Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
apb_timer.c
Go to the documentation of this file.
1 /*
2  * apb_timer.c: Driver for Langwell APB timers
3  *
4  * (C) Copyright 2009 Intel Corporation
5  * Author: Jacob Pan ([email protected])
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * Note:
13  * Langwell is the south complex of Intel Moorestown MID platform. There are
14  * eight external timers in total that can be used by the operating system.
15  * The timer information, such as frequency and addresses, is provided to the
16  * OS via SFI tables.
17  * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
18  * individual redirection table entries (RTE).
19  * Unlike HPET, there is no master counter, therefore one of the timers are
20  * used as clocksource. The overall allocation looks like:
21  * - timer 0 - NR_CPUs for per cpu timer
22  * - one timer for clocksource
23  * - one timer for watchdog driver.
24  * It is also worth notice that APB timer does not support true one-shot mode,
25  * free-running mode will be used here to emulate one-shot mode.
26  * APB timer can also be used as broadcast timer along with per cpu local APIC
27  * timer, but by default APB timer has higher rating than local APIC timers.
28  */
29 
30 #include <linux/delay.h>
31 #include <linux/dw_apb_timer.h>
32 #include <linux/errno.h>
33 #include <linux/init.h>
34 #include <linux/slab.h>
35 #include <linux/pm.h>
36 #include <linux/sfi.h>
37 #include <linux/interrupt.h>
38 #include <linux/cpu.h>
39 #include <linux/irq.h>
40 
41 #include <asm/fixmap.h>
42 #include <asm/apb_timer.h>
43 #include <asm/mrst.h>
44 #include <asm/time.h>
45 
46 #define APBT_CLOCKEVENT_RATING 110
47 #define APBT_CLOCKSOURCE_RATING 250
48 
49 #define APBT_CLOCKEVENT0_NUM (0)
50 #define APBT_CLOCKSOURCE_NUM (2)
51 
52 static phys_addr_t apbt_address;
53 static int apb_timer_block_enabled;
54 static void __iomem *apbt_virt_address;
55 
56 /*
57  * Common DW APB timer info
58  */
59 static unsigned long apbt_freq;
60 
61 struct apbt_dev {
63  unsigned int num;
64  int cpu;
65  unsigned int irq;
66  char name[10];
67 };
68 
69 static struct dw_apb_clocksource *clocksource_apbt;
70 
71 static inline void __iomem *adev_virt_addr(struct apbt_dev *adev)
72 {
73  return apbt_virt_address + adev->num * APBTMRS_REG_SIZE;
74 }
75 
76 static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
77 
78 #ifdef CONFIG_SMP
79 static unsigned int apbt_num_timers_used;
80 #endif
81 
82 static inline void apbt_set_mapping(void)
83 {
84  struct sfi_timer_table_entry *mtmr;
85  int phy_cs_timer_id = 0;
86 
87  if (apbt_virt_address) {
88  pr_debug("APBT base already mapped\n");
89  return;
90  }
92  if (mtmr == NULL) {
93  printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
95  return;
96  }
97  apbt_address = (phys_addr_t)mtmr->phys_addr;
98  if (!apbt_address) {
99  printk(KERN_WARNING "No timer base from SFI, use default\n");
100  apbt_address = APBT_DEFAULT_BASE;
101  }
102  apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
103  if (!apbt_virt_address) {
104  pr_debug("Failed mapping APBT phy address at %lu\n",\
105  (unsigned long)apbt_address);
106  goto panic_noapbt;
107  }
108  apbt_freq = mtmr->freq_hz;
109  sfi_free_mtmr(mtmr);
110 
111  /* Now figure out the physical timer id for clocksource device */
113  if (mtmr == NULL)
114  goto panic_noapbt;
115 
116  /* Now figure out the physical timer id */
117  pr_debug("Use timer %d for clocksource\n",
118  (int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE);
119  phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) /
121 
123  "apbt0", apbt_virt_address + phy_cs_timer_id *
124  APBTMRS_REG_SIZE, apbt_freq);
125  return;
126 
127 panic_noapbt:
128  panic("Failed to setup APB system timer\n");
129 
130 }
131 
132 static inline void apbt_clear_mapping(void)
133 {
134  iounmap(apbt_virt_address);
135  apbt_virt_address = NULL;
136 }
137 
138 /*
139  * APBT timer interrupt enable / disable
140  */
141 static inline int is_apbt_capable(void)
142 {
143  return apbt_virt_address ? 1 : 0;
144 }
145 
146 static int __init apbt_clockevent_register(void)
