Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ptrace.c
Go to the documentation of this file.
1 /*
2  * linux/arch/arm/kernel/ptrace.c
3  *
4  * By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/elf.h>
16 #include <linux/smp.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/uaccess.h>
23 #include <linux/perf_event.h>
24 #include <linux/hw_breakpoint.h>
25 #include <linux/regset.h>
26 #include <linux/audit.h>
27 #include <linux/tracehook.h>
28 #include <linux/unistd.h>
29 
30 #include <asm/pgtable.h>
31 #include <asm/traps.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/syscalls.h>
35 
36 #define REG_PC 15
37 #define REG_PSR 16
38 /*
39  * does not yet catch signals sent when the child dies.
40  * in exit.c or in signal.c.
41  */
42 
43 #if 0
44 /*
45  * Breakpoint SWI instruction: SWI &9F0001
46  */
47 #define BREAKINST_ARM 0xef9f0001
48 #define BREAKINST_THUMB 0xdf00 /* fill this in later */
49 #else
50 /*
51  * New breakpoints - use an undefined instruction. The ARM architecture
52  * reference manual guarantees that the following instruction space
53  * will produce an undefined instruction exception on all CPUs:
54  *
55  * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
56  * Thumb: 1101 1110 xxxx xxxx
57  */
58 #define BREAKINST_ARM 0xe7f001f0
59 #define BREAKINST_THUMB 0xde01
60 #endif
61 
63  const char *name;
64  int offset;
65 };
66 
67 #define REG_OFFSET_NAME(r) \
68  {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
69 #define REG_OFFSET_END {.name = NULL, .offset = 0}
70 
71 static const struct pt_regs_offset regoffset_table[] = {
88  REG_OFFSET_NAME(cpsr),
89  REG_OFFSET_NAME(ORIG_r0),
91 };
92 
101 {
102  const struct pt_regs_offset *roff;
103  for (roff = regoffset_table; roff->name != NULL; roff++)
104  if (!strcmp(roff->name, name))
105  return roff->offset;
106  return -EINVAL;
107 }
108 
116 const char *regs_query_register_name(unsigned int offset)
117 {
118  const struct pt_regs_offset *roff;
119  for (roff = regoffset_table; roff->name != NULL; roff++)
120  if (roff->offset == offset)
121  return roff->name;
122  return NULL;
123 }
124 
133 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
134 {
135  return ((addr & ~(THREAD_SIZE - 1)) ==
136  (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
137 }
138 
148 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
149 {
150  unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
151  addr += n;
152  if (regs_within_kernel_stack(regs, (unsigned long)addr))
153  return *addr;
154  else
155  return 0;
156 }
157 
158 /*
159  * this routine will get a word off of the processes privileged stack.
160  * the offset is how far from the base addr as stored in the THREAD.
161  * this routine assumes that all the privileged stacks are in our
162  * data space.
163  */
164 static inline long get_user_reg(struct task_struct *task, int offset)
165 {
166  return task_pt_regs(task)->uregs[offset];
167 }
168 
169 /*
170  * this routine will put a word on the processes privileged stack.
171  * the offset is how far from the base addr as stored in the THREAD.
172  * this routine assumes that all the privileged stacks are in our
173  * data space.
174  */
175 static inline int
176 put_user_reg(struct task_struct *task, int offset, long data)
177 {
178  struct pt_regs newregs, *regs = task_pt_regs(task);
179  int ret = -EINVAL;
180 
181  newregs = *regs;
182  newregs.uregs[offset] = data;
183 
184  if (valid_user_regs(&newregs)) {
185  regs->uregs[offset] = data;
186  ret = 0;
187  }
188 
189  return ret;
190 }
191 
192 /*
193  * Called by kernel/ptrace.c when detaching..
194  */
196 {
197  /* Nothing to do. */
198 }
199 
200 /*
201  * Handle hitting a breakpoint.
