 12040 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { 12041 // Handle incomplete types with specific error. 12042 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete)) 12043 return ExprError(); 12044 if (FieldName) 12045 return Diag(FieldLoc, diag::err_not_integral_type_bitfield) 12046 << FieldName << FieldTy << BitWidth->getSourceRange(); 12047 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) 12048 << FieldTy << BitWidth->getSourceRange(); 12049 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth), 12050 UPPC_BitFieldWidth)) 12051 return ExprError(); 12052 12053 // If the bit-width is type- or value-dependent, don't try to check 12054 // it now. 12055 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) 12056 return BitWidth; 12057 12058 llvm::APSInt Value; 12059 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value); 12060 if (ICE.isInvalid()) 12061 return ICE; 12062 BitWidth = ICE.get(); 12063 12064 if (Value != 0 && ZeroWidth) 12065 *ZeroWidth = false; 12066 12067 // Zero-width bitfield is ok for anonymous field. 12068 if (Value == 0 && FieldName) 12069 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; 12070 12071 if (Value.isSigned() && Value.isNegative()) { 12072 if (FieldName) 12073 return Diag(FieldLoc, diag::err_bitfield_has_negative_width) 12074 << FieldName << Value.toString(10); 12075 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) 12076 << Value.toString(10); 12077 } 12078 12079 if (!FieldTy->isDependentType()) { 12080 uint64_t TypeSize = Context.getTypeSize(FieldTy); 12081 if (Value.getZExtValue() > TypeSize) { 12082 if (!getLangOpts().CPlusPlus || IsMsStruct || 12083 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 12084 if (FieldName) 12085 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size) 12086 << FieldName << (unsigned)Value.getZExtValue() 12087 << (unsigned)TypeSize; 12088 12089 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size) 12090 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize; 12091 } 12092 12093 if (FieldName) 12094 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size) 12095 << FieldName << (unsigned)Value.getZExtValue() 12096 << (unsigned)TypeSize; 12097 else 12098 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size) 12099 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize; 12100 } 12101 } 12102 12103 return BitWidth; 12104 } 12105 12106 /// ActOnField - Each field of a C struct/union is passed into this in order 12107 /// to create a FieldDecl object for it. 12108 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, 12109 Declarator &D, Expr *BitfieldWidth) { 12110 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD), 12111 DeclStart, D, static_cast<Expr*>(BitfieldWidth), 12112 /*InitStyle=*/ICIS_NoInit, AS_public); 12113 return Res; 12114 } 12115 12116 /// HandleField - Analyze a field of a C struct or a C++ data member. 12117 /// 12118 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, 12119 SourceLocation DeclStart, 12120 Declarator &D, Expr *BitWidth, 12121 InClassInitStyle InitStyle, 12122 AccessSpecifier AS) { 12123 IdentifierInfo *II = D.getIdentifier(); 12124 SourceLocation Loc = DeclStart; 12125 if (II) Loc = D.getIdentifierLoc(); 12126 12127 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 12128 QualType T = TInfo->getType(); 12129 if (getLangOpts().CPlusPlus) { 12130 CheckExtraCXXDefaultArguments(D); 12131 12132 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 12133 UPPC_DataMemberType)) { 12134 D.setInvalidType(); 12135 T = Context.IntTy; 12136 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 12137 } 12138 } 12139 12140 // TR 18037 does not allow fields to be declared with address spaces. 12141 if (T.getQualifiers().hasAddressSpace()) { 12142 Diag(Loc, diag::err_field_with_address_space); 12143 D.setInvalidType(); 12144 } 12145 12146 // OpenCL 1.2 spec, s6.9 r: 12147 // The event type cannot be used to declare a structure or union field. 12148 if (LangOpts.OpenCL && T->isEventT()) { 12149 Diag(Loc, diag::err_event_t_struct_field); 12150 D.setInvalidType(); 12151 } 12152 12153 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 12154 12155 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 12156 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 12157 diag::err_invalid_thread) 12158 << DeclSpec::getSpecifierName(TSCS); 12159 12160 // Check to see if this name was declared as a member previously 12161 NamedDecl *PrevDecl = nullptr; 12162 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration); 12163 LookupName(Previous, S); 12164 switch (Previous.getResultKind()) { 12165 case LookupResult::Found: 12166 case LookupResult::FoundUnresolvedValue: 12167 PrevDecl = Previous.getAsSingle<NamedDecl>(); 12168 break; 12169 12170 case LookupResult::FoundOverloaded: 12171 PrevDecl = Previous.getRepresentativeDecl(); 12172 break; 12173 12174 case LookupResult::NotFound: 12175 case LookupResult::NotFoundInCurrentInstantiation: 12176 case LookupResult::Ambiguous: 12177 break; 12178 } 12179 Previous.suppressDiagnostics(); 12180 12181 if (PrevDecl && PrevDecl->isTemplateParameter()) { 12182 // Maybe we will complain about the shadowed template parameter. 12183 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 12184 // Just pretend that we didn't see the previous declaration. 12185 PrevDecl = nullptr; 12186 } 12187 12188 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 12189 PrevDecl = nullptr; 12190 12191 bool Mutable 12192 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); 12193 SourceLocation TSSL = D.getLocStart(); 12194 FieldDecl *NewFD 12195 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle, 12196 TSSL, AS, PrevDecl, &D); 12197 12198 if (NewFD->isInvalidDecl()) 12199 Record->setInvalidDecl(); 12200 12201 if (D.getDeclSpec().isModulePrivateSpecified()) 12202 NewFD->setModulePrivate(); 12203 12204 if (NewFD->isInvalidDecl() && PrevDecl) { 12205 // Don't introduce NewFD into scope; there's already something 12206 // with the same name in the same scope. 12207 } else if (II) { 12208 PushOnScopeChains(NewFD, S); 12209 } else 12210 Record->addDecl(NewFD); 12211 12212 return NewFD; 12213 } 12214 12215 /// \brief Build a new FieldDecl and check its well-formedness. 12216 /// 12217 /// This routine builds a new FieldDecl given the fields name, type, 12218 /// record, etc. \p PrevDecl should refer to any previous declaration 12219 /// with the same name and in the same scope as the field to be 12220 /// created. 12221 /// 12222 /// \returns a new FieldDecl. 12223 /// 12224 /// \todo The Declarator argument is a hack. It will be removed once 12225 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, 12226 TypeSourceInfo *TInfo, 12227 RecordDecl *Record, SourceLocation Loc, 12228 bool Mutable, Expr *BitWidth, 12229 InClassInitStyle InitStyle, 12230 SourceLocation TSSL, 12231 AccessSpecifier AS, NamedDecl *PrevDecl, 12232 Declarator *D) { 12233 IdentifierInfo *II = Name.getAsIdentifierInfo(); 12234 bool InvalidDecl = false; 12235 if (D) InvalidDecl = D->isInvalidType(); 12236 12237 // If we receive a broken type, recover by assuming 'int' and 12238 // marking this declaration as invalid. 12239 if (T.isNull()) { 12240 InvalidDecl = true; 12241 T = Context.IntTy; 12242 } 12243 12244 QualType EltTy = Context.getBaseElementType(T); 12245 if (!EltTy->isDependentType()) { 12246 if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) { 12247 // Fields of incomplete type force their record to be invalid. 12248 Record->setInvalidDecl(); 12249 InvalidDecl = true; 12250 } else { 12251 NamedDecl *Def; 12252 EltTy->isIncompleteType(&Def); 12253 if (Def && Def->isInvalidDecl()) { 12254 Record->setInvalidDecl(); 12255 InvalidDecl = true; 12256 } 12257 } 12258 } 12259 12260 // OpenCL v1.2 s6.9.c: bitfields are not supported. 12261 if (BitWidth && getLangOpts().OpenCL) { 12262 Diag(Loc, diag::err_opencl_bitfields); 12263 InvalidDecl = true; 12264 } 12265 12266 // C99 6.7.2.1p8: A member of a structure or union may have any type other 12267 // than a variably modified type. 12268 if (!InvalidDecl && T->isVariablyModifiedType()) { 12269 bool SizeIsNegative; 12270 llvm::APSInt Oversized; 12271 12272 TypeSourceInfo *FixedTInfo = 12273 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 12274 SizeIsNegative, 12275 Oversized); 12276 if (FixedTInfo) { 12277 Diag(Loc, diag::warn_illegal_constant_array_size); 12278 TInfo = FixedTInfo; 12279 T = FixedTInfo->getType(); 12280 } else { 12281 if (SizeIsNegative) 12282 Diag(Loc, diag::err_typecheck_negative_array_size); 12283 else if (Oversized.getBoolValue()) 12284 Diag(Loc, diag::err_array_too_large) 12285 << Oversized.toString(10); 12286 else 12287 Diag(Loc, diag::err_typecheck_field_variable_size); 12288 InvalidDecl = true; 12289 } 12290 } 12291 12292 // Fields can not have abstract class types 12293 if (!InvalidDecl && RequireNonAbstractType(Loc, T, 12294 diag::err_abstract_type_in_decl, 12295 AbstractFieldType)) 12296 InvalidDecl = true; 12297 12298 bool ZeroWidth = false; 12299 // If this is declared as a bit-field, check the bit-field. 