147 {
148  struct sfi_timer_table_entry *mtmr;
149  struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev);
150 
152  if (mtmr == NULL) {
153  printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
155  return -ENODEV;
156  }
157 
158  adev->num = smp_processor_id();
159  adev->timer = dw_apb_clockevent_init(smp_processor_id(), "apbt0",
162  adev_virt_addr(adev), 0, apbt_freq);
163  /* Firmware does EOI handling for us. */
164  adev->timer->eoi = NULL;
165 
167  global_clock_event = &adev->timer->ced;
168  printk(KERN_DEBUG "%s clockevent registered as global\n",
169  global_clock_event->name);
170  }
171 
173 
174  sfi_free_mtmr(mtmr);
175  return 0;
176 }
177 
178 #ifdef CONFIG_SMP
179 
180 static void apbt_setup_irq(struct apbt_dev *adev)
181 {
182  /* timer0 irq has been setup early */
183  if (adev->irq == 0)
184  return;
185 
187  irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
188  /* APB timer irqs are set up as mp_irqs, timer is edge type */
189  __irq_set_handler(adev->irq, handle_edge_irq, 0, "edge");
190 }
191 
192 /* Should be called with per cpu */
194 {
195  struct apbt_dev *adev;
196  int cpu;
197 
198  /* Don't register boot CPU clockevent */
199  cpu = smp_processor_id();
200  if (!cpu)
201  return;
202 
203  adev = &__get_cpu_var(cpu_apbt_dev);
204  if (!adev->timer) {
205  adev->timer = dw_apb_clockevent_init(cpu, adev->name,
206  APBT_CLOCKEVENT_RATING, adev_virt_addr(adev),
207  adev->irq, apbt_freq);
208  adev->timer->eoi = NULL;
209  } else {
211  }
212 
213  printk(KERN_INFO "Registering CPU %d clockevent device %s, cpu %08x\n",
214  cpu, adev->name, adev->cpu);
215 
216  apbt_setup_irq(adev);
218 
219  return;
220 }
221 
222 /*
223  * this notify handler process CPU hotplug events. in case of S0i3, nonboot
224  * cpus are disabled/enabled frequently, for performance reasons, we keep the
225  * per cpu timer irq registered so that we do need to do free_irq/request_irq.
226  *
227  * TODO: it might be more reliable to directly disable percpu clockevent device
228  * without the notifier chain. currently, cpu 0 may get interrupts from other
229  * cpu timers during the offline process due to the ordering of notification.
230  * the extra interrupt is harmless.
231  */
232 static int apbt_cpuhp_notify(struct notifier_block *n,
233  unsigned long action, void *hcpu)
234 {
235  unsigned long cpu = (unsigned long)hcpu;
236  struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
237 
238  switch (action & 0xf) {
239  case CPU_DEAD:
241  if (system_state == SYSTEM_RUNNING) {
242  pr_debug("skipping APBT CPU %lu offline\n", cpu);
243  } else if (adev) {
244  pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
246  }
247  break;
248  default:
249  pr_debug("APBT notified %lu, no action\n", action);
250  }
251  return NOTIFY_OK;
252 }
253 
254 static __init int apbt_late_init(void)
255 {
257  !apb_timer_block_enabled)
258  return 0;
259  /* This notifier should be called after workqueue is ready */
260  hotcpu_notifier(apbt_cpuhp_notify, -20);
261  return 0;
262 }
263 fs_initcall(apbt_late_init);
264 #else
265 
267 
268 #endif /* CONFIG_SMP */
269 
270 static int apbt_clocksource_register(void)
271 {
272  u64 start, now;
273  cycle_t t1;
274 
275  /* Start the counter, use timer 2 as source, timer 0/1 for event */
276  dw_apb_clocksource_start(clocksource_apbt);
277 
278  /* Verify whether apbt counter works */
279  t1 = dw_apb_clocksource_read(clocksource_apbt);
280  rdtscll(start);
281 
282  /*
283  * We don't know the TSC frequency yet, but waiting for
284  * 200000 TSC cycles is safe:
285  * 4 GHz == 50us
286  * 1 GHz == 200us
287  */
288  do {
289  rep_nop();
290  rdtscll(now);
291  } while ((now - start) < 200000UL);
292 
293  /* APBT is the only always on clocksource, it has to work! */
294  if (t1 == dw_apb_clocksource_read(clocksource_apbt))
295  panic("APBT counter not counting. APBT disabled\n");
296 
297  dw_apb_clocksource_register(clocksource_apbt);
298 
299  return 0;
300 }
301 
302 /*
303  * Early setup the APBT timer, only use timer 0 for booting then switch to
304  * per CPU timer if possible.