202  */
203 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
204 {
205  siginfo_t info;
206 
207  info.si_signo = SIGTRAP;
208  info.si_errno = 0;
209  info.si_code = TRAP_BRKPT;
210  info.si_addr = (void __user *)instruction_pointer(regs);
211 
212  force_sig_info(SIGTRAP, &info, tsk);
213 }
214 
215 static int break_trap(struct pt_regs *regs, unsigned int instr)
216 {
217  ptrace_break(current, regs);
218  return 0;
219 }
220 
221 static struct undef_hook arm_break_hook = {
222  .instr_mask = 0x0fffffff,
223  .instr_val = 0x07f001f0,
224  .cpsr_mask = PSR_T_BIT,
225  .cpsr_val = 0,
226  .fn = break_trap,
227 };
228 
229 static struct undef_hook thumb_break_hook = {
230  .instr_mask = 0xffff,
231  .instr_val = 0xde01,
232  .cpsr_mask = PSR_T_BIT,
233  .cpsr_val = PSR_T_BIT,
234  .fn = break_trap,
235 };
236 
237 static struct undef_hook thumb2_break_hook = {
238  .instr_mask = 0xffffffff,
239  .instr_val = 0xf7f0a000,
240  .cpsr_mask = PSR_T_BIT,
241  .cpsr_val = PSR_T_BIT,
242  .fn = break_trap,
243 };
244 
245 static int __init ptrace_break_init(void)
246 {
247  register_undef_hook(&arm_break_hook);
248  register_undef_hook(&thumb_break_hook);
249  register_undef_hook(&thumb2_break_hook);
250  return 0;
251 }
252 
253 core_initcall(ptrace_break_init);
254 
255 /*
256  * Read the word at offset "off" into the "struct user". We
257  * actually access the pt_regs stored on the kernel stack.
258  */
259 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
260  unsigned long __user *ret)
261 {
262  unsigned long tmp;
263 
264  if (off & 3)
265  return -EIO;
266 
267  tmp = 0;
268  if (off == PT_TEXT_ADDR)
269  tmp = tsk->mm->start_code;
270  else if (off == PT_DATA_ADDR)
271  tmp = tsk->mm->start_data;
272  else if (off == PT_TEXT_END_ADDR)
273  tmp = tsk->mm->end_code;
274  else if (off < sizeof(struct pt_regs))
275  tmp = get_user_reg(tsk, off >> 2);
276  else if (off >= sizeof(struct user))
277  return -EIO;
278 
279  return put_user(tmp, ret);
280 }
281 
282 /*
283  * Write the word at offset "off" into "struct user". We
284  * actually access the pt_regs stored on the kernel stack.
285  */
286 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
287  unsigned long val)
288 {
289  if (off & 3 || off >= sizeof(struct user))
290  return -EIO;
291 
292  if (off >= sizeof(struct pt_regs))
293  return 0;
294 
295  return put_user_reg(tsk, off >> 2, val);
296 }
297 
298 #ifdef CONFIG_IWMMXT
299 
300 /*
301  * Get the child iWMMXt state.
302  */
303 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
304 {
305  struct thread_info *thread = task_thread_info(tsk);
306 
307  if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
308  return -ENODATA;
309  iwmmxt_task_disable(thread); /* force it to ram */
310  return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
311  ? -EFAULT : 0;
312 }
313 
314 /*
315  * Set the child iWMMXt state.
316  */
317 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
318 {
319  struct thread_info *thread = task_thread_info(tsk);
320 
321  if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
322  return -EACCES;
323  iwmmxt_task_release(thread); /* force a reload */
324  return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
325  ? -EFAULT : 0;
326 }
327 
328 #endif
329 
330 #ifdef CONFIG_CRUNCH
331 /*
332  * Get the child Crunch state.
333  */
334 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
335 {
336  struct thread_info *thread = task_thread_info(tsk);
337 
338  crunch_task_disable(thread); /* force it to ram */
339  return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
340  ? -EFAULT : 0;
341 }
342 
343 /*
344  * Set the child Crunch state.
345  */
346 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
347 {
348  struct thread_info *thread = task_thread_info(tsk);
349 
350  crunch_task_release(thread); /* force a reload */
351  return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
352  ? -EFAULT : 0;
353 }
354 #endif
355 
356 #ifdef CONFIG_HAVE_HW_BREAKPOINT
357 /*
358  * Convert a virtual register number into an index for a thread_info
359  * breakpoint array. Breakpoints are identified using positive numbers
360  * whilst watchpoints are negative. The registers are laid out as pairs
361  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
362  * Register 0 is reserved for describing resource information.