12300 if (!InvalidDecl && BitWidth) { 12301 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth, 12302 &ZeroWidth).get(); 12303 if (!BitWidth) { 12304 InvalidDecl = true; 12305 BitWidth = nullptr; 12306 ZeroWidth = false; 12307 } 12308 } 12309 12310 // Check that 'mutable' is consistent with the type of the declaration. 12311 if (!InvalidDecl && Mutable) { 12312 unsigned DiagID = 0; 12313 if (T->isReferenceType()) 12314 DiagID = diag::err_mutable_reference; 12315 else if (T.isConstQualified()) 12316 DiagID = diag::err_mutable_const; 12317 12318 if (DiagID) { 12319 SourceLocation ErrLoc = Loc; 12320 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) 12321 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); 12322 Diag(ErrLoc, DiagID); 12323 Mutable = false; 12324 InvalidDecl = true; 12325 } 12326 } 12327 12328 // C++11 [class.union]p8 (DR1460): 12329 // At most one variant member of a union may have a 12330 // brace-or-equal-initializer. 12331 if (InitStyle != ICIS_NoInit) 12332 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc); 12333 12334 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo, 12335 BitWidth, Mutable, InitStyle); 12336 if (InvalidDecl) 12337 NewFD->setInvalidDecl(); 12338 12339 if (PrevDecl && !isa<TagDecl>(PrevDecl)) { 12340 Diag(Loc, diag::err_duplicate_member) << II; 12341 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 12342 NewFD->setInvalidDecl(); 12343 } 12344 12345 if (!InvalidDecl && getLangOpts().CPlusPlus) { 12346 if (Record->isUnion()) { 12347 if (const RecordType *RT = EltTy->getAs<RecordType>()) { 12348 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); 12349 if (RDecl->getDefinition()) { 12350 // C++ [class.union]p1: An object of a class with a non-trivial 12351 // constructor, a non-trivial copy constructor, a non-trivial 12352 // destructor, or a non-trivial copy assignment operator 12353 // cannot be a member of a union, nor can an array of such 12354 // objects. 12355 if (CheckNontrivialField(NewFD)) 12356 NewFD->setInvalidDecl(); 12357 } 12358 } 12359 12360 // C++ [class.union]p1: If a union contains a member of reference type, 12361 // the program is ill-formed, except when compiling with MSVC extensions 12362 // enabled. 12363 if (EltTy->isReferenceType()) { 12364 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? 12365 diag::ext_union_member_of_reference_type : 12366 diag::err_union_member_of_reference_type) 12367 << NewFD->getDeclName() << EltTy; 12368 if (!getLangOpts().MicrosoftExt) 12369 NewFD->setInvalidDecl(); 12370 } 12371 } 12372 } 12373 12374 // FIXME: We need to pass in the attributes given an AST 12375 // representation, not a parser representation. 12376 if (D) { 12377 // FIXME: The current scope is almost... but not entirely... correct here. 12378 ProcessDeclAttributes(getCurScope(), NewFD, *D); 12379 12380 if (NewFD->hasAttrs()) 12381 CheckAlignasUnderalignment(NewFD); 12382 } 12383 12384 // In auto-retain/release, infer strong retension for fields of 12385 // retainable type. 12386 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD)) 12387 NewFD->setInvalidDecl(); 12388 12389 if (T.isObjCGCWeak()) 12390 Diag(Loc, diag::warn_attribute_weak_on_field); 12391 12392 NewFD->setAccess(AS); 12393 return NewFD; 12394 } 12395 12396 bool Sema::CheckNontrivialField(FieldDecl *FD) { 12397 assert(FD); 12398 assert(getLangOpts().CPlusPlus && "valid check only for C++"); 12399 12400 if (FD->isInvalidDecl() || FD->getType()->isDependentType()) 12401 return false; 12402 12403 QualType EltTy = Context.getBaseElementType(FD->getType()); 12404 if (const RecordType *RT = EltTy->getAs<RecordType>()) { 12405 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl()); 12406 if (RDecl->getDefinition()) { 12407 // We check for copy constructors before constructors 12408 // because otherwise we'll never get complaints about 12409 // copy constructors. 12410 12411 CXXSpecialMember member = CXXInvalid; 12412 // We're required to check for any non-trivial constructors. Since the 12413 // implicit default constructor is suppressed if there are any 12414 // user-declared constructors, we just need to check that there is a 12415 // trivial default constructor and a trivial copy constructor. (We don't 12416 // worry about move constructors here, since this is a C++98 check.) 12417 if (RDecl->hasNonTrivialCopyConstructor()) 12418 member = CXXCopyConstructor; 12419 else if (!RDecl->hasTrivialDefaultConstructor()) 12420 member = CXXDefaultConstructor; 12421 else if (RDecl->hasNonTrivialCopyAssignment()) 12422 member = CXXCopyAssignment; 12423 else if (RDecl->hasNonTrivialDestructor()) 12424 member = CXXDestructor; 12425 12426 if (member != CXXInvalid) { 12427 if (!getLangOpts().CPlusPlus11 && 12428 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) { 12429 // Objective-C++ ARC: it is an error to have a non-trivial field of 12430 // a union. However, system headers in Objective-C programs 12431 // occasionally have Objective-C lifetime objects within unions, 12432 // and rather than cause the program to fail, we make those 12433 // members unavailable. 12434 SourceLocation Loc = FD->getLocation(); 12435 if (getSourceManager().isInSystemHeader(Loc)) { 12436 if (!FD->hasAttr<UnavailableAttr>()) 12437 FD->addAttr(UnavailableAttr::CreateImplicit(Context, 12438 "this system field has retaining ownership", 12439 Loc)); 12440 return false; 12441 } 12442 } 12443 12444 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ? 12445 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member : 12446 diag::err_illegal_union_or_anon_struct_member) 12447 << (int)FD->getParent()->isUnion() << FD->getDeclName() << member; 12448 DiagnoseNontrivial(RDecl, member); 12449 return !getLangOpts().CPlusPlus11; 12450 } 12451 } 12452 } 12453 12454 return false; 12455 } 12456 12457 /// TranslateIvarVisibility - Translate visibility from a token ID to an 12458 /// AST enum value. 12459 static ObjCIvarDecl::AccessControl 12460 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { 12461 switch (ivarVisibility) { 12462 default: llvm_unreachable("Unknown visitibility kind"); 12463 case tok::objc_private: return ObjCIvarDecl::Private; 12464 case tok::objc_public: return ObjCIvarDecl::Public; 12465 case tok::objc_protected: return ObjCIvarDecl::Protected; 12466 case tok::objc_package: return ObjCIvarDecl::Package; 12467 } 12468 } 12469 12470 /// ActOnIvar - Each ivar field of an objective-c class is passed into this 12471 /// in order to create an IvarDecl object for it. 12472 Decl *Sema::ActOnIvar(Scope *S, 12473 SourceLocation DeclStart, 12474 Declarator &D, Expr *BitfieldWidth, 12475 tok::ObjCKeywordKind Visibility) { 12476 12477 IdentifierInfo *II = D.getIdentifier(); 12478 Expr *BitWidth = (Expr*)BitfieldWidth; 12479 SourceLocation Loc = DeclStart; 12480 if (II) Loc = D.getIdentifierLoc(); 12481 12482 // FIXME: Unnamed fields can be handled in various different ways, for 12483 // example, unnamed unions inject all members into the struct namespace! 12484 12485 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 12486 QualType T = TInfo->getType(); 12487 12488 if (BitWidth) { 12489 // 6.7.2.1p3, 6.7.2.1p4 12490 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get(); 12491 if (!BitWidth) 12492 D.setInvalidType(); 12493 } else { 12494 // Not a bitfield. 12495 12496 // validate II. 12497 12498 } 12499 if (T->isReferenceType()) { 12500 Diag(Loc, diag::err_ivar_reference_type); 12501 D.setInvalidType(); 12502 } 12503 // C99 6.7.2.1p8: A member of a structure or union may have any type other 12504 // than a variably modified type. 12505 else if (T->isVariablyModifiedType()) { 12506 Diag(Loc, diag::err_typecheck_ivar_variable_size); 12507 D.setInvalidType(); 12508 } 12509 12510 // Get the visibility (access control) for this ivar. 12511 ObjCIvarDecl::AccessControl ac = 12512 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) 12513 : ObjCIvarDecl::None; 12514 // Must set ivar's DeclContext to its enclosing interface. 12515 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext); 12516 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl()) 12517 return nullptr; 12518 ObjCContainerDecl *EnclosingContext; 12519 if (ObjCImplementationDecl *IMPDecl = 12520 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { 12521 if (LangOpts.ObjCRuntime.isFragile()) { 12522 // Case of ivar declared in an implementation. Context is that of its class. 