Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ioremap.c
Go to the documentation of this file.
1 /*
2  * linux/arch/arm/mm/ioremap.c
3  *
4  * Re-map IO memory to kernel address space so that we can access it.
5  *
6  * (C) Copyright 1995 1996 Linus Torvalds
7  *
8  * Hacked for ARM by Phil Blundell <[email protected]>
9  * Hacked to allow all architectures to build, and various cleanups
10  * by Russell King
11  *
12  * This allows a driver to remap an arbitrary region of bus memory into
13  * virtual space. One should *only* use readl, writel, memcpy_toio and
14  * so on with such remapped areas.
15  *
16  * Because the ARM only has a 32-bit address space we can't address the
17  * whole of the (physical) PCI space at once. PCI huge-mode addressing
18  * allows us to circumvent this restriction by splitting PCI space into
19  * two 2GB chunks and mapping only one at a time into processor memory.
20  * We use MMU protection domains to trap any attempt to access the bank
21  * that is not currently mapped. (This isn't fully implemented yet.)
22  */
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/mm.h>
26 #include <linux/vmalloc.h>
27 #include <linux/io.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/cp15.h>
31 #include <asm/cputype.h>
32 #include <asm/cacheflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/pgalloc.h>
35 #include <asm/tlbflush.h>
36 #include <asm/system_info.h>
37 
38 #include <asm/mach/map.h>
39 #include <asm/mach/pci.h>
40 #include "mm.h"
41 
42 int ioremap_page(unsigned long virt, unsigned long phys,
43  const struct mem_type *mtype)
44 {
45  return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
46  __pgprot(mtype->prot_pte));
47 }
49 
50 void __check_kvm_seq(struct mm_struct *mm)
51 {
52  unsigned int seq;
53 
54  do {
55  seq = init_mm.context.kvm_seq;
58  sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
60  mm->context.kvm_seq = seq;
61  } while (seq != init_mm.context.kvm_seq);
62 }
63 
64 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
65 /*
66  * Section support is unsafe on SMP - If you iounmap and ioremap a region,
67  * the other CPUs will not see this change until their next context switch.
68  * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
69  * which requires the new ioremap'd region to be referenced, the CPU will
70  * reference the _old_ region.
71  *
72  * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
73  * mask the size back to 1MB aligned or we will overflow in the loop below.
74  */
75 static void unmap_area_sections(unsigned long virt, unsigned long size)
76 {
77  unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
78  pgd_t *pgd;
79  pud_t *pud;
80  pmd_t *pmdp;
81 
83  pgd = pgd_offset_k(addr);
84  pud = pud_offset(pgd, addr);
85  pmdp = pmd_offset(pud, addr);
86  do {
87  pmd_t pmd = *pmdp;
88 
89  if (!pmd_none(pmd)) {
90  /*
91  * Clear the PMD from the page table, and
92  * increment the kvm sequence so others
93  * notice this change.
94  *
95  * Note: this is still racy on SMP machines.
96  */
97  pmd_clear(pmdp);
98  init_mm.context.kvm_seq++;
99 
100  /*
101  * Free the page table, if there was one.
102  */
103  if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
105  }
106 
107  addr += PMD_SIZE;
108  pmdp += 2;
109  } while (addr < end);
110 
111  /*
112  * Ensure that the active_mm is up to date - we want to
113  * catch any use-after-iounmap cases.
114  */
115  if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
116  __check_kvm_seq(current->active_mm);
117 
119 }
120 
121 static int
122 remap_area_sections(unsigned long virt, unsigned long pfn,
123  size_t size, const struct mem_type *type)
124 {
125  unsigned long addr = virt, end = virt + size;
126  pgd_t *pgd;
127  pud_t *pud;
128  pmd_t *pmd;
129 
130  /*
131  * Remove and free any PTE-based mapping, and
132  * sync the current kernel mapping.