363  */
364 static int ptrace_hbp_num_to_idx(long num)
365 {
366  if (num < 0)
367  num = (ARM_MAX_BRP << 1) - num;
368  return (num - 1) >> 1;
369 }
370 
371 /*
372  * Returns the virtual register number for the address of the
373  * breakpoint at index idx.
374  */
375 static long ptrace_hbp_idx_to_num(int idx)
376 {
377  long mid = ARM_MAX_BRP << 1;
378  long num = (idx << 1) + 1;
379  return num > mid ? mid - num : num;
380 }
381 
382 /*
383  * Handle hitting a HW-breakpoint.
384  */
385 static void ptrace_hbptriggered(struct perf_event *bp,
386  struct perf_sample_data *data,
387  struct pt_regs *regs)
388 {
389  struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
390  long num;
391  int i;
392  siginfo_t info;
393 
394  for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
395  if (current->thread.debug.hbp[i] == bp)
396  break;
397 
398  num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
399 
400  info.si_signo = SIGTRAP;
401  info.si_errno = (int)num;
402  info.si_code = TRAP_HWBKPT;
403  info.si_addr = (void __user *)(bkpt->trigger);
404 
405  force_sig_info(SIGTRAP, &info, current);
406 }
407 
408 /*
409  * Set ptrace breakpoint pointers to zero for this task.
410  * This is required in order to prevent child processes from unregistering
411  * breakpoints held by their parent.
412  */
413 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
414 {
415  memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
416 }
417 
418 /*
419  * Unregister breakpoints from this task and reset the pointers in
420  * the thread_struct.
421  */
422 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
423 {
424  int i;
425  struct thread_struct *t = &tsk->thread;
426 
427  for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
428  if (t->debug.hbp[i]) {
429  unregister_hw_breakpoint(t->debug.hbp[i]);
430  t->debug.hbp[i] = NULL;
431  }
432  }
433 }
434 
435 static u32 ptrace_get_hbp_resource_info(void)
436 {
437  u8 num_brps, num_wrps, debug_arch, wp_len;
438  u32 reg = 0;
439 
440  num_brps = hw_breakpoint_slots(TYPE_INST);
441  num_wrps = hw_breakpoint_slots(TYPE_DATA);
442  debug_arch = arch_get_debug_arch();
443  wp_len = arch_get_max_wp_len();
444 
445  reg |= debug_arch;
446  reg <<= 8;
447  reg |= wp_len;
448  reg <<= 8;
449  reg |= num_wrps;
450  reg <<= 8;
451  reg |= num_brps;
452 
453  return reg;
454 }
455 
456 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
457 {
458  struct perf_event_attr attr;
459 
460  ptrace_breakpoint_init(&attr);
461 
462  /* Initialise fields to sane defaults. */
463  attr.bp_addr = 0;
464  attr.bp_len = HW_BREAKPOINT_LEN_4;
465  attr.bp_type = type;
466  attr.disabled = 1;
467 
468  return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
469  tsk);
470 }
471 
472 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
473  unsigned long __user *data)
474 {
475  u32 reg;
476  int idx, ret = 0;
477  struct perf_event *bp;
478  struct arch_hw_breakpoint_ctrl arch_ctrl;
479 
480  if (num == 0) {
481  reg = ptrace_get_hbp_resource_info();
482  } else {
483  idx = ptrace_hbp_num_to_idx(num);
484  if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
485  ret = -EINVAL;
486  goto out;
487  }
488 
489  bp = tsk->thread.debug.hbp[idx];
490  if (!bp) {
491  reg = 0;
492  goto put;
493  }
494 
495  arch_ctrl = counter_arch_bp(bp)->ctrl;
496 
497  /*
498  * Fix up the len because we may have adjusted it
499  * to compensate for an unaligned address.