12523 EnclosingContext = IMPDecl->getClassInterface(); 12524 assert(EnclosingContext && "Implementation has no class interface!"); 12525 } 12526 else 12527 EnclosingContext = EnclosingDecl; 12528 } else { 12529 if (ObjCCategoryDecl *CDecl = 12530 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { 12531 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) { 12532 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); 12533 return nullptr; 12534 } 12535 } 12536 EnclosingContext = EnclosingDecl; 12537 } 12538 12539 // Construct the decl. 12540 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext, 12541 DeclStart, Loc, II, T, 12542 TInfo, ac, (Expr *)BitfieldWidth); 12543 12544 if (II) { 12545 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName, 12546 ForRedeclaration); 12547 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S) 12548 && !isa<TagDecl>(PrevDecl)) { 12549 Diag(Loc, diag::err_duplicate_member) << II; 12550 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 12551 NewID->setInvalidDecl(); 12552 } 12553 } 12554 12555 // Process attributes attached to the ivar. 12556 ProcessDeclAttributes(S, NewID, D); 12557 12558 if (D.isInvalidType()) 12559 NewID->setInvalidDecl(); 12560 12561 // In ARC, infer 'retaining' for ivars of retainable type. 12562 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID)) 12563 NewID->setInvalidDecl(); 12564 12565 if (D.getDeclSpec().isModulePrivateSpecified()) 12566 NewID->setModulePrivate(); 12567 12568 if (II) { 12569 // FIXME: When interfaces are DeclContexts, we'll need to add 12570 // these to the interface. 12571 S->AddDecl(NewID); 12572 IdResolver.AddDecl(NewID); 12573 } 12574 12575 if (LangOpts.ObjCRuntime.isNonFragile() && 12576 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl)) 12577 Diag(Loc, diag::warn_ivars_in_interface); 12578 12579 return NewID; 12580 } 12581 12582 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for 12583 /// class and class extensions. For every class \@interface and class 12584 /// extension \@interface, if the last ivar is a bitfield of any type, 12585 /// then add an implicit `char :0` ivar to the end of that interface. 12586 void Sema::ActOnLastBitfield(SourceLocation DeclLoc, 12587 SmallVectorImpl<Decl *> &AllIvarDecls) { 12588 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty()) 12589 return; 12590 12591 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; 12592 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl); 12593 12594 if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0) 12595 return; 12596 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext); 12597 if (!ID) { 12598 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) { 12599 if (!CD->IsClassExtension()) 12600 return; 12601 } 12602 // No need to add this to end of @implementation. 12603 else 12604 return; 12605 } 12606 // All conditions are met. Add a new bitfield to the tail end of ivars. 12607 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0); 12608 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc); 12609 12610 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext), 12611 DeclLoc, DeclLoc, nullptr, 12612 Context.CharTy, 12613 Context.getTrivialTypeSourceInfo(Context.CharTy, 12614 DeclLoc), 12615 ObjCIvarDecl::Private, BW, 12616 true); 12617 AllIvarDecls.push_back(Ivar); 12618 } 12619 12620 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl, 12621 ArrayRef<Decl *> Fields, SourceLocation LBrac, 12622 SourceLocation RBrac, AttributeList *Attr) { 12623 assert(EnclosingDecl && "missing record or interface decl"); 12624 12625 // If this is an Objective-C @implementation or category and we have 12626 // new fields here we should reset the layout of the interface since 12627 // it will now change. 12628 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) { 12629 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl); 12630 switch (DC->getKind()) { 12631 default: break; 12632 case Decl::ObjCCategory: 12633 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface()); 12634 break; 12635 case Decl::ObjCImplementation: 12636 Context. 12637 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface()); 12638 break; 12639 } 12640 } 12641 12642 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); 12643 12644 // Start counting up the number of named members; make sure to include 12645 // members of anonymous structs and unions in the total. 12646 unsigned NumNamedMembers = 0; 12647 if (Record) { 12648 for (const auto *I : Record->decls()) { 12649 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) 12650 if (IFD->getDeclName()) 12651 ++NumNamedMembers; 12652 } 12653 } 12654 12655 // Verify that all the fields are okay. 12656 SmallVector<FieldDecl*, 32> RecFields; 12657 12658 bool ARCErrReported = false; 12659 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end(); 12660 i != end; ++i) { 12661 FieldDecl *FD = cast<FieldDecl>(*i); 12662 12663 // Get the type for the field. 12664 const Type *FDTy = FD->getType().getTypePtr(); 12665 12666 if (!FD->isAnonymousStructOrUnion()) { 12667 // Remember all fields written by the user. 12668 RecFields.push_back(FD); 12669 } 12670 12671 // If the field is already invalid for some reason, don't emit more 12672 // diagnostics about it. 12673 if (FD->isInvalidDecl()) { 12674 EnclosingDecl->setInvalidDecl(); 12675 continue; 12676 } 12677 12678 // C99 6.7.2.1p2: 12679 // A structure or union shall not contain a member with 12680 // incomplete or function type (hence, a structure shall not 12681 // contain an instance of itself, but may contain a pointer to 12682 // an instance of itself), except that the last member of a 12683 // structure with more than one named member may have incomplete 12684 // array type; such a structure (and any union containing, 12685 // possibly recursively, a member that is such a structure) 12686 // shall not be a member of a structure or an element of an 12687 // array. 12688 if (FDTy->isFunctionType()) { 12689 // Field declared as a function. 12690 Diag(FD->getLocation(), diag::err_field_declared_as_function) 12691 << FD->getDeclName(); 12692 FD->setInvalidDecl(); 12693 EnclosingDecl->setInvalidDecl(); 12694 continue; 12695 } else if (FDTy->isIncompleteArrayType() && Record && 12696 ((i + 1 == Fields.end() && !Record->isUnion()) || 12697 ((getLangOpts().MicrosoftExt || 12698 getLangOpts().CPlusPlus) && 12699 (i + 1 == Fields.end() || Record->isUnion())))) { 12700 // Flexible array member. 12701 // Microsoft and g++ is more permissive regarding flexible array. 12702 // It will accept flexible array in union and also 12703 // as the sole element of a struct/class. 12704 unsigned DiagID = 0; 12705 if (Record->isUnion()) 12706 DiagID = getLangOpts().MicrosoftExt 12707 ? diag::ext_flexible_array_union_ms 12708 : getLangOpts().CPlusPlus 12709 ? diag::ext_flexible_array_union_gnu 12710 : diag::err_flexible_array_union; 12711 else if (Fields.size() == 1) 12712 DiagID = getLangOpts().MicrosoftExt 12713 ? diag::ext_flexible_array_empty_aggregate_ms 12714 : getLangOpts().CPlusPlus 12715 ? diag::ext_flexible_array_empty_aggregate_gnu 12716 : NumNamedMembers < 1 12717 ? diag::err_flexible_array_empty_aggregate 12718 : 0; 12719 12720 if (DiagID) 12721 Diag(FD->getLocation(), DiagID) << FD->getDeclName() 12722 << Record->getTagKind(); 12723 // While the layout of types that contain virtual bases is not specified 12724 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place 12725 // virtual bases after the derived members. This would make a flexible 12726 // array member declared at the end of an object not adjacent to the end 12727 // of the type. 12728 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) 12729 if (RD->getNumVBases() != 0) 12730 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base) 12731 << FD->getDeclName() << Record->getTagKind(); 12732 if (!getLangOpts().C99) 12733 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member) 12734 << FD->getDeclName() << Record->getTagKind(); 12735 12736 // If the element type has a non-trivial destructor, we would not 12737 // implicitly destroy the elements, so disallow it for now. 12738 // 12739 // FIXME: GCC allows this. We should probably either implicitly delete 12740 // the destructor of the containing class, or just allow this. 12741 QualType BaseElem = Context.getBaseElementType(FD->getType()); 12742 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) { 12743 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor) 12744 << FD->getDeclName() << FD->getType(); 12745 FD->setInvalidDecl(); 12746 EnclosingDecl->setInvalidDecl(); 12747 continue; 12748 } 12749 // Okay, we have a legal flexible array member at the end of the struct. 