Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
af_can.c
Go to the documentation of this file.
1 /*
2  * af_can.c - Protocol family CAN core module
3  * (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  * notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  * notice, this list of conditions and the following disclaimer in the
15  * documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  * may be used to endorse or promote products derived from this software
18  * without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/ratelimit.h>
61 #include <net/net_namespace.h>
62 #include <net/sock.h>
63 
64 #include "af_can.h"
65 
66 static __initconst const char banner[] = KERN_INFO
67  "can: controller area network core (" CAN_VERSION_STRING ")\n";
68 
69 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
70 MODULE_LICENSE("Dual BSD/GPL");
71 MODULE_AUTHOR("Urs Thuermann <[email protected]>, "
72  "Oliver Hartkopp <[email protected]>");
73 
75 
76 static int stats_timer __read_mostly = 1;
77 module_param(stats_timer, int, S_IRUGO);
78 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
79 
80 /* receive filters subscribed for 'all' CAN devices */
82 static DEFINE_SPINLOCK(can_rcvlists_lock);
83 
84 static struct kmem_cache *rcv_cache __read_mostly;
85 
86 /* table of registered CAN protocols */
87 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
88 static DEFINE_MUTEX(proto_tab_lock);
89 
90 struct timer_list can_stattimer; /* timer for statistics update */
91 struct s_stats can_stats; /* packet statistics */
92 struct s_pstats can_pstats; /* receive list statistics */
93 
94 /*
95  * af_can socket functions
96  */
97 
98 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
99 {
100  struct sock *sk = sock->sk;
101 
102  switch (cmd) {
103 
104  case SIOCGSTAMP:
105  return sock_get_timestamp(sk, (struct timeval __user *)arg);
106 
107  default:
108  return -ENOIOCTLCMD;
109  }
110 }
112 
113 static void can_sock_destruct(struct sock *sk)
114 {
116 }
117 
118 static const struct can_proto *can_get_proto(int protocol)
119 {
120  const struct can_proto *cp;
121 
122  rcu_read_lock();
123  cp = rcu_dereference(proto_tab[protocol]);
124  if (cp && !try_module_get(cp->prot->owner))
125  cp = NULL;
126  rcu_read_unlock();
127 
128  return cp;
129 }
130 
131 static inline void can_put_proto(const struct can_proto *cp)
132 {
133  module_put(cp->prot->owner);
134 }
135 
136 static int can_create(struct net *net, struct socket *sock, int protocol,
137  int kern)
138 {
139  struct sock *sk;
140  const struct can_proto *cp;
141  int err = 0;
142 
143  sock->state = SS_UNCONNECTED;
144 
146  return -EINVAL;
147 
148  if (!net_eq(net, &init_net))
149  return -EAFNOSUPPORT;
150 
151  cp = can_get_proto(protocol);
152 
153 #ifdef CONFIG_MODULES
154  if (!cp) {
155  /* try to load protocol module if kernel is modular */
156 
157  err = request_module("can-proto-%d", protocol);
158 
159  /*
160  * In case of error we only print a message but don't
161  * return the error code immediately. Below we will
162  * return -EPROTONOSUPPORT
163  */
164  if (err)
165  printk_ratelimited(KERN_ERR "can: request_module "
166  "(can-proto-%d) failed.\n", protocol);
167 
168  cp = can_get_proto(protocol);
169  }
170 #endif
171 
172  /* check for available protocol and correct usage */
173 
174  if (!cp)
175  return -EPROTONOSUPPORT;
176 
177  if (cp->type != sock->type) {
178  err = -EPROTOTYPE;
179  goto errout;
180  }
181 
182  sock->ops = cp->ops;
183 
184  sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
185  if (!sk) {
186  err = -ENOMEM;
187  goto errout;
188  }
189 
190  sock_init_data(sock, sk);
191  sk->sk_destruct = can_sock_destruct;
192 
193  if (sk->sk_prot->init)
194  err = sk->sk_prot->init(sk);
195 
196  if (err) {
197  /* release sk on errors */
198  sock_orphan(sk);
199  sock_put(sk);
200  }
201 
202  errout:
203  can_put_proto(cp);
204  return err;
205 }
206 
207 /*
208  * af_can tx path
209  */
210 
227 int can_send(struct sk_buff *skb, int loop)
228 {
229  struct sk_buff *newskb = NULL;
230  struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
231  int err = -EINVAL;
232 
233  if (skb->len == CAN_MTU) {
234  skb->protocol = htons(ETH_P_CAN);
235  if (unlikely(cfd->len > CAN_MAX_DLEN))
236  goto inval_skb;
237  } else if (skb->len == CANFD_MTU) {
238  skb->protocol = htons(ETH_P_CANFD);
239  if (unlikely(cfd->len > CANFD_MAX_DLEN))
240  goto inval_skb;
241  } else
242  goto inval_skb;
243 
244  /*
245  * Make sure the CAN frame can pass the selected CAN netdevice.
