Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
4965-calib.c
Go to the documentation of this file.
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license. When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  * Intel Linux Wireless <[email protected]>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  * * Redistributions of source code must retain the above copyright
41  * notice, this list of conditions and the following disclaimer.
42  * * Redistributions in binary form must reproduce the above copyright
43  * notice, this list of conditions and the following disclaimer in
44  * the documentation and/or other materials provided with the
45  * distribution.
46  * * Neither the name Intel Corporation nor the names of its
47  * contributors may be used to endorse or promote products derived
48  * from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62 
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
65 
66 #include "common.h"
67 #include "4965.h"
68 
69 /*****************************************************************************
70  * INIT calibrations framework
71  *****************************************************************************/
72 
80 };
81 
82 /*****************************************************************************
83  * RUNTIME calibrations framework
84  *****************************************************************************/
85 
86 /* "false alarms" are signals that our DSP tries to lock onto,
87  * but then determines that they are either noise, or transmissions
88  * from a distant wireless network (also "noise", really) that get
89  * "stepped on" by stronger transmissions within our own network.
90  * This algorithm attempts to set a sensitivity level that is high
91  * enough to receive all of our own network traffic, but not so
92  * high that our DSP gets too busy trying to lock onto non-network
93  * activity/noise. */
94 static int
95 il4965_sens_energy_cck(struct il_priv *il, u32 norm_fa, u32 rx_enable_time,
97 {
98  u32 max_nrg_cck = 0;
99  int i = 0;
100  u8 max_silence_rssi = 0;
101  u32 silence_ref = 0;
102  u8 silence_rssi_a = 0;
103  u8 silence_rssi_b = 0;
104  u8 silence_rssi_c = 0;
105  u32 val;
106 
107  /* "false_alarms" values below are cross-multiplications to assess the
108  * numbers of false alarms within the measured period of actual Rx
109  * (Rx is off when we're txing), vs the min/max expected false alarms
110  * (some should be expected if rx is sensitive enough) in a
111  * hypothetical listening period of 200 time units (TU), 204.8 msec:
112  *
113  * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
114  *
115  * */
116  u32 false_alarms = norm_fa * 200 * 1024;
117  u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
118  u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
119  struct il_sensitivity_data *data = NULL;
120  const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
121 
122  data = &(il->sensitivity_data);
123 
124  data->nrg_auto_corr_silence_diff = 0;
125 
126  /* Find max silence rssi among all 3 receivers.
127  * This is background noise, which may include transmissions from other
128  * networks, measured during silence before our network's beacon */
129  silence_rssi_a =
130  (u8) ((rx_info->beacon_silence_rssi_a & ALL_BAND_FILTER) >> 8);
131  silence_rssi_b =
132  (u8) ((rx_info->beacon_silence_rssi_b & ALL_BAND_FILTER) >> 8);
133  silence_rssi_c =
134  (u8) ((rx_info->beacon_silence_rssi_c & ALL_BAND_FILTER) >> 8);
135 
136  val = max(silence_rssi_b, silence_rssi_c);
137  max_silence_rssi = max(silence_rssi_a, (u8) val);
138 
139  /* Store silence rssi in 20-beacon history table */
140  data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
141  data->nrg_silence_idx++;
143  data->nrg_silence_idx = 0;
144 
145  /* Find max silence rssi across 20 beacon history */
146  for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
147  val = data->nrg_silence_rssi[i];
148  silence_ref = max(silence_ref, val);
149  }
150  D_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n", silence_rssi_a,
151  silence_rssi_b, silence_rssi_c, silence_ref);
152 
153  /* Find max rx energy (min value!) among all 3 receivers,
154  * measured during beacon frame.
155  * Save it in 10-beacon history table. */
156  i = data->nrg_energy_idx;
157  val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
158  data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
159 
160  data->nrg_energy_idx++;
161  if (data->nrg_energy_idx >= 10)
162  data->nrg_energy_idx = 0;
163 
164  /* Find min rx energy (max value) across 10 beacon history.
165  * This is the minimum signal level that we want to receive well.
166  * Add backoff (margin so we don't miss slightly lower energy frames).