305  * returns 1 if per cpu apbt is setup
306  * returns 0 if no per cpu apbt is chosen
307  * panic if set up failed, this is the only platform timer on Moorestown.
308  */
310 {
311 #ifdef CONFIG_SMP
312  int i;
313  struct sfi_timer_table_entry *p_mtmr;
314  unsigned int percpu_timer;
315  struct apbt_dev *adev;
316 #endif
317 
318  if (apb_timer_block_enabled)
319  return;
320  apbt_set_mapping();
321  if (!apbt_virt_address)
322  goto out_noapbt;
323  /*
324  * Read the frequency and check for a sane value, for ESL model
325  * we extend the possible clock range to allow time scaling.
326  */
327 
328  if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
329  pr_debug("APBT has invalid freq 0x%lx\n", apbt_freq);
330  goto out_noapbt;
331  }
332  if (apbt_clocksource_register()) {
333  pr_debug("APBT has failed to register clocksource\n");
334  goto out_noapbt;
335  }
336  if (!apbt_clockevent_register())
337  apb_timer_block_enabled = 1;
338  else {
339  pr_debug("APBT has failed to register clockevent\n");
340  goto out_noapbt;
341  }
342 #ifdef CONFIG_SMP
343  /* kernel cmdline disable apb timer, so we will use lapic timers */
345  printk(KERN_INFO "apbt: disabled per cpu timer\n");
346  return;
347  }
348  pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
350  percpu_timer = 1;
351  apbt_num_timers_used = num_possible_cpus();
352  } else {
353  percpu_timer = 0;
354  apbt_num_timers_used = 1;
355  }
356  pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
357 
358  /* here we set up per CPU timer data structure */
359  for (i = 0; i < apbt_num_timers_used; i++) {
360  adev = &per_cpu(cpu_apbt_dev, i);
361  adev->num = i;
362  adev->cpu = i;
363  p_mtmr = sfi_get_mtmr(i);
364  if (p_mtmr)
365  adev->irq = p_mtmr->irq;
366  else
367  printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
368  snprintf(adev->name, sizeof(adev->name) - 1, "apbt%d", i);
369  }
370 #endif
371 
372  return;
373 
374 out_noapbt:
375  apbt_clear_mapping();
376  apb_timer_block_enabled = 0;
377  panic("failed to enable APB timer\n");
378 }
379 
380 /* called before apb_timer_enable, use early map */
381 unsigned long apbt_quick_calibrate(void)
382 {
383  int i, scale;
384  u64 old, new;
385  cycle_t t1, t2;
386  unsigned long khz = 0;
387  u32 loop, shift;
388 
389  apbt_set_mapping();
390  dw_apb_clocksource_start(clocksource_apbt);
391 
392  /* check if the timer can count down, otherwise return */
393  old = dw_apb_clocksource_read(clocksource_apbt);
394  i = 10000;
395  while (--i) {
396  if (old != dw_apb_clocksource_read(clocksource_apbt))
397  break;
398  }
399  if (!i)
400  goto failed;
401 
402  /* count 16 ms */
403  loop = (apbt_freq / 1000) << 4;
404 
405  /* restart the timer to ensure it won't get to 0 in the calibration */
406  dw_apb_clocksource_start(clocksource_apbt);
407 
408  old = dw_apb_clocksource_read(clocksource_apbt);
409  old += loop;
410 
411  t1 = __native_read_tsc();
412 
413  do {
414  new = dw_apb_clocksource_read(clocksource_apbt);
415  } while (new < old);
416 
417  t2 = __native_read_tsc();
418 
419  shift = 5;
420  if (unlikely(loop >> shift == 0)) {
422  "APBT TSC calibration failed, not enough resolution\n");
423  return 0;
424  }
425  scale = (int)div_u64((t2 - t1), loop >> shift);
426  khz = (scale * (apbt_freq / 1000)) >> shift;
427  printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
428  return khz;
429 failed:
430  return 0;
431 }