133  */
134  unmap_area_sections(virt, size);
135 
136  pgd = pgd_offset_k(addr);
137  pud = pud_offset(pgd, addr);
138  pmd = pmd_offset(pud, addr);
139  do {
140  pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
141  pfn += SZ_1M >> PAGE_SHIFT;
142  pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
143  pfn += SZ_1M >> PAGE_SHIFT;
144  flush_pmd_entry(pmd);
145 
146  addr += PMD_SIZE;
147  pmd += 2;
148  } while (addr < end);
149 
150  return 0;
151 }
152 
153 static int
154 remap_area_supersections(unsigned long virt, unsigned long pfn,
155  size_t size, const struct mem_type *type)
156 {
157  unsigned long addr = virt, end = virt + size;
158  pgd_t *pgd;
159  pud_t *pud;
160  pmd_t *pmd;
161 
162  /*
163  * Remove and free any PTE-based mapping, and
164  * sync the current kernel mapping.
165  */
166  unmap_area_sections(virt, size);
167 
168  pgd = pgd_offset_k(virt);
169  pud = pud_offset(pgd, addr);
170  pmd = pmd_offset(pud, addr);
171  do {
172  unsigned long super_pmd_val, i;
173 
174  super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
176  super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
177 
178  for (i = 0; i < 8; i++) {
179  pmd[0] = __pmd(super_pmd_val);
180  pmd[1] = __pmd(super_pmd_val);
181  flush_pmd_entry(pmd);
182 
183  addr += PMD_SIZE;
184  pmd += 2;
185  }
186 
187  pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
188  } while (addr < end);
189 
190  return 0;
191 }
192 #endif
193 
194 void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
195  unsigned long offset, size_t size, unsigned int mtype, void *caller)
196 {
197  const struct mem_type *type;
198  int err;
199  unsigned long addr;
200  struct vm_struct * area;
201 
202 #ifndef CONFIG_ARM_LPAE
203  /*
204  * High mappings must be supersection aligned
205  */
206  if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
207  return NULL;
208 #endif
209 
210  type = get_mem_type(mtype);
211  if (!type)
212  return NULL;
213 
214  /*
215  * Page align the mapping size, taking account of any offset.
216  */
217  size = PAGE_ALIGN(offset + size);
218 
219  /*
220  * Try to reuse one of the static mapping whenever possible.
221  */
223  for (area = vmlist; area; area = area->next) {
224  if (!size || (sizeof(phys_addr_t) == 4 && pfn >= 0x100000))
225  break;
226  if (!(area->flags & VM_ARM_STATIC_MAPPING))
227  continue;
228  if ((area->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
229  continue;
230  if (__phys_to_pfn(area->phys_addr) > pfn ||
231  __pfn_to_phys(pfn) + size-1 > area->phys_addr + area->size-1)
232  continue;
233  /* we can drop the lock here as we know *area is static */
235  addr = (unsigned long)area->addr;
236  addr += __pfn_to_phys(pfn) - area->phys_addr;
237  return (void __iomem *) (offset + addr);
238  }
240 
241  /*
242  * Don't allow RAM to be mapped - this causes problems with ARMv6+
243  */
244  if (WARN_ON(pfn_valid(pfn)))
245  return NULL;
246 
247  area = get_vm_area_caller(size, VM_IOREMAP, caller);
248  if (!area)
249  return NULL;
250  addr = (unsigned long)area->addr;
251  area->phys_addr = __pfn_to_phys(pfn);
252 
253 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
254  if (DOMAIN_IO == 0 &&
255  (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
256  cpu_is_xsc3()) && pfn >= 0x100000 &&
257  !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
258  area->flags |= VM_ARM_SECTION_MAPPING;
259  err = remap_area_supersections(addr, pfn, size, type);
260  } else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
261  area->flags |= VM_ARM_SECTION_MAPPING;
262  err = remap_area_sections(addr, pfn, size, type);
263  } else
264 #endif
265  err = ioremap_page_range(addr, addr + size, __pfn_to_phys(pfn),
266  __pgprot(type->prot_pte));
267 
268  if (err) {
269  vunmap((void *)addr);
270  return NULL;
271  }
272 
273  flush_cache_vmap(addr, addr + size);
274  return (void __iomem *) (offset + addr);
275 }
276 
277 void __iomem *__arm_ioremap_caller(unsigned long phys_addr, size_t size,
278  unsigned int mtype, void *caller)
279 {
280  unsigned long last_addr;
281  unsigned long offset = phys_addr & ~PAGE_MASK;
282  unsigned long pfn = __phys_to_pfn(phys_addr);
283 
284  /*
285  * Don't allow wraparound or zero size
286  */
287  last_addr = phys_addr + size - 1;
288  if (!size || last_addr < phys_addr)
289  return NULL;
290 
291  return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
292  caller);
293 }
294 
295 /*
296  * Remap an arbitrary physical address space into the kernel virtual
297  * address space. Needed when the kernel wants to access high addresses
298  * directly.