167  * This establishes an upper bound (min value) for energy threshold. */
168  max_nrg_cck = data->nrg_value[0];
169  for (i = 1; i < 10; i++)
170  max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
171  max_nrg_cck += 6;
172 
173  D_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
174  rx_info->beacon_energy_a, rx_info->beacon_energy_b,
175  rx_info->beacon_energy_c, max_nrg_cck - 6);
176 
177  /* Count number of consecutive beacons with fewer-than-desired
178  * false alarms. */
179  if (false_alarms < min_false_alarms)
180  data->num_in_cck_no_fa++;
181  else
182  data->num_in_cck_no_fa = 0;
183  D_CALIB("consecutive bcns with few false alarms = %u\n",
184  data->num_in_cck_no_fa);
185 
186  /* If we got too many false alarms this time, reduce sensitivity */
187  if (false_alarms > max_false_alarms &&
189  D_CALIB("norm FA %u > max FA %u\n", false_alarms,
190  max_false_alarms);
191  D_CALIB("... reducing sensitivity\n");
193  /* Store for "fewer than desired" on later beacon */
194  data->nrg_silence_ref = silence_ref;
195 
196  /* increase energy threshold (reduce nrg value)
197  * to decrease sensitivity */
198  data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
199  /* Else if we got fewer than desired, increase sensitivity */
200  } else if (false_alarms < min_false_alarms) {
202 
203  /* Compare silence level with silence level for most recent
204  * healthy number or too many false alarms */
206  (s32) data->nrg_silence_ref - (s32) silence_ref;
207 
208  D_CALIB("norm FA %u < min FA %u, silence diff %d\n",
209  false_alarms, min_false_alarms,
211 
212  /* Increase value to increase sensitivity, but only if:
213  * 1a) previous beacon did *not* have *too many* false alarms
214  * 1b) AND there's a significant difference in Rx levels
215  * from a previous beacon with too many, or healthy # FAs
216  * OR 2) We've seen a lot of beacons (100) with too few
217  * false alarms */
218  if (data->nrg_prev_state != IL_FA_TOO_MANY &&
221 
222  D_CALIB("... increasing sensitivity\n");
223  /* Increase nrg value to increase sensitivity */
224  val = data->nrg_th_cck + NRG_STEP_CCK;
225  data->nrg_th_cck = min((u32) ranges->min_nrg_cck, val);
226  } else {
227  D_CALIB("... but not changing sensitivity\n");
228  }
229 
230  /* Else we got a healthy number of false alarms, keep status quo */
231  } else {
232  D_CALIB(" FA in safe zone\n");
234 
235  /* Store for use in "fewer than desired" with later beacon */
236  data->nrg_silence_ref = silence_ref;
237 
238  /* If previous beacon had too many false alarms,
239  * give it some extra margin by reducing sensitivity again
240  * (but don't go below measured energy of desired Rx) */
241  if (IL_FA_TOO_MANY == data->nrg_prev_state) {
242  D_CALIB("... increasing margin\n");
243  if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
244  data->nrg_th_cck -= NRG_MARGIN;
245  else
246  data->nrg_th_cck = max_nrg_cck;
247  }
248  }
249 
250  /* Make sure the energy threshold does not go above the measured
251  * energy of the desired Rx signals (reduced by backoff margin),
252  * or else we might start missing Rx frames.
253  * Lower value is higher energy, so we use max()!