12750 Record->setHasFlexibleArrayMember(true); 12751 } else if (!FDTy->isDependentType() && 12752 RequireCompleteType(FD->getLocation(), FD->getType(), 12753 diag::err_field_incomplete)) { 12754 // Incomplete type 12755 FD->setInvalidDecl(); 12756 EnclosingDecl->setInvalidDecl(); 12757 continue; 12758 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { 12759 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) { 12760 // A type which contains a flexible array member is considered to be a 12761 // flexible array member. 12762 Record->setHasFlexibleArrayMember(true); 12763 if (!Record->isUnion()) { 12764 // If this is a struct/class and this is not the last element, reject 12765 // it. Note that GCC supports variable sized arrays in the middle of 12766 // structures. 12767 if (i + 1 != Fields.end()) 12768 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) 12769 << FD->getDeclName() << FD->getType(); 12770 else { 12771 // We support flexible arrays at the end of structs in 12772 // other structs as an extension. 12773 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) 12774 << FD->getDeclName(); 12775 } 12776 } 12777 } 12778 if (isa<ObjCContainerDecl>(EnclosingDecl) && 12779 RequireNonAbstractType(FD->getLocation(), FD->getType(), 12780 diag::err_abstract_type_in_decl, 12781 AbstractIvarType)) { 12782 // Ivars can not have abstract class types 12783 FD->setInvalidDecl(); 12784 } 12785 if (Record && FDTTy->getDecl()->hasObjectMember()) 12786 Record->setHasObjectMember(true); 12787 if (Record && FDTTy->getDecl()->hasVolatileMember()) 12788 Record->setHasVolatileMember(true); 12789 } else if (FDTy->isObjCObjectType()) { 12790 /// A field cannot be an Objective-c object 12791 Diag(FD->getLocation(), diag::err_statically_allocated_object) 12792 << FixItHint::CreateInsertion(FD->getLocation(), "*"); 12793 QualType T = Context.getObjCObjectPointerType(FD->getType()); 12794 FD->setType(T); 12795 } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported && 12796 (!getLangOpts().CPlusPlus || Record->isUnion())) { 12797 // It's an error in ARC if a field has lifetime. 12798 // We don't want to report this in a system header, though, 12799 // so we just make the field unavailable. 12800 // FIXME: that's really not sufficient; we need to make the type 12801 // itself invalid to, say, initialize or copy. 12802 QualType T = FD->getType(); 12803 Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime(); 12804 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) { 12805 SourceLocation loc = FD->getLocation(); 12806 if (getSourceManager().isInSystemHeader(loc)) { 12807 if (!FD->hasAttr<UnavailableAttr>()) { 12808 FD->addAttr(UnavailableAttr::CreateImplicit(Context, 12809 "this system field has retaining ownership", 12810 loc)); 12811 } 12812 } else { 12813 Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag) 12814 << T->isBlockPointerType() << Record->getTagKind(); 12815 } 12816 ARCErrReported = true; 12817 } 12818 } else if (getLangOpts().ObjC1 && 12819 getLangOpts().getGC() != LangOptions::NonGC && 12820 Record && !Record->hasObjectMember()) { 12821 if (FD->getType()->isObjCObjectPointerType() || 12822 FD->getType().isObjCGCStrong()) 12823 Record->setHasObjectMember(true); 12824 else if (Context.getAsArrayType(FD->getType())) { 12825 QualType BaseType = Context.getBaseElementType(FD->getType()); 12826 if (BaseType->isRecordType() && 12827 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember()) 12828 Record->setHasObjectMember(true); 12829 else if (BaseType->isObjCObjectPointerType() || 12830 BaseType.isObjCGCStrong()) 12831 Record->setHasObjectMember(true); 12832 } 12833 } 12834 if (Record && FD->getType().isVolatileQualified()) 12835 Record->setHasVolatileMember(true); 12836 // Keep track of the number of named members. 12837 if (FD->getIdentifier()) 12838 ++NumNamedMembers; 12839 } 12840 12841 // Okay, we successfully defined 'Record'. 12842 if (Record) { 12843 bool Completed = false; 12844 if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) { 12845 if (!CXXRecord->isInvalidDecl()) { 12846 // Set access bits correctly on the directly-declared conversions. 12847 for (CXXRecordDecl::conversion_iterator 12848 I = CXXRecord->conversion_begin(), 12849 E = CXXRecord->conversion_end(); I != E; ++I) 12850 I.setAccess((*I)->getAccess()); 12851 12852 if (!CXXRecord->isDependentType()) { 12853 if (CXXRecord->hasUserDeclaredDestructor()) { 12854 // Adjust user-defined destructor exception spec. 12855 if (getLangOpts().CPlusPlus11) 12856 AdjustDestructorExceptionSpec(CXXRecord, 12857 CXXRecord->getDestructor()); 12858 } 12859 12860 // Add any implicitly-declared members to this class. 12861 AddImplicitlyDeclaredMembersToClass(CXXRecord); 12862 12863 // If we have virtual base classes, we may end up finding multiple 12864 // final overriders for a given virtual function. Check for this 12865 // problem now. 12866 if (CXXRecord->getNumVBases()) { 12867 CXXFinalOverriderMap FinalOverriders; 12868 CXXRecord->getFinalOverriders(FinalOverriders); 12869 12870 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 12871 MEnd = FinalOverriders.end(); 12872 M != MEnd; ++M) { 12873 for (OverridingMethods::iterator SO = M->second.begin(), 12874 SOEnd = M->second.end(); 12875 SO != SOEnd; ++SO) { 12876 assert(SO->second.size() > 0 && 12877 "Virtual function without overridding functions?"); 12878 if (SO->second.size() == 1) 12879 continue; 12880 12881 // C++ [class.virtual]p2: 12882 // In a derived class, if a virtual member function of a base 12883 // class subobject has more than one final overrider the 12884 // program is ill-formed. 12885 Diag(Record->getLocation(), diag::err_multiple_final_overriders) 12886 << (const NamedDecl *)M->first << Record; 12887 Diag(M->first->getLocation(), 12888 diag::note_overridden_virtual_function); 12889 for (OverridingMethods::overriding_iterator 12890 OM = SO->second.begin(), 12891 OMEnd = SO->second.end(); 12892 OM != OMEnd; ++OM) 12893 Diag(OM->Method->getLocation(), diag::note_final_overrider) 12894 << (const NamedDecl *)M->first << OM->Method->getParent(); 12895 12896 Record->setInvalidDecl(); 12897 } 12898 } 12899 CXXRecord->completeDefinition(&FinalOverriders); 12900 Completed = true; 12901 } 12902 } 12903 } 12904 } 12905 12906 if (!Completed) 12907 Record->completeDefinition(); 12908 12909 if (Record->hasAttrs()) { 12910 CheckAlignasUnderalignment(Record); 12911 12912 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>()) 12913 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record), 12914 IA->getRange(), IA->getBestCase(), 12915 IA->getSemanticSpelling()); 12916 } 12917 12918 // Check if the structure/union declaration is a type that can have zero 12919 // size in C. For C this is a language extension, for C++ it may cause 12920 // compatibility problems. 12921 bool CheckForZeroSize; 12922 if (!getLangOpts().CPlusPlus) { 12923 CheckForZeroSize = true; 12924 } else { 12925 // For C++ filter out types that cannot be referenced in C code. 12926 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record); 12927 CheckForZeroSize = 12928 CXXRecord->getLexicalDeclContext()->isExternCContext() && 12929 !CXXRecord->isDependentType() && 12930 CXXRecord->isCLike(); 12931 } 12932 if (CheckForZeroSize) { 12933 bool ZeroSize = true; 12934 bool IsEmpty = true; 12935 unsigned NonBitFields = 0; 12936 for (RecordDecl::field_iterator I = Record->field_begin(), 12937 E = Record->field_end(); 12938 (NonBitFields == 0 || ZeroSize) && I != E; ++I) { 12939 IsEmpty = false; 12940 if (I->isUnnamedBitfield()) { 12941 if (I->getBitWidthValue(Context) > 0) 12942 ZeroSize = false; 12943 } else { 12944 ++NonBitFields; 12945 QualType FieldType = I->getType(); 12946 if (FieldType->isIncompleteType() || 12947 !Context.getTypeSizeInChars(FieldType).isZero()) 12948 ZeroSize = false; 12949 } 12950 } 12951 12952 // Empty structs are an extension in C (C99 6.7.2.1p7). They are 12953 // allowed in C++, but warn if its declaration is inside 12954 // extern "C" block. 12955 if (ZeroSize) { 12956 Diag(RecLoc, getLangOpts().CPlusPlus ? 12957 diag::warn_zero_size_struct_union_in_extern_c : 12958 diag::warn_zero_size_struct_union_compat) 12959 << IsEmpty << Record->isUnion() << (NonBitFields > 1); 12960 } 12961 12962 // Structs without named members are extension in C (C99 6.7.2.1p7), 12963 // but are accepted by GCC. 12964 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) { 12965 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union : 12966 diag::ext_no_named_members_in_struct_union) 12967 << Record->isUnion(); 12968 } 12969 } 12970 } else { 12971 ObjCIvarDecl **ClsFields = 12972 reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); 12973 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { 12974 ID->setEndOfDefinitionLoc(RBrac); 12975 // Add ivar's to class's DeclContext. 