299  *
300  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
301  * have to convert them into an offset in a page-aligned mapping, but the
302  * caller shouldn't need to know that small detail.
303  */
304 void __iomem *
305 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
306  unsigned int mtype)
307 {
308  return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
309  __builtin_return_address(0));
310 }
312 
313 void __iomem * (*arch_ioremap_caller)(unsigned long, size_t,
314  unsigned int, void *) =
316 
317 void __iomem *
318 __arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype)
319 {
320  return arch_ioremap_caller(phys_addr, size, mtype,
321  __builtin_return_address(0));
322 }
324 
325 /*
326  * Remap an arbitrary physical address space into the kernel virtual
327  * address space as memory. Needed when the kernel wants to execute
328  * code in external memory. This is needed for reprogramming source
329  * clocks that would affect normal memory for example. Please see
330  * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
331  */
332 void __iomem *
333 __arm_ioremap_exec(unsigned long phys_addr, size_t size, bool cached)
334 {
335  unsigned int mtype;
336 
337  if (cached)
338  mtype = MT_MEMORY;
339  else
340  mtype = MT_MEMORY_NONCACHED;
341 
342  return __arm_ioremap_caller(phys_addr, size, mtype,
343  __builtin_return_address(0));
344 }
345 
346 void __iounmap(volatile void __iomem *io_addr)
347 {
348  void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
349  struct vm_struct *vm;
350 
352  for (vm = vmlist; vm; vm = vm->next) {
353  if (vm->addr > addr)
354  break;
355  if (!(vm->flags & VM_IOREMAP))
356  continue;
357  /* If this is a static mapping we must leave it alone */
358  if ((vm->flags & VM_ARM_STATIC_MAPPING) &&
359  (vm->addr <= addr) && (vm->addr + vm->size > addr)) {
361  return;
362  }
363 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
364  /*
365  * If this is a section based mapping we need to handle it
366  * specially as the VM subsystem does not know how to handle
367  * such a beast.
368  */
369  if ((vm->addr == addr) &&
370  (vm->flags & VM_ARM_SECTION_MAPPING)) {
371  unmap_area_sections((unsigned long)vm->addr, vm->size);
372  break;
373  }
374 #endif
375  }
377 
378  vunmap(addr);
379 }
380 
381 void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
382 
383 void __arm_iounmap(volatile void __iomem *io_addr)
384 {
385  arch_iounmap(io_addr);
386 }
388 
389 #ifdef CONFIG_PCI
390 int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
391 {
392  BUG_ON(offset + SZ_64K > IO_SPACE_LIMIT);
393 
394  return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
395  PCI_IO_VIRT_BASE + offset + SZ_64K,
396  phys_addr,
397  __pgprot(get_mem_type(MT_DEVICE)->prot_pte));
398 }
399 EXPORT_SYMBOL_GPL(pci_ioremap_io);
400 #endif