500  */
501  while (!(arch_ctrl.len & 0x1))
502  arch_ctrl.len >>= 1;
503 
504  if (num & 0x1)
505  reg = bp->attr.bp_addr;
506  else
507  reg = encode_ctrl_reg(arch_ctrl);
508  }
509 
510 put:
511  if (put_user(reg, data))
512  ret = -EFAULT;
513 
514 out:
515  return ret;
516 }
517 
518 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
519  unsigned long __user *data)
520 {
521  int idx, gen_len, gen_type, implied_type, ret = 0;
522  u32 user_val;
523  struct perf_event *bp;
524  struct arch_hw_breakpoint_ctrl ctrl;
525  struct perf_event_attr attr;
526 
527  if (num == 0)
528  goto out;
529  else if (num < 0)
530  implied_type = HW_BREAKPOINT_RW;
531  else
532  implied_type = HW_BREAKPOINT_X;
533 
534  idx = ptrace_hbp_num_to_idx(num);
535  if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
536  ret = -EINVAL;
537  goto out;
538  }
539 
540  if (get_user(user_val, data)) {
541  ret = -EFAULT;
542  goto out;
543  }
544 
545  bp = tsk->thread.debug.hbp[idx];
546  if (!bp) {
547  bp = ptrace_hbp_create(tsk, implied_type);
548  if (IS_ERR(bp)) {
549  ret = PTR_ERR(bp);
550  goto out;
551  }
552  tsk->thread.debug.hbp[idx] = bp;
553  }
554 
555  attr = bp->attr;
556 
557  if (num & 0x1) {
558  /* Address */
559  attr.bp_addr = user_val;
560  } else {
561  /* Control */
562  decode_ctrl_reg(user_val, &ctrl);
563  ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
564  if (ret)
565  goto out;
566 
567  if ((gen_type & implied_type) != gen_type) {
568  ret = -EINVAL;
569  goto out;
570  }
571 
572  attr.bp_len = gen_len;
573  attr.bp_type = gen_type;
574  attr.disabled = !ctrl.enabled;
575  }
576 
577  ret = modify_user_hw_breakpoint(bp, &attr);
578 out:
579  return ret;
580 }
581 #endif
582 
583 /* regset get/set implementations */
584 
585 static int gpr_get(struct task_struct *target,
586  const struct user_regset *regset,
587  unsigned int pos, unsigned int count,
588  void *kbuf, void __user *ubuf)
589 {
590  struct pt_regs *regs = task_pt_regs(target);
591 
592  return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
593  regs,
594  0, sizeof(*regs));
595 }
596 
597 static int gpr_set(struct task_struct *target,
598  const struct user_regset *regset,
599  unsigned int pos, unsigned int count,
600  const void *kbuf, const void __user *ubuf)
601 {
602  int ret;
603  struct pt_regs newregs;
604 
605  ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
606  &newregs,
607  0, sizeof(newregs));
608  if (ret)
609  return ret;
610 
611  if (!valid_user_regs(&newregs))
612  return -EINVAL;
613 
614  *task_pt_regs(target) = newregs;
615  return 0;
616 }
617 
618 static int fpa_get(struct task_struct *target,
619  const struct user_regset *regset,
620  unsigned int pos, unsigned int count,
621  void *kbuf, void __user *ubuf)
622 {
623  return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
624  &task_thread_info(target)->fpstate,
625  0, sizeof(struct user_fp));
626 }
627 
628 static int fpa_set(struct task_struct *target,
629  const struct user_regset *regset,
630  unsigned int pos, unsigned int count,
631  const void *kbuf, const void __user *ubuf)
632 {
633  struct thread_info *thread = task_thread_info(target);
634 
635  thread->used_cp[1] = thread->used_cp[2] = 1;
636 
637  return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
638  &thread->fpstate,
639  0, sizeof(struct user_fp));
640 }
641 
642 #ifdef CONFIG_VFP
643 /*
644  * VFP register get/set implementations.
645  *
646  * With respect to the kernel, struct user_fp is divided into three chunks:
647  * 16 or 32 real VFP registers (d0-d15 or d0-31)
648  * These are transferred to/from the real registers in the task's
649  * vfp_hard_struct. The number of registers depends on the kernel
650  * configuration.
651  *
652  * 16 or 0 fake VFP registers (d16-d31 or empty)
653  * i.e., the user_vfp structure has space for 32 registers even if
654  * the kernel doesn't have them all.
655  *
656  * vfp_get() reads this chunk as zero where applicable
657  * vfp_set() ignores this chunk
658  *
659  * 1 word for the FPSCR
660  *
661  * The bounds-checking logic built into user_regset_copyout and friends
662  * means that we can make a simple sequence of calls to map the relevant data
663  * to/from the specified slice of the user regset structure.