246  * As structs can_frame and canfd_frame are similar, we can provide
247  * CAN FD frames to legacy CAN drivers as long as the length is <= 8
248  */
249  if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
250  err = -EMSGSIZE;
251  goto inval_skb;
252  }
253 
254  if (unlikely(skb->dev->type != ARPHRD_CAN)) {
255  err = -EPERM;
256  goto inval_skb;
257  }
258 
259  if (unlikely(!(skb->dev->flags & IFF_UP))) {
260  err = -ENETDOWN;
261  goto inval_skb;
262  }
263 
264  skb_reset_network_header(skb);
265  skb_reset_transport_header(skb);
266 
267  if (loop) {
268  /* local loopback of sent CAN frames */
269 
270  /* indication for the CAN driver: do loopback */
271  skb->pkt_type = PACKET_LOOPBACK;
272 
273  /*
274  * The reference to the originating sock may be required
275  * by the receiving socket to check whether the frame is
276  * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
277  * Therefore we have to ensure that skb->sk remains the
278  * reference to the originating sock by restoring skb->sk
279  * after each skb_clone() or skb_orphan() usage.
280  */
281 
282  if (!(skb->dev->flags & IFF_ECHO)) {
283  /*
284  * If the interface is not capable to do loopback
285  * itself, we do it here.
286  */
287  newskb = skb_clone(skb, GFP_ATOMIC);
288  if (!newskb) {
289  kfree_skb(skb);
290  return -ENOMEM;
291  }
292 
293  newskb->sk = skb->sk;
295  newskb->pkt_type = PACKET_BROADCAST;
296  }
297  } else {
298  /* indication for the CAN driver: no loopback required */
299  skb->pkt_type = PACKET_HOST;
300  }
301 
302  /* send to netdevice */
303  err = dev_queue_xmit(skb);
304  if (err > 0)
305  err = net_xmit_errno(err);
306 
307  if (err) {
308  kfree_skb(newskb);
309  return err;
310  }
311 
312  if (newskb)
313  netif_rx_ni(newskb);
314 
315  /* update statistics */
316  can_stats.tx_frames++;
317  can_stats.tx_frames_delta++;
318 
319  return 0;
320 
321 inval_skb:
322  kfree_skb(skb);
323  return err;
324 }
326 
327 /*
328  * af_can rx path
329  */
330 
331 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
332 {
333  if (!dev)
334  return &can_rx_alldev_list;
335  else
336  return (struct dev_rcv_lists *)dev->ml_priv;
337 }
338 
366 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
367  struct dev_rcv_lists *d)
368 {
369  canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
370 
371  /* filter for error message frames in extra filterlist */
372  if (*mask & CAN_ERR_FLAG) {
373  /* clear CAN_ERR_FLAG in filter entry */
374  *mask &= CAN_ERR_MASK;
375  return &d->rx[RX_ERR];
376  }
377 
378  /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
379 
380 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
381 
382  /* ensure valid values in can_mask for 'SFF only' frame filtering */
383  if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
384  *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
385 
386  /* reduce condition testing at receive time */
387  *can_id &= *mask;
388 
389  /* inverse can_id/can_mask filter */
390  if (inv)
391  return &d->rx[RX_INV];
392 
393  /* mask == 0 => no condition testing at receive time */
394  if (!(*mask))
395  return &d->rx[RX_ALL];
396 
397  /* extra filterlists for the subscription of a single non-RTR can_id */
398  if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
399  !(*can_id & CAN_RTR_FLAG)) {
400 
401  if (*can_id & CAN_EFF_FLAG) {
402  if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
403  /* RFC: a future use-case for hash-tables? */
404  return &d->rx[RX_EFF];
405  }
406  } else {
407  if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
408  return &d->rx_sff[*can_id];
409  }
410  }
411 
412  /* default: filter via can_id/can_mask */
413  return &d->rx[RX_FIL];
414 }
415 
445 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