12976 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 12977 ClsFields[i]->setLexicalDeclContext(ID); 12978 ID->addDecl(ClsFields[i]); 12979 } 12980 // Must enforce the rule that ivars in the base classes may not be 12981 // duplicates. 12982 if (ID->getSuperClass()) 12983 DiagnoseDuplicateIvars(ID, ID->getSuperClass()); 12984 } else if (ObjCImplementationDecl *IMPDecl = 12985 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { 12986 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); 12987 for (unsigned I = 0, N = RecFields.size(); I != N; ++I) 12988 // Ivar declared in @implementation never belongs to the implementation. 12989 // Only it is in implementation's lexical context. 12990 ClsFields[I]->setLexicalDeclContext(IMPDecl); 12991 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); 12992 IMPDecl->setIvarLBraceLoc(LBrac); 12993 IMPDecl->setIvarRBraceLoc(RBrac); 12994 } else if (ObjCCategoryDecl *CDecl = 12995 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { 12996 // case of ivars in class extension; all other cases have been 12997 // reported as errors elsewhere. 12998 // FIXME. Class extension does not have a LocEnd field. 12999 // CDecl->setLocEnd(RBrac); 13000 // Add ivar's to class extension's DeclContext. 13001 // Diagnose redeclaration of private ivars. 13002 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface(); 13003 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 13004 if (IDecl) { 13005 if (const ObjCIvarDecl *ClsIvar = 13006 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) { 13007 Diag(ClsFields[i]->getLocation(), 13008 diag::err_duplicate_ivar_declaration); 13009 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 13010 continue; 13011 } 13012 for (const auto *Ext : IDecl->known_extensions()) { 13013 if (const ObjCIvarDecl *ClsExtIvar 13014 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) { 13015 Diag(ClsFields[i]->getLocation(), 13016 diag::err_duplicate_ivar_declaration); 13017 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); 13018 continue; 13019 } 13020 } 13021 } 13022 ClsFields[i]->setLexicalDeclContext(CDecl); 13023 CDecl->addDecl(ClsFields[i]); 13024 } 13025 CDecl->setIvarLBraceLoc(LBrac); 13026 CDecl->setIvarRBraceLoc(RBrac); 13027 } 13028 } 13029 13030 if (Attr) 13031 ProcessDeclAttributeList(S, Record, Attr); 13032 } 13033 13034 /// \brief Determine whether the given integral value is representable within 13035 /// the given type T. 13036 static bool isRepresentableIntegerValue(ASTContext &Context, 13037 llvm::APSInt &Value, 13038 QualType T) { 13039 assert(T->isIntegralType(Context) && "Integral type required!"); 13040 unsigned BitWidth = Context.getIntWidth(T); 13041 13042 if (Value.isUnsigned() || Value.isNonNegative()) { 13043 if (T->isSignedIntegerOrEnumerationType()) 13044 --BitWidth; 13045 return Value.getActiveBits() <= BitWidth; 13046 } 13047 return Value.getMinSignedBits() <= BitWidth; 13048 } 13049 13050 // \brief Given an integral type, return the next larger integral type 13051 // (or a NULL type of no such type exists). 13052 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { 13053 // FIXME: Int128/UInt128 support, which also needs to be introduced into 13054 // enum checking below. 13055 assert(T->isIntegralType(Context) && "Integral type required!"); 13056 const unsigned NumTypes = 4; 13057 QualType SignedIntegralTypes[NumTypes] = { 13058 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy 13059 }; 13060 QualType UnsignedIntegralTypes[NumTypes] = { 13061 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, 13062 Context.UnsignedLongLongTy 13063 }; 13064 13065 unsigned BitWidth = Context.getTypeSize(T); 13066 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes 13067 : UnsignedIntegralTypes; 13068 for (unsigned I = 0; I != NumTypes; ++I) 13069 if (Context.getTypeSize(Types[I]) > BitWidth) 13070 return Types[I]; 13071 13072 return QualType(); 13073 } 13074 13075 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, 13076 EnumConstantDecl *LastEnumConst, 13077 SourceLocation IdLoc, 13078 IdentifierInfo *Id, 13079 Expr *Val) { 13080 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 13081 llvm::APSInt EnumVal(IntWidth); 13082 QualType EltTy; 13083 13084 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue)) 13085 Val = nullptr; 13086 13087 if (Val) 13088 Val = DefaultLvalueConversion(Val).get(); 13089 13090 if (Val) { 13091 if (Enum->isDependentType() || Val->isTypeDependent()) 13092 EltTy = Context.DependentTy; 13093 else { 13094 SourceLocation ExpLoc; 13095 if (getLangOpts().CPlusPlus11 && Enum->isFixed() && 13096 !getLangOpts().MSVCCompat) { 13097 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the 13098 // constant-expression in the enumerator-definition shall be a converted 13099 // constant expression of the underlying type. 13100 EltTy = Enum->getIntegerType(); 13101 ExprResult Converted = 13102 CheckConvertedConstantExpression(Val, EltTy, EnumVal, 13103 CCEK_Enumerator); 13104 if (Converted.isInvalid()) 13105 Val = nullptr; 13106 else 13107 Val = Converted.get(); 13108 } else if (!Val->isValueDependent() && 13109 !(Val = VerifyIntegerConstantExpression(Val, 13110 &EnumVal).get())) { 13111 // C99 6.7.2.2p2: Make sure we have an integer constant expression. 13112 } else { 13113 if (Enum->isFixed()) { 13114 EltTy = Enum->getIntegerType(); 13115 13116 // In Obj-C and Microsoft mode, require the enumeration value to be 13117 // representable in the underlying type of the enumeration. In C++11, 13118 // we perform a non-narrowing conversion as part of converted constant 13119 // expression checking. 13120 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) { 13121 if (getLangOpts().MSVCCompat) { 13122 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy; 13123 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get(); 13124 } else 13125 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy; 13126 } else 13127 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get(); 13128 } else if (getLangOpts().CPlusPlus) { 13129 // C++11 [dcl.enum]p5: 13130 // If the underlying type is not fixed, the type of each enumerator 13131 // is the type of its initializing value: 13132 // - If an initializer is specified for an enumerator, the 13133 // initializing value has the same type as the expression. 13134 EltTy = Val->getType(); 13135 } else { 13136 // C99 6.7.2.2p2: 13137 // The expression that defines the value of an enumeration constant 13138 // shall be an integer constant expression that has a value 13139 // representable as an int. 13140 13141 // Complain if the value is not representable in an int. 13142 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) 13143 Diag(IdLoc, diag::ext_enum_value_not_int) 13144 << EnumVal.toString(10) << Val->getSourceRange() 13145 << (EnumVal.isUnsigned() || EnumVal.isNonNegative()); 13146 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { 13147 // Force the type of the expression to 'int'. 13148 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get(); 13149 } 13150 EltTy = Val->getType(); 13151 } 13152 } 13153 } 13154 } 13155 13156 if (!Val) { 13157 if (Enum->isDependentType()) 13158 EltTy = Context.DependentTy; 13159 else if (!LastEnumConst) { 13160 // C++0x [dcl.enum]p5: 13161 // If the underlying type is not fixed, the type of each enumerator 13162 // is the type of its initializing value: 13163 // - If no initializer is specified for the first enumerator, the 13164 // initializing value has an unspecified integral type. 13165 // 13166 // GCC uses 'int' for its unspecified integral type, as does 13167 // C99 6.7.2.2p3. 13168 if (Enum->isFixed()) { 13169 EltTy = Enum->getIntegerType(); 13170 } 13171 else { 13172 EltTy = Context.IntTy; 13173 } 13174 } else { 13175 // Assign the last value + 1. 13176 EnumVal = LastEnumConst->getInitVal(); 13177 ++EnumVal; 13178 EltTy = LastEnumConst->getType(); 13179 13180 // Check for overflow on increment. 13181 if (EnumVal < LastEnumConst->getInitVal()) { 13182 // C++0x [dcl.enum]p5: 13183 // If the underlying type is not fixed, the type of each enumerator 13184 // is the type of its initializing value: 13185 // 13186 // - Otherwise the type of the initializing value is the same as 13187 // the type of the initializing value of the preceding enumerator 13188 // unless the incremented value is not representable in that type, 13189 // in which case the type is an unspecified integral type 13190 // sufficient to contain the incremented value. If no such type 13191 // exists, the program is ill-formed. 