664  */
665 static int vfp_get(struct task_struct *target,
666  const struct user_regset *regset,
667  unsigned int pos, unsigned int count,
668  void *kbuf, void __user *ubuf)
669 {
670  int ret;
671  struct thread_info *thread = task_thread_info(target);
672  struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
673  const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
674  const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
675 
676  vfp_sync_hwstate(thread);
677 
678  ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
679  &vfp->fpregs,
680  user_fpregs_offset,
681  user_fpregs_offset + sizeof(vfp->fpregs));
682  if (ret)
683  return ret;
684 
685  ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
686  user_fpregs_offset + sizeof(vfp->fpregs),
687  user_fpscr_offset);
688  if (ret)
689  return ret;
690 
691  return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
692  &vfp->fpscr,
693  user_fpscr_offset,
694  user_fpscr_offset + sizeof(vfp->fpscr));
695 }
696 
697 /*
698  * For vfp_set() a read-modify-write is done on the VFP registers,
699  * in order to avoid writing back a half-modified set of registers on
700  * failure.
701  */
702 static int vfp_set(struct task_struct *target,
703  const struct user_regset *regset,
704  unsigned int pos, unsigned int count,
705  const void *kbuf, const void __user *ubuf)
706 {
707  int ret;
708  struct thread_info *thread = task_thread_info(target);
709  struct vfp_hard_struct new_vfp;
710  const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
711  const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
712 
713  vfp_sync_hwstate(thread);
714  new_vfp = thread->vfpstate.hard;
715 
716  ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
717  &new_vfp.fpregs,
718  user_fpregs_offset,
719  user_fpregs_offset + sizeof(new_vfp.fpregs));
720  if (ret)
721  return ret;
722 
723  ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
724  user_fpregs_offset + sizeof(new_vfp.fpregs),
725  user_fpscr_offset);
726  if (ret)
727  return ret;
728 
729  ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
730  &new_vfp.fpscr,
731  user_fpscr_offset,
732  user_fpscr_offset + sizeof(new_vfp.fpscr));
733  if (ret)
734  return ret;
735 
736  vfp_flush_hwstate(thread);
737  thread->vfpstate.hard = new_vfp;
738 
739  return 0;
740 }
741 #endif /* CONFIG_VFP */
742 
746 #ifdef CONFIG_VFP
747  REGSET_VFP,
748 #endif
749 };
750 
751 static const struct user_regset arm_regsets[] = {
752  [REGSET_GPR] = {
753  .core_note_type = NT_PRSTATUS,
754  .n = ELF_NGREG,
755  .size = sizeof(u32),
756  .align = sizeof(u32),
757  .get = gpr_get,
758  .set = gpr_set
759  },
760  [REGSET_FPR] = {
761  /*
762  * For the FPA regs in fpstate, the real fields are a mixture
763  * of sizes, so pretend that the registers are word-sized:
764  */
765  .core_note_type = NT_PRFPREG,
766  .n = sizeof(struct user_fp) / sizeof(u32),
767  .size = sizeof(u32),
768  .align = sizeof(u32),
769  .get = fpa_get,
770  .set = fpa_set
771  },
772 #ifdef CONFIG_VFP
773  [REGSET_VFP] = {
774  /*
775  * Pretend that the VFP regs are word-sized, since the FPSCR is
776  * a single word dangling at the end of struct user_vfp:
777  */
778  .core_note_type = NT_ARM_VFP,
779  .n = ARM_VFPREGS_SIZE / sizeof(u32),
780  .size = sizeof(u32),
781  .align = sizeof(u32),
782  .get = vfp_get,
783  .set = vfp_set
784  },
785 #endif /* CONFIG_VFP */
786 };
787 
788 static const struct user_regset_view user_arm_view = {
789  .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
790  .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
791 };
792 
794 {
795  return &user_arm_view;
796 }
797 
799  unsigned long addr, unsigned long data)
800 {
801  int ret;
802  unsigned long __user *datap = (unsigned long __user *) data;