446  void (*func)(struct sk_buff *, void *), void *data,
447  char *ident)
448 {
449  struct receiver *r;
450  struct hlist_head *rl;
451  struct dev_rcv_lists *d;
452  int err = 0;
453 
454  /* insert new receiver (dev,canid,mask) -> (func,data) */
455 
456  if (dev && dev->type != ARPHRD_CAN)
457  return -ENODEV;
458 
459  r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
460  if (!r)
461  return -ENOMEM;
462 
463  spin_lock(&can_rcvlists_lock);
464 
465  d = find_dev_rcv_lists(dev);
466  if (d) {
467  rl = find_rcv_list(&can_id, &mask, d);
468 
469  r->can_id = can_id;
470  r->mask = mask;
471  r->matches = 0;
472  r->func = func;
473  r->data = data;
474  r->ident = ident;
475 
476  hlist_add_head_rcu(&r->list, rl);
477  d->entries++;
478 
479  can_pstats.rcv_entries++;
480  if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
481  can_pstats.rcv_entries_max = can_pstats.rcv_entries;
482  } else {
483  kmem_cache_free(rcv_cache, r);
484  err = -ENODEV;
485  }
486 
487  spin_unlock(&can_rcvlists_lock);
488 
489  return err;
490 }
492 
493 /*
494  * can_rx_delete_receiver - rcu callback for single receiver entry removal
495  */
496 static void can_rx_delete_receiver(struct rcu_head *rp)
497 {
498  struct receiver *r = container_of(rp, struct receiver, rcu);
499 
500  kmem_cache_free(rcv_cache, r);
501 }
502 
514 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
515  void (*func)(struct sk_buff *, void *), void *data)
516 {
517  struct receiver *r = NULL;
518  struct hlist_head *rl;
519  struct hlist_node *next;
520  struct dev_rcv_lists *d;
521 
522  if (dev && dev->type != ARPHRD_CAN)
523  return;
524 
525  spin_lock(&can_rcvlists_lock);
526 
527  d = find_dev_rcv_lists(dev);
528  if (!d) {
529  printk(KERN_ERR "BUG: receive list not found for "
530  "dev %s, id %03X, mask %03X\n",
531  DNAME(dev), can_id, mask);
532  goto out;
533  }
534 
535  rl = find_rcv_list(&can_id, &mask, d);
536 
537  /*
538  * Search the receiver list for the item to delete. This should
539  * exist, since no receiver may be unregistered that hasn't
540  * been registered before.
541  */
542 
543  hlist_for_each_entry_rcu(r, next, rl, list) {
544  if (r->can_id == can_id && r->mask == mask &&
545  r->func == func && r->data == data)
546  break;
547  }
548 
549  /*
550  * Check for bugs in CAN protocol implementations:
551  * If no matching list item was found, the list cursor variable next
552  * will be NULL, while r will point to the last item of the list.
553  */
554 
555  if (!next) {
556  printk(KERN_ERR "BUG: receive list entry not found for "
557  "dev %s, id %03X, mask %03X\n",
558  DNAME(dev), can_id, mask);
559  r = NULL;
560  goto out;
561  }
562 
563  hlist_del_rcu(&r->list);
564  d->entries--;
565 
566  if (can_pstats.rcv_entries > 0)
567  can_pstats.rcv_entries--;
568 
569  /* remove device structure requested by NETDEV_UNREGISTER */
570  if (d->remove_on_zero_entries && !d->entries) {
571  kfree(d);
572  dev->ml_priv = NULL;
573  }
574 
575  out:
576  spin_unlock(&can_rcvlists_lock);
577 
578  /* schedule the receiver item for deletion */
579  if (r)
580  call_rcu(&r->rcu, can_rx_delete_receiver);
581 }
583 
584 static inline void deliver(struct sk_buff *skb, struct receiver *r)
585 {
586  r->func(skb, r->data);
587  r->matches++;
588 }
589 
590 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
591 {
592  struct receiver *r;
593  struct hlist_node *n;
594  int matches = 0;
595  struct can_frame *cf = (struct can_frame *)skb->data;
596  canid_t can_id = cf->can_id;
597 
598  if (d->entries == 0)
599  return 0;
600 
601  if (can_id & CAN_ERR_FLAG) {
602  /* check for error message frame entries only */
603  hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) {
604  if (can_id & r->mask) {
605  deliver(skb, r);
606  matches++;
607  }
608  }