13192 QualType T = getNextLargerIntegralType(Context, EltTy); 13193 if (T.isNull() || Enum->isFixed()) { 13194 // There is no integral type larger enough to represent this 13195 // value. Complain, then allow the value to wrap around. 13196 EnumVal = LastEnumConst->getInitVal(); 13197 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2); 13198 ++EnumVal; 13199 if (Enum->isFixed()) 13200 // When the underlying type is fixed, this is ill-formed. 13201 Diag(IdLoc, diag::err_enumerator_wrapped) 13202 << EnumVal.toString(10) 13203 << EltTy; 13204 else 13205 Diag(IdLoc, diag::ext_enumerator_increment_too_large) 13206 << EnumVal.toString(10); 13207 } else { 13208 EltTy = T; 13209 } 13210 13211 // Retrieve the last enumerator's value, extent that type to the 13212 // type that is supposed to be large enough to represent the incremented 13213 // value, then increment. 13214 EnumVal = LastEnumConst->getInitVal(); 13215 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); 13216 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); 13217 ++EnumVal; 13218 13219 // If we're not in C++, diagnose the overflow of enumerator values, 13220 // which in C99 means that the enumerator value is not representable in 13221 // an int (C99 6.7.2.2p2). However, we support GCC's extension that 13222 // permits enumerator values that are representable in some larger 13223 // integral type. 13224 if (!getLangOpts().CPlusPlus && !T.isNull()) 13225 Diag(IdLoc, diag::warn_enum_value_overflow); 13226 } else if (!getLangOpts().CPlusPlus && 13227 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) { 13228 // Enforce C99 6.7.2.2p2 even when we compute the next value. 13229 Diag(IdLoc, diag::ext_enum_value_not_int) 13230 << EnumVal.toString(10) << 1; 13231 } 13232 } 13233 } 13234 13235 if (!EltTy->isDependentType()) { 13236 // Make the enumerator value match the signedness and size of the 13237 // enumerator's type. 13238 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy)); 13239 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); 13240 } 13241 13242 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy, 13243 Val, EnumVal); 13244 } 13245 13246 13247 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst, 13248 SourceLocation IdLoc, IdentifierInfo *Id, 13249 AttributeList *Attr, 13250 SourceLocation EqualLoc, Expr *Val) { 13251 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl); 13252 EnumConstantDecl *LastEnumConst = 13253 cast_or_null<EnumConstantDecl>(lastEnumConst); 13254 13255 // The scope passed in may not be a decl scope. Zip up the scope tree until 13256 // we find one that is. 13257 S = getNonFieldDeclScope(S); 13258 13259 // Verify that there isn't already something declared with this name in this 13260 // scope. 13261 NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName, 13262 ForRedeclaration); 13263 if (PrevDecl && PrevDecl->isTemplateParameter()) { 13264 // Maybe we will complain about the shadowed template parameter. 13265 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); 13266 // Just pretend that we didn't see the previous declaration. 13267 PrevDecl = nullptr; 13268 } 13269 13270 if (PrevDecl) { 13271 // When in C++, we may get a TagDecl with the same name; in this case the 13272 // enum constant will 'hide' the tag. 13273 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && 13274 "Received TagDecl when not in C++!"); 13275 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { 13276 if (isa<EnumConstantDecl>(PrevDecl)) 13277 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; 13278 else 13279 Diag(IdLoc, diag::err_redefinition) << Id; 13280 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 13281 return nullptr; 13282 } 13283 } 13284 13285 // C++ [class.mem]p15: 13286 // If T is the name of a class, then each of the following shall have a name 13287 // different from T: 13288 // - every enumerator of every member of class T that is an unscoped 13289 // enumerated type 13290 if (CXXRecordDecl *Record 13291 = dyn_cast<CXXRecordDecl>( 13292 TheEnumDecl->getDeclContext()->getRedeclContext())) 13293 if (!TheEnumDecl->isScoped() && 13294 Record->getIdentifier() && Record->getIdentifier() == Id) 13295 Diag(IdLoc, diag::err_member_name_of_class) << Id; 13296 13297 EnumConstantDecl *New = 13298 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val); 13299 13300 if (New) { 13301 // Process attributes. 13302 if (Attr) ProcessDeclAttributeList(S, New, Attr); 13303 13304 // Register this decl in the current scope stack. 13305 New->setAccess(TheEnumDecl->getAccess()); 13306 PushOnScopeChains(New, S); 13307 } 13308 13309 ActOnDocumentableDecl(New); 13310 13311 return New; 13312 } 13313 13314 // Returns true when the enum initial expression does not trigger the 13315 // duplicate enum warning. A few common cases are exempted as follows: 13316 // Element2 = Element1 13317 // Element2 = Element1 + 1 13318 // Element2 = Element1 - 1 13319 // Where Element2 and Element1 are from the same enum. 13320 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) { 13321 Expr *InitExpr = ECD->getInitExpr(); 13322 if (!InitExpr) 13323 return true; 13324 InitExpr = InitExpr->IgnoreImpCasts(); 13325 13326 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) { 13327 if (!BO->isAdditiveOp()) 13328 return true; 13329 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS()); 13330 if (!IL) 13331 return true; 13332 if (IL->getValue() != 1) 13333 return true; 13334 13335 InitExpr = BO->getLHS(); 13336 } 13337 13338 // This checks if the elements are from the same enum. 13339 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr); 13340 if (!DRE) 13341 return true; 13342 13343 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl()); 13344 if (!EnumConstant) 13345 return true; 13346 13347 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) != 13348 Enum) 13349 return true; 13350 13351 return false; 13352 } 13353 13354 struct DupKey { 13355 int64_t val; 13356 bool isTombstoneOrEmptyKey; 13357 DupKey(int64_t val, bool isTombstoneOrEmptyKey) 13358 : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {} 13359 }; 13360 13361 static DupKey GetDupKey(const llvm::APSInt& Val) { 13362 return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(), 13363 false); 13364 } 13365 13366 struct DenseMapInfoDupKey { 13367 static DupKey getEmptyKey() { return DupKey(0, true); } 13368 static DupKey getTombstoneKey() { return DupKey(1, true); } 13369 static unsigned getHashValue(const DupKey Key) { 13370 return (unsigned)(Key.val * 37); 13371 } 13372 static bool isEqual(const DupKey& LHS, const DupKey& RHS) { 13373 return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey && 13374 LHS.val == RHS.val; 13375 } 13376 }; 13377 13378 // Emits a warning when an element is implicitly set a value that 13379 // a previous element has already been set to. 13380 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements, 13381 EnumDecl *Enum, 13382 QualType EnumType) { 13383 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation())) 13384 return; 13385 // Avoid anonymous enums 13386 if (!Enum->getIdentifier()) 13387 return; 13388 13389 // Only check for small enums. 13390 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64) 13391 return; 13392 13393 typedef SmallVector<EnumConstantDecl *, 3> ECDVector; 13394 typedef SmallVector<ECDVector *, 3> DuplicatesVector; 13395 13396 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector; 13397 typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey> 13398 ValueToVectorMap; 13399 13400 DuplicatesVector DupVector; 13401 ValueToVectorMap EnumMap; 13402 13403 // Populate the EnumMap with all values represented by enum constants without 13404 // an initialier. 13405 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 13406 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]); 13407 13408 // Null EnumConstantDecl means a previous diagnostic has been emitted for 13409 // this constant. Skip this enum since it may be ill-formed. 13410 if (!ECD) { 13411 return; 13412 } 13413 13414 if (ECD->getInitExpr()) 13415 continue; 13416 13417 DupKey Key = GetDupKey(ECD->getInitVal()); 13418 DeclOrVector &Entry = EnumMap[Key]; 13419 13420 // First time encountering this value. 13421 if (Entry.isNull()) 13422 Entry = ECD; 13423 } 13424 13425 // Create vectors for any values that has duplicates. 