Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dma.c
Go to the documentation of this file.
1 /*
2  * DMA implementation for Hexagon
3  *
4  * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18  * 02110-1301, USA.
19  */
20 
21 #include <linux/dma-mapping.h>
22 #include <linux/bootmem.h>
23 #include <linux/genalloc.h>
24 #include <asm/dma-mapping.h>
25 #include <linux/module.h>
26 
28 EXPORT_SYMBOL(dma_ops);
29 
30 int bad_dma_address; /* globals are automatically initialized to zero */
31 
33 {
34  if (mask == DMA_BIT_MASK(32))
35  return 1;
36  else
37  return 0;
38 }
40 
42 {
43  if (!dev->dma_mask || !dma_supported(dev, mask))
44  return -EIO;
45 
46  *dev->dma_mask = mask;
47 
48  return 0;
49 }
50 EXPORT_SYMBOL(dma_set_mask);
51 
52 static struct gen_pool *coherent_pool;
53 
54 
55 /* Allocates from a pool of uncached memory that was reserved at boot time */
56 
57 static void *hexagon_dma_alloc_coherent(struct device *dev, size_t size,
59  struct dma_attrs *attrs)
60 {
61  void *ret;
62 
63  if (coherent_pool == NULL) {
64  coherent_pool = gen_pool_create(PAGE_SHIFT, -1);
65 
66  if (coherent_pool == NULL)
67  panic("Can't create %s() memory pool!", __func__);
68  else
69  gen_pool_add(coherent_pool,
72  }
73 
74  ret = (void *) gen_pool_alloc(coherent_pool, size);
75 
76  if (ret) {
77  memset(ret, 0, size);
78  *dma_addr = (dma_addr_t) (ret - PAGE_OFFSET);
79  } else
80  *dma_addr = ~0;
81 
82  return ret;
83 }
84 
85 static void hexagon_free_coherent(struct device *dev, size_t size, void *vaddr,
86  dma_addr_t dma_addr, struct dma_attrs *attrs)
87 {
88  gen_pool_free(coherent_pool, (unsigned long) vaddr, size);
89 }
90 
91 static int check_addr(const char *name, struct device *hwdev,
92  dma_addr_t bus, size_t size)
93 {
94  if (hwdev && hwdev->dma_mask && !dma_capable(hwdev, bus, size)) {
95  if (*hwdev->dma_mask >= DMA_BIT_MASK(32))
97  "%s: overflow %Lx+%zu of device mask %Lx\n",
98  name, (long long)bus, size,
99  (long long)*hwdev->dma_mask);
100  return 0;
101  }
102  return 1;
103 }
104 
105 static int hexagon_map_sg(struct device *hwdev, struct scatterlist *sg,
106  int nents, enum dma_data_direction dir,
107  struct dma_attrs *attrs)
108 {
109  struct scatterlist *s;
110  int i;
111 
112  WARN_ON(nents == 0 || sg[0].length == 0);
113 
114  for_each_sg(sg, s, nents, i) {
115  s->dma_address = sg_phys(s);
116  if (!check_addr("map_sg", hwdev, s->dma_address, s->length))
117  return 0;
118 
119  s->dma_length = s->length;
120 
122  PAGE_OFFSET + s->dma_address + s->length);
123  }
124 
125  return nents;
126 }
127 
128 /*
129  * address is virtual
130  */
131 static inline void dma_sync(void *addr, size_t size,
132  enum dma_data_direction dir)
133 {
134  switch (dir) {
135  case DMA_TO_DEVICE:
136  hexagon_clean_dcache_range((unsigned long) addr,
137  (unsigned long) addr + size);
138  break;
139  case DMA_FROM_DEVICE:
140  hexagon_inv_dcache_range((unsigned long) addr,
141  (unsigned long) addr + size);
142  break;
143  case DMA_BIDIRECTIONAL:
144  flush_dcache_range((unsigned long) addr,
145  (unsigned long) addr + size);
146  break;
147  default:
148  BUG();
149  }
150 }
151 
152 static inline void *dma_addr_to_virt(dma_addr_t dma_addr)
153 {
154  return phys_to_virt((unsigned long) dma_addr);
155 }
156 
176 static dma_addr_t hexagon_map_page(struct device *dev, struct page *page,
177  unsigned long offset, size_t size,
178  enum dma_data_direction dir,
179  struct dma_attrs *attrs)
180 {
181  dma_addr_t bus = page_to_phys(page) + offset;
182  WARN_ON(size == 0);
183 
184  if (!check_addr("map_single", dev, bus, size))
185  return bad_dma_address;
186 
187  dma_sync(dma_addr_to_virt(bus), size, dir);
188 
189  return bus;
190 }
191 
192 static void hexagon_sync_single_for_cpu(struct device *dev,
193  dma_addr_t dma_handle, size_t size,
194  enum dma_data_direction dir)
195 {
196  dma_sync(dma_addr_to_virt(dma_handle), size, dir);
197 }
198 
199 static void hexagon_sync_single_for_device(struct device *dev,
200  dma_addr_t dma_handle, size_t size,
201  enum dma_data_direction dir)
202 {
203  dma_sync(dma_addr_to_virt(dma_handle), size, dir);
204 }
205 
207  .alloc = hexagon_dma_alloc_coherent,
208  .free = hexagon_free_coherent,
209  .map_sg = hexagon_map_sg,
210  .map_page = hexagon_map_page,
211  .sync_single_for_cpu = hexagon_sync_single_for_cpu,
212  .sync_single_for_device = hexagon_sync_single_for_device,
213  .is_phys = 1,
214 };
215 
217 {
218  if (dma_ops)
219  return;
220 
221  dma_ops = &hexagon_dma_ops;
222 }