609  return matches;
610  }
611 
612  /* check for unfiltered entries */
613  hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) {
614  deliver(skb, r);
615  matches++;
616  }
617 
618  /* check for can_id/mask entries */
619  hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) {
620  if ((can_id & r->mask) == r->can_id) {
621  deliver(skb, r);
622  matches++;
623  }
624  }
625 
626  /* check for inverted can_id/mask entries */
627  hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) {
628  if ((can_id & r->mask) != r->can_id) {
629  deliver(skb, r);
630  matches++;
631  }
632  }
633 
634  /* check filterlists for single non-RTR can_ids */
635  if (can_id & CAN_RTR_FLAG)
636  return matches;
637 
638  if (can_id & CAN_EFF_FLAG) {
639  hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) {
640  if (r->can_id == can_id) {
641  deliver(skb, r);
642  matches++;
643  }
644  }
645  } else {
646  can_id &= CAN_SFF_MASK;
647  hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) {
648  deliver(skb, r);
649  matches++;
650  }
651  }
652 
653  return matches;
654 }
655 
656 static void can_receive(struct sk_buff *skb, struct net_device *dev)
657 {
658  struct dev_rcv_lists *d;
659  int matches;
660 
661  /* update statistics */
662  can_stats.rx_frames++;
663  can_stats.rx_frames_delta++;
664 
665  rcu_read_lock();
666 
667  /* deliver the packet to sockets listening on all devices */
668  matches = can_rcv_filter(&can_rx_alldev_list, skb);
669 
670  /* find receive list for this device */
671  d = find_dev_rcv_lists(dev);
672  if (d)
673  matches += can_rcv_filter(d, skb);
674 
675  rcu_read_unlock();
676 
677  /* consume the skbuff allocated by the netdevice driver */
678  consume_skb(skb);
679 
680  if (matches > 0) {
681  can_stats.matches++;
682  can_stats.matches_delta++;
683  }
684 }
685 
686 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
687  struct packet_type *pt, struct net_device *orig_dev)
688 {
689  struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
690 
691  if (unlikely(!net_eq(dev_net(dev), &init_net)))
692  goto drop;
693 
694  if (WARN_ONCE(dev->type != ARPHRD_CAN ||
695  skb->len != CAN_MTU ||
696  cfd->len > CAN_MAX_DLEN,
697  "PF_CAN: dropped non conform CAN skbuf: "
698  "dev type %d, len %d, datalen %d\n",
699  dev->type, skb->len, cfd->len))
700  goto drop;
701 
702  can_receive(skb, dev);
703  return NET_RX_SUCCESS;
704 
705 drop:
706  kfree_skb(skb);
707  return NET_RX_DROP;
708 }
709 
710 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
711  struct packet_type *pt, struct net_device *orig_dev)
712 {
713  struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
714 
715  if (unlikely(!net_eq(dev_net(dev), &init_net)))
716  goto drop;
717 
718  if (WARN_ONCE(dev->type != ARPHRD_CAN ||
719  skb->len != CANFD_MTU ||
720  cfd->len > CANFD_MAX_DLEN,
721  "PF_CAN: dropped non conform CAN FD skbuf: "
722  "dev type %d, len %d, datalen %d\n",
723  dev->type, skb->len, cfd->len))
724  goto drop;
725 
726  can_receive(skb, dev);
727  return NET_RX_SUCCESS;
728 
729 drop:
730  kfree_skb(skb);
731  return NET_RX_DROP;
732 }
733 
734 /*
735  * af_can protocol functions
736  */
737 
748 int can_proto_register(const struct can_proto *cp)
749 {
750  int proto = cp->protocol;
751  int err = 0;
752 
754  printk(KERN_ERR "can: protocol number %d out of range\n",
755  proto);
756  return -EINVAL;
757  }
758 
759  err = proto_register(cp->prot, 0);
760  if (err < 0)
761  return err;
762 
763  mutex_lock(&proto_tab_lock);
764 
765  if (proto_tab[proto]) {
766  printk(KERN_ERR "can: protocol %d already registered\n",
767  proto);
768  err = -EBUSY;
769  } else
770  RCU_INIT_POINTER(proto_tab[proto], cp);
771 
772  mutex_unlock(&proto_tab_lock);
773 
774  if (err < 0)
775  proto_unregister(cp->prot);
776 
777  return err;