803 
804  switch (request) {
805  case PTRACE_PEEKUSR:
806  ret = ptrace_read_user(child, addr, datap);
807  break;
808 
809  case PTRACE_POKEUSR:
810  ret = ptrace_write_user(child, addr, data);
811  break;
812 
813  case PTRACE_GETREGS:
814  ret = copy_regset_to_user(child,
815  &user_arm_view, REGSET_GPR,
816  0, sizeof(struct pt_regs),
817  datap);
818  break;
819 
820  case PTRACE_SETREGS:
821  ret = copy_regset_from_user(child,
822  &user_arm_view, REGSET_GPR,
823  0, sizeof(struct pt_regs),
824  datap);
825  break;
826 
827  case PTRACE_GETFPREGS:
828  ret = copy_regset_to_user(child,
829  &user_arm_view, REGSET_FPR,
830  0, sizeof(union fp_state),
831  datap);
832  break;
833 
834  case PTRACE_SETFPREGS:
835  ret = copy_regset_from_user(child,
836  &user_arm_view, REGSET_FPR,
837  0, sizeof(union fp_state),
838  datap);
839  break;
840 
841 #ifdef CONFIG_IWMMXT
842  case PTRACE_GETWMMXREGS:
843  ret = ptrace_getwmmxregs(child, datap);
844  break;
845 
846  case PTRACE_SETWMMXREGS:
847  ret = ptrace_setwmmxregs(child, datap);
848  break;
849 #endif
850 
852  ret = put_user(task_thread_info(child)->tp_value,
853  datap);
854  break;
855 
856  case PTRACE_SET_SYSCALL:
857  task_thread_info(child)->syscall = data;
858  ret = 0;
859  break;
860 
861 #ifdef CONFIG_CRUNCH
863  ret = ptrace_getcrunchregs(child, datap);
864  break;
865 
867  ret = ptrace_setcrunchregs(child, datap);
868  break;
869 #endif
870 
871 #ifdef CONFIG_VFP
872  case PTRACE_GETVFPREGS:
873  ret = copy_regset_to_user(child,
874  &user_arm_view, REGSET_VFP,
875  0, ARM_VFPREGS_SIZE,
876  datap);
877  break;
878 
879  case PTRACE_SETVFPREGS:
880  ret = copy_regset_from_user(child,
881  &user_arm_view, REGSET_VFP,
882  0, ARM_VFPREGS_SIZE,
883  datap);
884  break;
885 #endif
886 
887 #ifdef CONFIG_HAVE_HW_BREAKPOINT
888  case PTRACE_GETHBPREGS:
889  if (ptrace_get_breakpoints(child) < 0)
890  return -ESRCH;
891 
892  ret = ptrace_gethbpregs(child, addr,
893  (unsigned long __user *)data);
894  ptrace_put_breakpoints(child);
895  break;
896  case PTRACE_SETHBPREGS:
897  if (ptrace_get_breakpoints(child) < 0)
898  return -ESRCH;
899 
900  ret = ptrace_sethbpregs(child, addr,
901  (unsigned long __user *)data);
902  ptrace_put_breakpoints(child);
903  break;
904 #endif
905 
906  default:
907  ret = ptrace_request(child, request, addr, data);
908  break;
909  }
910 
911  return ret;
912 }
913 
917 };
918 
919 static int ptrace_syscall_trace(struct pt_regs *regs, int scno,
920  enum ptrace_syscall_dir dir)
921 {
922  unsigned long ip;
923 
924  current_thread_info()->syscall = scno;
925 
926  if (!test_thread_flag(TIF_SYSCALL_TRACE))
927  return scno;
928 
929  /*
930  * IP is used to denote syscall entry/exit:
931  * IP = 0 -> entry, =1 -> exit
932  */
933  ip = regs->ARM_ip;
934  regs->ARM_ip = dir;
935 
936  if (dir == PTRACE_SYSCALL_EXIT)
937  tracehook_report_syscall_exit(regs, 0);
938  else if (tracehook_report_syscall_entry(regs))
939  current_thread_info()->syscall = -1;
940 
941  regs->ARM_ip = ip;
942  return current_thread_info()->syscall;
943 }
944 
945 asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno)
946 {
947  scno = ptrace_syscall_trace(regs, scno, PTRACE_SYSCALL_ENTER);
948  if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
949  trace_sys_enter(regs, scno);
950  audit_syscall_entry(AUDIT_ARCH_ARM, scno, regs->ARM_r0, regs->ARM_r1,
951  regs->ARM_r2, regs->ARM_r3);
952  return scno;
953 }
954 
955 asmlinkage int syscall_trace_exit(struct pt_regs *regs, int scno)
956 {
957  scno = ptrace_syscall_trace(regs, scno, PTRACE_SYSCALL_EXIT);
958  if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
959  trace_sys_exit(regs, scno);
960  audit_syscall_exit(regs);
961  return scno;
962 }