254  */
255  data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
256  D_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck);
257 
258  data->nrg_prev_state = data->nrg_curr_state;
259 
260  /* Auto-correlation CCK algorithm */
261  if (false_alarms > min_false_alarms) {
262 
263  /* increase auto_corr values to decrease sensitivity
264  * so the DSP won't be disturbed by the noise
265  */
268  else {
269  val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
270  data->auto_corr_cck =
271  min((u32) ranges->auto_corr_max_cck, val);
272  }
274  data->auto_corr_cck_mrc =
275  min((u32) ranges->auto_corr_max_cck_mrc, val);
276  } else if (false_alarms < min_false_alarms &&
279 
280  /* Decrease auto_corr values to increase sensitivity */
281  val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
282  data->auto_corr_cck = max((u32) ranges->auto_corr_min_cck, val);
284  data->auto_corr_cck_mrc =
285  max((u32) ranges->auto_corr_min_cck_mrc, val);
286  }
287 
288  return 0;
289 }
290 
291 static int
292 il4965_sens_auto_corr_ofdm(struct il_priv *il, u32 norm_fa, u32 rx_enable_time)
293 {
294  u32 val;
295  u32 false_alarms = norm_fa * 200 * 1024;
296  u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
297  u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
298  struct il_sensitivity_data *data = NULL;
299  const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
300 
301  data = &(il->sensitivity_data);
302 
303  /* If we got too many false alarms this time, reduce sensitivity */
304  if (false_alarms > max_false_alarms) {
305 
306  D_CALIB("norm FA %u > max FA %u)\n", false_alarms,
307  max_false_alarms);
308 
309  val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
310  data->auto_corr_ofdm =
311  min((u32) ranges->auto_corr_max_ofdm, val);
312 
314  data->auto_corr_ofdm_mrc =
315  min((u32) ranges->auto_corr_max_ofdm_mrc, val);
316 
318  data->auto_corr_ofdm_x1 =
319  min((u32) ranges->auto_corr_max_ofdm_x1, val);
320 
322  data->auto_corr_ofdm_mrc_x1 =
323  min((u32) ranges->auto_corr_max_ofdm_mrc_x1, val);
324  }
325 
326  /* Else if we got fewer than desired, increase sensitivity */
327  else if (false_alarms < min_false_alarms) {
328 
329  D_CALIB("norm FA %u < min FA %u\n", false_alarms,
330  min_false_alarms);
331 
332  val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
333  data->auto_corr_ofdm =
334  max((u32) ranges->auto_corr_min_ofdm, val);
335 
337  data->auto_corr_ofdm_mrc =
338  max((u32) ranges->auto_corr_min_ofdm_mrc, val);
339 
341  data->auto_corr_ofdm_x1 =
342  max((u32) ranges->auto_corr_min_ofdm_x1, val);
343 
345  data->auto_corr_ofdm_mrc_x1 =
346  max((u32) ranges->auto_corr_min_ofdm_mrc_x1, val);
347  } else {
348  D_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
349  min_false_alarms, false_alarms, max_false_alarms);
350  }
351  return 0;
352 }
353 
354 static void
355 il4965_prepare_legacy_sensitivity_tbl(struct il_priv *il,
356  struct il_sensitivity_data *data,
357  __le16 *tbl)
358 {
360  cpu_to_le16((u16) data->auto_corr_ofdm);
367 
369  cpu_to_le16((u16) data->auto_corr_cck);
372 
375 
381 
382  D_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
383  data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
385  data->nrg_th_ofdm);
386 
387  D_CALIB("cck: ac %u mrc %u thresh %u\n", data->auto_corr_cck,
388  data->auto_corr_cck_mrc, data->nrg_th_cck);
389 }
390 
391 /* Prepare a C_SENSITIVITY, send to uCode if values have changed */
392 static int
393 il4965_sensitivity_write(struct il_priv *il)
394 {
395  struct il_sensitivity_cmd cmd;
396  struct il_sensitivity_data *data = NULL;
397  struct il_host_cmd cmd_out = {
398  .id = C_SENSITIVITY,
399  .len = sizeof(struct il_sensitivity_cmd),
400  .flags = CMD_ASYNC,
401  .data = &cmd,
402  };
403 