13426 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 13427 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]); 13428 if (!ValidDuplicateEnum(ECD, Enum)) 13429 continue; 13430 13431 DupKey Key = GetDupKey(ECD->getInitVal()); 13432 13433 DeclOrVector& Entry = EnumMap[Key]; 13434 if (Entry.isNull()) 13435 continue; 13436 13437 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) { 13438 // Ensure constants are different. 13439 if (D == ECD) 13440 continue; 13441 13442 // Create new vector and push values onto it. 13443 ECDVector *Vec = new ECDVector(); 13444 Vec->push_back(D); 13445 Vec->push_back(ECD); 13446 13447 // Update entry to point to the duplicates vector. 13448 Entry = Vec; 13449 13450 // Store the vector somewhere we can consult later for quick emission of 13451 // diagnostics. 13452 DupVector.push_back(Vec); 13453 continue; 13454 } 13455 13456 ECDVector *Vec = Entry.get<ECDVector*>(); 13457 // Make sure constants are not added more than once. 13458 if (*Vec->begin() == ECD) 13459 continue; 13460 13461 Vec->push_back(ECD); 13462 } 13463 13464 // Emit diagnostics. 13465 for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(), 13466 DupVectorEnd = DupVector.end(); 13467 DupVectorIter != DupVectorEnd; ++DupVectorIter) { 13468 ECDVector *Vec = *DupVectorIter; 13469 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements."); 13470 13471 // Emit warning for one enum constant. 13472 ECDVector::iterator I = Vec->begin(); 13473 S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values) 13474 << (*I)->getName() << (*I)->getInitVal().toString(10) 13475 << (*I)->getSourceRange(); 13476 ++I; 13477 13478 // Emit one note for each of the remaining enum constants with 13479 // the same value. 13480 for (ECDVector::iterator E = Vec->end(); I != E; ++I) 13481 S.Diag((*I)->getLocation(), diag::note_duplicate_element) 13482 << (*I)->getName() << (*I)->getInitVal().toString(10) 13483 << (*I)->getSourceRange(); 13484 delete Vec; 13485 } 13486 } 13487 13488 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc, 13489 SourceLocation RBraceLoc, Decl *EnumDeclX, 13490 ArrayRef<Decl *> Elements, 13491 Scope *S, AttributeList *Attr) { 13492 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX); 13493 QualType EnumType = Context.getTypeDeclType(Enum); 13494 13495 if (Attr) 13496 ProcessDeclAttributeList(S, Enum, Attr); 13497 13498 if (Enum->isDependentType()) { 13499 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 13500 EnumConstantDecl *ECD = 13501 cast_or_null<EnumConstantDecl>(Elements[i]); 13502 if (!ECD) continue; 13503 13504 ECD->setType(EnumType); 13505 } 13506 13507 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0); 13508 return; 13509 } 13510 13511 // TODO: If the result value doesn't fit in an int, it must be a long or long 13512 // long value. ISO C does not support this, but GCC does as an extension, 13513 // emit a warning. 13514 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 13515 unsigned CharWidth = Context.getTargetInfo().getCharWidth(); 13516 unsigned ShortWidth = Context.getTargetInfo().getShortWidth(); 13517 13518 // Verify that all the values are okay, compute the size of the values, and 13519 // reverse the list. 13520 unsigned NumNegativeBits = 0; 13521 unsigned NumPositiveBits = 0; 13522 13523 // Keep track of whether all elements have type int. 13524 bool AllElementsInt = true; 13525 13526 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 13527 EnumConstantDecl *ECD = 13528 cast_or_null<EnumConstantDecl>(Elements[i]); 13529 if (!ECD) continue; // Already issued a diagnostic. 13530 13531 const llvm::APSInt &InitVal = ECD->getInitVal(); 13532 13533 // Keep track of the size of positive and negative values. 13534 if (InitVal.isUnsigned() || InitVal.isNonNegative()) 13535 NumPositiveBits = std::max(NumPositiveBits, 13536 (unsigned)InitVal.getActiveBits()); 13537 else 13538 NumNegativeBits = std::max(NumNegativeBits, 13539 (unsigned)InitVal.getMinSignedBits()); 13540 13541 // Keep track of whether every enum element has type int (very commmon). 13542 if (AllElementsInt) 13543 AllElementsInt = ECD->getType() == Context.IntTy; 13544 } 13545 13546 // Figure out the type that should be used for this enum. 13547 QualType BestType; 13548 unsigned BestWidth; 13549 13550 // C++0x N3000 [conv.prom]p3: 13551 // An rvalue of an unscoped enumeration type whose underlying 13552 // type is not fixed can be converted to an rvalue of the first 13553 // of the following types that can represent all the values of 13554 // the enumeration: int, unsigned int, long int, unsigned long 13555 // int, long long int, or unsigned long long int. 13556 // C99 6.4.4.3p2: 13557 // An identifier declared as an enumeration constant has type int. 13558 // The C99 rule is modified by a gcc extension 13559 QualType BestPromotionType; 13560 13561 bool Packed = Enum->hasAttr<PackedAttr>(); 13562 // -fshort-enums is the equivalent to specifying the packed attribute on all 13563 // enum definitions. 13564 if (LangOpts.ShortEnums) 13565 Packed = true; 13566 13567 if (Enum->isFixed()) { 13568 BestType = Enum->getIntegerType(); 13569 if (BestType->isPromotableIntegerType()) 13570 BestPromotionType = Context.getPromotedIntegerType(BestType); 13571 else 13572 BestPromotionType = BestType; 13573 // We don't need to set BestWidth, because BestType is going to be the type 13574 // of the enumerators, but we do anyway because otherwise some compilers 13575 // warn that it might be used uninitialized. 13576 BestWidth = CharWidth; 13577 } 13578 else if (NumNegativeBits) { 13579 // If there is a negative value, figure out the smallest integer type (of 13580 // int/long/longlong) that fits. 13581 // If it's packed, check also if it fits a char or a short. 13582 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) { 13583 BestType = Context.SignedCharTy; 13584 BestWidth = CharWidth; 13585 } else if (Packed && NumNegativeBits <= ShortWidth && 13586 NumPositiveBits < ShortWidth) { 13587 BestType = Context.ShortTy; 13588 BestWidth = ShortWidth; 13589 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { 13590 BestType = Context.IntTy; 13591 BestWidth = IntWidth; 13592 } else { 13593 BestWidth = Context.getTargetInfo().getLongWidth(); 13594 13595 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { 13596 BestType = Context.LongTy; 13597 } else { 13598 BestWidth = Context.getTargetInfo().getLongLongWidth(); 13599 13600 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) 13601 Diag(Enum->getLocation(), diag::ext_enum_too_large); 13602 BestType = Context.LongLongTy; 13603 } 13604 } 13605 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType); 13606 } else { 13607 // If there is no negative value, figure out the smallest type that fits 13608 // all of the enumerator values. 13609 // If it's packed, check also if it fits a char or a short. 13610 if (Packed && NumPositiveBits <= CharWidth) { 13611 BestType = Context.UnsignedCharTy; 13612 BestPromotionType = Context.IntTy; 13613 BestWidth = CharWidth; 13614 } else if (Packed && NumPositiveBits <= ShortWidth) { 13615 BestType = Context.UnsignedShortTy; 13616 BestPromotionType = Context.IntTy; 13617 BestWidth = ShortWidth; 13618 } else if (NumPositiveBits <= IntWidth) { 13619 BestType = Context.UnsignedIntTy; 13620 BestWidth = IntWidth; 13621 BestPromotionType 13622 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 13623 ? Context.UnsignedIntTy : Context.IntTy; 13624 } else if (NumPositiveBits <= 13625 (BestWidth = Context.getTargetInfo().getLongWidth())) { 13626 BestType = Context.UnsignedLongTy; 13627 BestPromotionType 13628 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 13629 ? Context.UnsignedLongTy : Context.LongTy; 13630 } else { 13631 BestWidth = Context.getTargetInfo().getLongLongWidth(); 13632 assert(NumPositiveBits <= BestWidth && 13633 "How could an initializer get larger than ULL?"); 13634 BestType = Context.UnsignedLongLongTy; 13635 BestPromotionType 13636 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 13637 ? Context.UnsignedLongLongTy : Context.LongLongTy; 13638 } 13639 } 13640 13641 // Loop over all of the enumerator constants, changing their types to match 13642 // the type of the enum if needed. 13643 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 13644 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]); 13645 if (!ECD) continue; // Already issued a diagnostic. 13646 13647 // Standard C says the enumerators have int type, but we allow, as an 13648 // extension, the enumerators to be larger than int size. If each 13649 // enumerator value fits in an int, type it as an int, otherwise type it the 13650 // same as the enumerator decl itself. This means that in "enum { X = 1U }" 13651 // that X has type 'int', not 'unsigned'. 