778 }
780 
785 void can_proto_unregister(const struct can_proto *cp)
786 {
787  int proto = cp->protocol;
788 
789  mutex_lock(&proto_tab_lock);
790  BUG_ON(proto_tab[proto] != cp);
791  RCU_INIT_POINTER(proto_tab[proto], NULL);
792  mutex_unlock(&proto_tab_lock);
793 
794  synchronize_rcu();
795 
796  proto_unregister(cp->prot);
797 }
799 
800 /*
801  * af_can notifier to create/remove CAN netdevice specific structs
802  */
803 static int can_notifier(struct notifier_block *nb, unsigned long msg,
804  void *data)
805 {
806  struct net_device *dev = (struct net_device *)data;
807  struct dev_rcv_lists *d;
808 
809  if (!net_eq(dev_net(dev), &init_net))
810  return NOTIFY_DONE;
811 
812  if (dev->type != ARPHRD_CAN)
813  return NOTIFY_DONE;
814 
815  switch (msg) {
816 
817  case NETDEV_REGISTER:
818 
819  /* create new dev_rcv_lists for this device */
820  d = kzalloc(sizeof(*d), GFP_KERNEL);
821  if (!d) {
823  "can: allocation of receive list failed\n");
824  return NOTIFY_DONE;
825  }
826  BUG_ON(dev->ml_priv);
827  dev->ml_priv = d;
828 
829  break;
830 
831  case NETDEV_UNREGISTER:
832  spin_lock(&can_rcvlists_lock);
833 
834  d = dev->ml_priv;
835  if (d) {
836  if (d->entries)
837  d->remove_on_zero_entries = 1;
838  else {
839  kfree(d);
840  dev->ml_priv = NULL;
841  }
842  } else
843  printk(KERN_ERR "can: notifier: receive list not "
844  "found for dev %s\n", dev->name);
845 
846  spin_unlock(&can_rcvlists_lock);
847 
848  break;
849  }
850 
851  return NOTIFY_DONE;
852 }
853 
854 /*
855  * af_can module init/exit functions
856  */
857 
858 static struct packet_type can_packet __read_mostly = {
859  .type = cpu_to_be16(ETH_P_CAN),
860  .func = can_rcv,
861 };
862 
863 static struct packet_type canfd_packet __read_mostly = {
865  .func = canfd_rcv,
866 };
867 
868 static const struct net_proto_family can_family_ops = {
869  .family = PF_CAN,
870  .create = can_create,
871  .owner = THIS_MODULE,
872 };
873 
874 /* notifier block for netdevice event */
875 static struct notifier_block can_netdev_notifier __read_mostly = {
876  .notifier_call = can_notifier,
877 };
878 
879 static __init int can_init(void)
880 {
881  /* check for correct padding to be able to use the structs similarly */
882  BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
883  offsetof(struct canfd_frame, len) ||
884  offsetof(struct can_frame, data) !=
885  offsetof(struct canfd_frame, data));
886 
887  printk(banner);
888 
890 
891  rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
892  0, 0, NULL);
893  if (!rcv_cache)
894  return -ENOMEM;
895 
896  if (stats_timer) {
897  /* the statistics are updated every second (timer triggered) */
899  mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
900  } else
901  can_stattimer.function = NULL;
902 
903  can_init_proc();
904 
905  /* protocol register */
906  sock_register(&can_family_ops);
907  register_netdevice_notifier(&can_netdev_notifier);
908  dev_add_pack(&can_packet);
909  dev_add_pack(&canfd_packet);
910 
911  return 0;
912 }
913 
914 static __exit void can_exit(void)
915 {
916  struct net_device *dev;
917 
918  if (stats_timer)
920 
921  can_remove_proc();
922 
923  /* protocol unregister */
924  dev_remove_pack(&canfd_packet);
925  dev_remove_pack(&can_packet);
926  unregister_netdevice_notifier(&can_netdev_notifier);
928 
929  /* remove created dev_rcv_lists from still registered CAN devices */
930  rcu_read_lock();
932  if (dev->type == ARPHRD_CAN && dev->ml_priv){
933 
934  struct dev_rcv_lists *d = dev->ml_priv;
935 
936  BUG_ON(d->entries);
937  kfree(d);
938  dev->ml_priv = NULL;
939  }
940  }
941  rcu_read_unlock();
942 
943  rcu_barrier(); /* Wait for completion of call_rcu()'s */
944 
945  kmem_cache_destroy(rcv_cache);
946 }
947 
948 module_init(can_init);
949 module_exit(can_exit);