404  data = &(il->sensitivity_data);
405 
406  memset(&cmd, 0, sizeof(cmd));
407 
408  il4965_prepare_legacy_sensitivity_tbl(il, data, &cmd.table[0]);
409 
410  /* Update uCode's "work" table, and copy it to DSP */
412 
413  /* Don't send command to uCode if nothing has changed */
414  if (!memcmp
415  (&cmd.table[0], &(il->sensitivity_tbl[0]),
416  sizeof(u16) * HD_TBL_SIZE)) {
417  D_CALIB("No change in C_SENSITIVITY\n");
418  return 0;
419  }
420 
421  /* Copy table for comparison next time */
422  memcpy(&(il->sensitivity_tbl[0]), &(cmd.table[0]),
423  sizeof(u16) * HD_TBL_SIZE);
424 
425  return il_send_cmd(il, &cmd_out);
426 }
427 
428 void
430 {
431  int ret = 0;
432  int i;
433  struct il_sensitivity_data *data = NULL;
434  const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
435 
436  if (il->disable_sens_cal)
437  return;
438 
439  D_CALIB("Start il4965_init_sensitivity\n");
440 
441  /* Clear driver's sensitivity algo data */
442  data = &(il->sensitivity_data);
443 
444  if (ranges == NULL)
445  return;
446 
447  memset(data, 0, sizeof(struct il_sensitivity_data));
448 
449  data->num_in_cck_no_fa = 0;
452  data->nrg_silence_ref = 0;
453  data->nrg_silence_idx = 0;
454  data->nrg_energy_idx = 0;
455 
456  for (i = 0; i < 10; i++)
457  data->nrg_value[i] = 0;
458 
459  for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
460  data->nrg_silence_rssi[i] = 0;
461 
462  data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
468  data->nrg_th_cck = ranges->nrg_th_cck;
469  data->nrg_th_ofdm = ranges->nrg_th_ofdm;
470  data->barker_corr_th_min = ranges->barker_corr_th_min;
472  data->nrg_th_cca = ranges->nrg_th_cca;
473 
474  data->last_bad_plcp_cnt_ofdm = 0;
475  data->last_fa_cnt_ofdm = 0;
476  data->last_bad_plcp_cnt_cck = 0;
477  data->last_fa_cnt_cck = 0;
478 
479  ret |= il4965_sensitivity_write(il);
480  D_CALIB("<<return 0x%X\n", ret);
481 }
482 
483 void
485 {
486  u32 rx_enable_time;
487  u32 fa_cck;
488  u32 fa_ofdm;
489  u32 bad_plcp_cck;
490  u32 bad_plcp_ofdm;
491  u32 norm_fa_ofdm;
492  u32 norm_fa_cck;
493  struct il_sensitivity_data *data = NULL;
494  struct stats_rx_non_phy *rx_info;
495  struct stats_rx_phy *ofdm, *cck;
496  unsigned long flags;
497  struct stats_general_data statis;
498 
499  if (il->disable_sens_cal)
500  return;
501 
502  data = &(il->sensitivity_data);
503 
504  if (!il_is_any_associated(il)) {
505  D_CALIB("<< - not associated\n");
506  return;
507  }
508 
509  spin_lock_irqsave(&il->lock, flags);
510 
511  rx_info = &(((struct il_notif_stats *)resp)->rx.general);
512  ofdm = &(((struct il_notif_stats *)resp)->rx.ofdm);
513  cck = &(((struct il_notif_stats *)resp)->rx.cck);
514 
516  D_CALIB("<< invalid data.\n");
517  spin_unlock_irqrestore(&il->lock, flags);
518  return;
519  }
520 
521  /* Extract Statistics: */
522  rx_enable_time = le32_to_cpu(rx_info->channel_load);
523  fa_cck = le32_to_cpu(cck->false_alarm_cnt);
524  fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
525  bad_plcp_cck = le32_to_cpu(cck->plcp_err);
526  bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
527 
528  statis.beacon_silence_rssi_a =
530  statis.beacon_silence_rssi_b =
532  statis.beacon_silence_rssi_c =
534  statis.beacon_energy_a = le32_to_cpu(rx_info->beacon_energy_a);
535  statis.beacon_energy_b = le32_to_cpu(rx_info->beacon_energy_b);
536  statis.beacon_energy_c = le32_to_cpu(rx_info->beacon_energy_c);
537 
538  spin_unlock_irqrestore(&il->lock, flags);
539 
540  D_CALIB("rx_enable_time = %u usecs\n", rx_enable_time);
541 
542  if (!rx_enable_time) {
543  D_CALIB("<< RX Enable Time == 0!\n");
544  return;
545  }
546 
547  /* These stats increase monotonically, and do not reset
548  * at each beacon. Calculate difference from last value, or just