13652 13653 // Determine whether the value fits into an int. 13654 llvm::APSInt InitVal = ECD->getInitVal(); 13655 13656 // If it fits into an integer type, force it. Otherwise force it to match 13657 // the enum decl type. 13658 QualType NewTy; 13659 unsigned NewWidth; 13660 bool NewSign; 13661 if (!getLangOpts().CPlusPlus && 13662 !Enum->isFixed() && 13663 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) { 13664 NewTy = Context.IntTy; 13665 NewWidth = IntWidth; 13666 NewSign = true; 13667 } else if (ECD->getType() == BestType) { 13668 // Already the right type! 13669 if (getLangOpts().CPlusPlus) 13670 // C++ [dcl.enum]p4: Following the closing brace of an 13671 // enum-specifier, each enumerator has the type of its 13672 // enumeration. 13673 ECD->setType(EnumType); 13674 continue; 13675 } else { 13676 NewTy = BestType; 13677 NewWidth = BestWidth; 13678 NewSign = BestType->isSignedIntegerOrEnumerationType(); 13679 } 13680 13681 // Adjust the APSInt value. 13682 InitVal = InitVal.extOrTrunc(NewWidth); 13683 InitVal.setIsSigned(NewSign); 13684 ECD->setInitVal(InitVal); 13685 13686 // Adjust the Expr initializer and type. 13687 if (ECD->getInitExpr() && 13688 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType())) 13689 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy, 13690 CK_IntegralCast, 13691 ECD->getInitExpr(), 13692 /*base paths*/ nullptr, 13693 VK_RValue)); 13694 if (getLangOpts().CPlusPlus) 13695 // C++ [dcl.enum]p4: Following the closing brace of an 13696 // enum-specifier, each enumerator has the type of its 13697 // enumeration. 13698 ECD->setType(EnumType); 13699 else 13700 ECD->setType(NewTy); 13701 } 13702 13703 Enum->completeDefinition(BestType, BestPromotionType, 13704 NumPositiveBits, NumNegativeBits); 13705 13706 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType); 13707 13708 // Now that the enum type is defined, ensure it's not been underaligned. 13709 if (Enum->hasAttrs()) 13710 CheckAlignasUnderalignment(Enum); 13711 } 13712 13713 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr, 13714 SourceLocation StartLoc, 13715 SourceLocation EndLoc) { 13716 StringLiteral *AsmString = cast<StringLiteral>(expr); 13717 13718 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext, 13719 AsmString, StartLoc, 13720 EndLoc); 13721 CurContext->addDecl(New); 13722 return New; 13723 } 13724 13725 static void checkModuleImportContext(Sema &S, Module *M, 13726 SourceLocation ImportLoc, 13727 DeclContext *DC) { 13728 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 13729 switch (LSD->getLanguage()) { 13730 case LinkageSpecDecl::lang_c: 13731 if (!M->IsExternC) { 13732 S.Diag(ImportLoc, diag::err_module_import_in_extern_c) 13733 << M->getFullModuleName(); 13734 S.Diag(LSD->getLocStart(), diag::note_module_import_in_extern_c); 13735 return; 13736 } 13737 break; 13738 case LinkageSpecDecl::lang_cxx: 13739 break; 13740 } 13741 DC = LSD->getParent(); 13742 } 13743 13744 while (isa<LinkageSpecDecl>(DC)) 13745 DC = DC->getParent(); 13746 if (!isa<TranslationUnitDecl>(DC)) { 13747 S.Diag(ImportLoc, diag::err_module_import_not_at_top_level) 13748 << M->getFullModuleName() << DC; 13749 S.Diag(cast<Decl>(DC)->getLocStart(), 13750 diag::note_module_import_not_at_top_level) 13751 << DC; 13752 } 13753 } 13754 13755 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc, 13756 SourceLocation ImportLoc, 13757 ModuleIdPath Path) { 13758 Module *Mod = 13759 getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible, 13760 /*IsIncludeDirective=*/false); 13761 if (!Mod) 13762 return true; 13763 13764 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 13765 13766 // FIXME: we should support importing a submodule within a different submodule 13767 // of the same top-level module. Until we do, make it an error rather than 13768 // silently ignoring the import. 13769 if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule) 13770 Diag(ImportLoc, diag::err_module_self_import) 13771 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 13772 else if (Mod->getTopLevelModuleName() == getLangOpts().ImplementationOfModule) 13773 Diag(ImportLoc, diag::err_module_import_in_implementation) 13774 << Mod->getFullModuleName() << getLangOpts().ImplementationOfModule; 13775 13776 SmallVector<SourceLocation, 2> IdentifierLocs; 13777 Module *ModCheck = Mod; 13778 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 13779 // If we've run out of module parents, just drop the remaining identifiers. 13780 // We need the length to be consistent. 13781 if (!ModCheck) 13782 break; 13783 ModCheck = ModCheck->Parent; 13784 13785 IdentifierLocs.push_back(Path[I].second); 13786 } 13787 13788 ImportDecl *Import = ImportDecl::Create(Context, 13789 Context.getTranslationUnitDecl(), 13790 AtLoc.isValid()? AtLoc : ImportLoc, 13791 Mod, IdentifierLocs); 13792 Context.getTranslationUnitDecl()->addDecl(Import); 13793 return Import; 13794 } 13795 13796 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 13797 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext); 13798 13799 // FIXME: Should we synthesize an ImportDecl here? 13800 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc, 13801 /*Complain=*/true); 13802 } 13803 13804 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 13805 Module *Mod) { 13806 // Bail if we're not allowed to implicitly import a module here. 13807 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery) 13808 return; 13809 13810 // Create the implicit import declaration. 13811 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 13812 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 13813 Loc, Mod, Loc); 13814 TU->addDecl(ImportD); 13815 Consumer.HandleImplicitImportDecl(ImportD); 13816 13817 // Make the module visible. 13818 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc, 13819 /*Complain=*/false); 13820 } 13821 13822 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name, 13823 IdentifierInfo* AliasName, 13824 SourceLocation PragmaLoc, 13825 SourceLocation NameLoc, 13826 SourceLocation AliasNameLoc) { 13827 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, 13828 LookupOrdinaryName); 13829 AsmLabelAttr *Attr = ::new (Context) AsmLabelAttr(AliasNameLoc, Context, 13830 AliasName->getName(), 0); 13831 13832 if (PrevDecl) 13833 PrevDecl->addAttr(Attr); 13834 else 13835 (void)ExtnameUndeclaredIdentifiers.insert( 13836 std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr)); 13837 } 13838 13839 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, 13840 SourceLocation PragmaLoc, 13841 SourceLocation NameLoc) { 13842 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName); 13843 13844 if (PrevDecl) { 13845 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc)); 13846 } else { 13847 (void)WeakUndeclaredIdentifiers.insert( 13848 std::pair<IdentifierInfo*,WeakInfo> 13849 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc))); 13850 } 13851 } 13852 13853 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, 13854 IdentifierInfo* AliasName, 13855 SourceLocation PragmaLoc, 13856 SourceLocation NameLoc, 13857 SourceLocation AliasNameLoc) { 13858 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc, 13859 LookupOrdinaryName); 13860 WeakInfo W = WeakInfo(Name, NameLoc); 13861 13862 if (PrevDecl) { 13863 if (!PrevDecl->hasAttr<AliasAttr>()) 13864 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl)) 13865 DeclApplyPragmaWeak(TUScope, ND, W); 13866 } else { 13867 (void)WeakUndeclaredIdentifiers.insert( 13868 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W)); 13869 } 13870 } 13871 13872 Decl *Sema::getObjCDeclContext() const { 13873 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext)); 13874 } 13875 13876 AvailabilityResult Sema::getCurContextAvailability() const { 13877 const Decl *D = cast<Decl>(getCurObjCLexicalContext()); 13878 // If we are within an Objective-C method, we should consult 13879 // both the availability of the method as well as the 13880 // enclosing class. If the class is (say) deprecated, 13881 // the entire method is considered deprecated from the 13882 // purpose of checking if the current context is deprecated. 13883 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { 13884 AvailabilityResult R = MD->getAvailability(); 13885 if (R != AR_Available) 13886 return R; 13887 D = MD->getClassInterface(); 13888 } 13889 // If we are within an Objective-c @implementation, it 13890 // gets the same availability context as the @interface. 13891 else if (const ObjCImplementationDecl *ID = 13892 dyn_cast<ObjCImplementationDecl>(D)) { 13893 D = ID->getClassInterface(); 13894 } 13895 // Recover from user error. 13896 return D ? D->getAvailability() : AR_Available; 13897 }