549  * use the new stats value if it has reset or wrapped around. */
550  if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
551  data->last_bad_plcp_cnt_cck = bad_plcp_cck;
552  else {
553  bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
554  data->last_bad_plcp_cnt_cck += bad_plcp_cck;
555  }
556 
557  if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
558  data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
559  else {
560  bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
561  data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
562  }
563 
564  if (data->last_fa_cnt_ofdm > fa_ofdm)
565  data->last_fa_cnt_ofdm = fa_ofdm;
566  else {
567  fa_ofdm -= data->last_fa_cnt_ofdm;
568  data->last_fa_cnt_ofdm += fa_ofdm;
569  }
570 
571  if (data->last_fa_cnt_cck > fa_cck)
572  data->last_fa_cnt_cck = fa_cck;
573  else {
574  fa_cck -= data->last_fa_cnt_cck;
575  data->last_fa_cnt_cck += fa_cck;
576  }
577 
578  /* Total aborted signal locks */
579  norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
580  norm_fa_cck = fa_cck + bad_plcp_cck;
581 
582  D_CALIB("cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
583  bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
584 
585  il4965_sens_auto_corr_ofdm(il, norm_fa_ofdm, rx_enable_time);
586  il4965_sens_energy_cck(il, norm_fa_cck, rx_enable_time, &statis);
587 
588  il4965_sensitivity_write(il);
589 }
590 
591 static inline u8
592 il4965_find_first_chain(u8 mask)
593 {
594  if (mask & ANT_A)
595  return CHAIN_A;
596  if (mask & ANT_B)
597  return CHAIN_B;
598  return CHAIN_C;
599 }
600 
605 static void
606 il4965_find_disconn_antenna(struct il_priv *il, u32 * average_sig,
607  struct il_chain_noise_data *data)
608 {
609  u32 active_chains = 0;
610  u32 max_average_sig;
611  u16 max_average_sig_antenna_i;
612  u8 num_tx_chains;
613  u8 first_chain;
614  u16 i = 0;
615 
616  average_sig[0] =
617  data->chain_signal_a /
618  il->cfg->chain_noise_num_beacons;
619  average_sig[1] =
620  data->chain_signal_b /
621  il->cfg->chain_noise_num_beacons;
622  average_sig[2] =
623  data->chain_signal_c /
624  il->cfg->chain_noise_num_beacons;
625 
626  if (average_sig[0] >= average_sig[1]) {
627  max_average_sig = average_sig[0];
628  max_average_sig_antenna_i = 0;
629  active_chains = (1 << max_average_sig_antenna_i);
630  } else {
631  max_average_sig = average_sig[1];
632  max_average_sig_antenna_i = 1;
633  active_chains = (1 << max_average_sig_antenna_i);
634  }
635 
636  if (average_sig[2] >= max_average_sig) {
637  max_average_sig = average_sig[2];
638  max_average_sig_antenna_i = 2;
639  active_chains = (1 << max_average_sig_antenna_i);
640  }
641 
642  D_CALIB("average_sig: a %d b %d c %d\n", average_sig[0], average_sig[1],
643  average_sig[2]);
644  D_CALIB("max_average_sig = %d, antenna %d\n", max_average_sig,
645  max_average_sig_antenna_i);
646 
647  /* Compare signal strengths for all 3 receivers. */
648  for (i = 0; i < NUM_RX_CHAINS; i++) {
649  if (i != max_average_sig_antenna_i) {
650  s32 rssi_delta = (max_average_sig - average_sig[i]);
651 
652  /* If signal is very weak, compared with
653  * strongest, mark it as disconnected. */
654  if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
655  data->disconn_array[i] = 1;
656  else
657  active_chains |= (1 << i);
658  D_CALIB("i = %d rssiDelta = %d "
659  "disconn_array[i] = %d\n", i, rssi_delta,
660  data->disconn_array[i]);
661  }
662  }
663 
664  /*
665  * The above algorithm sometimes fails when the ucode
666  * reports 0 for all chains. It's not clear why that
667  * happens to start with, but it is then causing trouble
668  * because this can make us enable more chains than the
669  * hardware really has.
670  *
671  * To be safe, simply mask out any chains that we know
672  * are not on the device.
673  */
674  active_chains &= il->hw_params.valid_rx_ant;
675 
676  num_tx_chains = 0;
677  for (i = 0; i < NUM_RX_CHAINS; i++) {
678  /* loops on all the bits of
679  * il->hw_setting.valid_tx_ant */
680  u8 ant_msk = (1 << i);
681  if (!(il->hw_params.valid_tx_ant & ant_msk))
682  continue;
683 
684  num_tx_chains++;
685  if (data->disconn_array[i] == 0)
686  /* there is a Tx antenna connected */
687  break;
688  if (num_tx_chains == il->hw_params.tx_chains_num &&
689  data->disconn_array[i]) {
690  /*
691  * If all chains are disconnected
692  * connect the first valid tx chain
693  */
694  first_chain =
695  il4965_find_first_chain(il->cfg->valid_tx_ant);
696  data->disconn_array[first_chain] = 0;
697  active_chains |= BIT(first_chain);
698  D_CALIB("All Tx chains are disconnected"
699  "- declare %d as connected\n", first_chain);
700  break;
701  }
702  }
703 
704  if (active_chains != il->hw_params.valid_rx_ant &&
705  active_chains != il->chain_noise_data.active_chains)
706  D_CALIB("Detected that not all antennas are connected! "
707  "Connected: %#x, valid: %#x.\n", active_chains,
708  il->hw_params.valid_rx_ant);
709 
710  /* Save for use within RXON, TX, SCAN commands, etc. */
711  data->active_chains = active_chains;
712  D_CALIB("active_chains (bitwise) = 0x%x\n", active_chains);
713 }
714 
715 static void
716 il4965_gain_computation(struct il_priv *il, u32 * average_noise,
717  u16 min_average_noise_antenna_i, u32 min_average_noise,
718  u8 default_chain)
719 {
720  int i, ret;
721  struct il_chain_noise_data *data = &il->chain_noise_data;
722 
723  data->delta_gain_code[min_average_noise_antenna_i] = 0;
724 
725  for (i = default_chain; i < NUM_RX_CHAINS; i++) {
726  s32 delta_g = 0;
727 
728  if (!data->disconn_array[i] &&
729  data->delta_gain_code[i] ==
731  delta_g = average_noise[i] - min_average_noise;
732  data->delta_gain_code[i] = (u8) ((delta_g * 10) / 15);
733  data->delta_gain_code[i] =
734  min(data->delta_gain_code[i],
736 
737  data->delta_gain_code[i] =
738  (data->delta_gain_code[i] | (1 << 2));
739  } else {
740  data->delta_gain_code[i] = 0;
741  }
742  }
743  D_CALIB("delta_gain_codes: a %d b %d c %d\n", data->delta_gain_code[0],
744  data->delta_gain_code[1], data->delta_gain_code[2]);
745 
746  /* Differential gain gets sent to uCode only once */
747  if (!data->radio_write) {
749  data->radio_write = 1;
750 
751  memset(&cmd, 0, sizeof(cmd));
752  cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
753  cmd.diff_gain_a = data->delta_gain_code[0];
754  cmd.diff_gain_b = data->delta_gain_code[1];
755  cmd.diff_gain_c = data->delta_gain_code[2];
756  ret = il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd);
757  if (ret)
758  D_CALIB("fail sending cmd " "C_PHY_CALIBRATION\n");
759 
760  /* TODO we might want recalculate
761  * rx_chain in rxon cmd */
762 
763  /* Mark so we run this algo only once! */
765  }
766 }
767 
768 /*
769  * Accumulate 16 beacons of signal and noise stats for each of
770  * 3 receivers/antennas/rx-chains, then figure out:
771  * 1) Which antennas are connected.
772  * 2) Differential rx gain settings to balance the 3 receivers.
773  */
774 void
775 il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp)
776 {
777  struct il_chain_noise_data *data = NULL;
778 
782  u32 chain_sig_a;
783  u32 chain_sig_b;
784  u32 chain_sig_c;
785  u32 average_sig[NUM_RX_CHAINS] = { INITIALIZATION_VALUE };
786  u32 average_noise[NUM_RX_CHAINS] = { INITIALIZATION_VALUE };
787  u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
788  u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
789  u16 i = 0;
790  u16 rxon_chnum = INITIALIZATION_VALUE;
791  u16 stat_chnum = INITIALIZATION_VALUE;
792  u8 rxon_band24;
793  u8 stat_band24;
794  unsigned long flags;
795  struct stats_rx_non_phy *rx_info;
796 
797  if (il->disable_chain_noise_cal)
798  return;
799 
800  data = &(il->chain_noise_data);
801 
802  /*
803  * Accumulate just the first "chain_noise_num_beacons" after
804  * the first association, then we're done forever.
805  */
806  if (data->state != IL_CHAIN_NOISE_ACCUMULATE) {
807  if (data->state == IL_CHAIN_NOISE_ALIVE)
808  D_CALIB("Wait for noise calib reset\n");
809  return;
810  }
811 
812  spin_lock_irqsave(&il->lock, flags);
813 
814  rx_info = &(((struct il_notif_stats *)stat_resp)->rx.general);
815 
817  D_CALIB(" << Interference data unavailable\n");
818  spin_unlock_irqrestore(&il->lock, flags);
819  return;
820  }
821 
822  rxon_band24 = !!(il->staging.flags & RXON_FLG_BAND_24G_MSK);
823  rxon_chnum = le16_to_cpu(il->staging.channel);
824 
825  stat_band24 =
826  !!(((struct il_notif_stats *)stat_resp)->
828  stat_chnum =
829  le32_to_cpu(((struct il_notif_stats *)stat_resp)->flag) >> 16;
830 
831  /* Make sure we accumulate data for just the associated channel
832  * (even if scanning). */
833  if (rxon_chnum != stat_chnum || rxon_band24 != stat_band24) {
834  D_CALIB("Stats not from chan=%d, band24=%d\n", rxon_chnum,
835  rxon_band24);
836  spin_unlock_irqrestore(&il->lock, flags);
837  return;
838  }
839 
840  /*
841  * Accumulate beacon stats values across
842  * "chain_noise_num_beacons"
843  */
844  chain_noise_a =
846  chain_noise_b =
848  chain_noise_c =
850 
851  chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
852  chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
853  chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
854 
855  spin_unlock_irqrestore(&il->lock, flags);
856 
857  data->beacon_count++;
858 
859  data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
860  data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
861  data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
862 
863  data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
864  data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
865  data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
866 
867  D_CALIB("chan=%d, band24=%d, beacon=%d\n", rxon_chnum, rxon_band24,
868  data->beacon_count);
869  D_CALIB("chain_sig: a %d b %d c %d\n", chain_sig_a, chain_sig_b,
870  chain_sig_c);
871  D_CALIB("chain_noise: a %d b %d c %d\n", chain_noise_a, chain_noise_b,
872  chain_noise_c);
873 
874  /* If this is the "chain_noise_num_beacons", determine:
875  * 1) Disconnected antennas (using signal strengths)
876  * 2) Differential gain (using silence noise) to balance receivers */
877  if (data->beacon_count != il->cfg->chain_noise_num_beacons)
878  return;
879 
880  /* Analyze signal for disconnected antenna */
881  il4965_find_disconn_antenna(il, average_sig, data);
882 
883  /* Analyze noise for rx balance */
884  average_noise[0] =
885  data->chain_noise_a / il->cfg->chain_noise_num_beacons;
886  average_noise[1] =
887  data->chain_noise_b / il->cfg->chain_noise_num_beacons;
888  average_noise[2] =
889  data->chain_noise_c / il->cfg->chain_noise_num_beacons;
890 
891  for (i = 0; i < NUM_RX_CHAINS; i++) {
892  if (!data->disconn_array[i] &&
893  average_noise[i] <= min_average_noise) {
894  /* This means that chain i is active and has
895  * lower noise values so far: */
896  min_average_noise = average_noise[i];
897  min_average_noise_antenna_i = i;
898  }
899  }
900 
901  D_CALIB("average_noise: a %d b %d c %d\n", average_noise[0],
902  average_noise[1], average_noise[2]);
903 
904  D_CALIB("min_average_noise = %d, antenna %d\n", min_average_noise,
905  min_average_noise_antenna_i);
906 
907  il4965_gain_computation(il, average_noise, min_average_noise_antenna_i,
908  min_average_noise,
909  il4965_find_first_chain(il->cfg->valid_rx_ant));
910 
911  /* Some power changes may have been made during the calibration.
912  * Update and commit the RXON
913  */
914  if (il->ops->update_chain_flags)
915  il->ops->update_chain_flags(il);
916 
917  data->state = IL_CHAIN_NOISE_DONE;
918  il_power_update_mode(il, false);
919 }
920 
921 void
923 {
924  int i;
925  memset(&(il->sensitivity_data), 0, sizeof(struct il_sensitivity_data));
926  memset(&(il->chain_noise_data), 0, sizeof(struct il_chain_noise_data));
927  for (i = 0; i < NUM_RX_CHAINS; i++)
928  il->chain_noise_data.delta_gain_code[i] =
930 
931  /* Ask for stats now, the uCode will send notification
932  * periodically after association */
933  il_send_stats_request(il, CMD_ASYNC, true);
934 }