Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
topology.c
Go to the documentation of this file.
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License. See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which can
7  * be split away from DISCONTIGMEM and are used on NUMA machines with
8  * contiguous memory.
9  * 2002/08/07 Erich Focht <[email protected]>
10  * Populate cpu entries in sysfs for non-numa systems as well
11  * Intel Corporation - Ashok Raj
12  * 02/27/2006 Zhang, Yanmin
13  * Populate cpu cache entries in sysfs for cpu cache info
14  */
15 
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/bootmem.h>
23 #include <linux/nodemask.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <asm/mmzone.h>
27 #include <asm/numa.h>
28 #include <asm/cpu.h>
29 
30 static struct ia64_cpu *sysfs_cpus;
31 
33 {
34 #ifdef CONFIG_SMP
35  if (cpu_data(num)->socket_id == -1)
36  cpu_data(num)->socket_id = slot;
37 #endif
38 }
40 
41 
42 #ifdef CONFIG_HOTPLUG_CPU
43 int __ref arch_register_cpu(int num)
44 {
45 #ifdef CONFIG_ACPI
46  /*
47  * If CPEI can be re-targeted or if this is not
48  * CPEI target, then it is hotpluggable
49  */
50  if (can_cpei_retarget() || !is_cpu_cpei_target(num))
51  sysfs_cpus[num].cpu.hotpluggable = 1;
52  map_cpu_to_node(num, node_cpuid[num].nid);
53 #endif
54  return register_cpu(&sysfs_cpus[num].cpu, num);
55 }
56 EXPORT_SYMBOL(arch_register_cpu);
57 
58 void __ref arch_unregister_cpu(int num)
59 {
60  unregister_cpu(&sysfs_cpus[num].cpu);
61 #ifdef CONFIG_ACPI
63 #endif
64 }
65 EXPORT_SYMBOL(arch_unregister_cpu);
66 #else
67 static int __init arch_register_cpu(int num)
68 {
69  return register_cpu(&sysfs_cpus[num].cpu, num);
70 }
71 #endif /*CONFIG_HOTPLUG_CPU*/
72 
73 
74 static int __init topology_init(void)
75 {
76  int i, err = 0;
77 
78 #ifdef CONFIG_NUMA
79  /*
80  * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
81  */
83  if ((err = register_one_node(i)))
84  goto out;
85  }
86 #endif
87 
88  sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
89  if (!sysfs_cpus)
90  panic("kzalloc in topology_init failed - NR_CPUS too big?");
91 
93  if((err = arch_register_cpu(i)))
94  goto out;
95  }
96 out:
97  return err;
98 }
99 
100 subsys_initcall(topology_init);
101 
102 
103 /*
104  * Export cpu cache information through sysfs
105  */
106 
107 /*
108  * A bunch of string array to get pretty printing
109  */
110 static const char *cache_types[] = {
111  "", /* not used */
112  "Instruction",
113  "Data",
114  "Unified" /* unified */
115 };
116 
117 static const char *cache_mattrib[]={
118  "WriteThrough",
119  "WriteBack",
120  "", /* reserved */
121  "" /* reserved */
122 };
123 
124 struct cache_info {
127  int level;
128  int type;
129  struct kobject kobj;
130 };
131 
135  struct kobject kobj;
136 };
137 
138 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS] __cpuinitdata;
139 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
140 
141 #ifdef CONFIG_SMP
142 static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
143  struct cache_info * this_leaf)
144 {
146  int num_shared, i = 0;
147  unsigned int j;
148 
149  if (cpu_data(cpu)->threads_per_core <= 1 &&
150  cpu_data(cpu)->cores_per_socket <= 1) {
151  cpu_set(cpu, this_leaf->shared_cpu_map);
152  return;
153  }
154 
155  if (ia64_pal_cache_shared_info(this_leaf->level,
156  this_leaf->type,
157  0,
158  &csi) != PAL_STATUS_SUCCESS)
159  return;
160 
161  num_shared = (int) csi.num_shared;
162  do {
164  if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
165  && cpu_data(j)->core_id == csi.log1_cid
166  && cpu_data(j)->thread_id == csi.log1_tid)
167  cpu_set(j, this_leaf->shared_cpu_map);
168 
169  i++;
170  } while (i < num_shared &&
171  ia64_pal_cache_shared_info(this_leaf->level,
172  this_leaf->type,
173  i,
174  &csi) == PAL_STATUS_SUCCESS);
175 }
176 #else
177 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
178  struct cache_info * this_leaf)
179 {
180  cpu_set(cpu, this_leaf->shared_cpu_map);
181  return;
182 }
183 #endif
184 
185 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
186  char *buf)
187 {
188  return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
189 }
190 
191 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
192  char *buf)
193 {
194  return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
195 }
196 
197 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
198 {
199  return sprintf(buf,
200  "%s\n",
201  cache_mattrib[this_leaf->cci.pcci_cache_attr]);
202 }
203 
204 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
205 {
206  return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
207 }
208 
209 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
210 {
211  unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
212  number_of_sets /= this_leaf->cci.pcci_assoc;
213  number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
214 
215  return sprintf(buf, "%u\n", number_of_sets);
216 }
217 
218 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
219 {
220  ssize_t len;
221  cpumask_t shared_cpu_map;
222 
223  cpumask_and(&shared_cpu_map,
224  &this_leaf->shared_cpu_map, cpu_online_mask);
225  len = cpumask_scnprintf(buf, NR_CPUS+1, &shared_cpu_map);
226  len += sprintf(buf+len, "\n");
227  return len;
228 }
229 
230 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
231 {
232  int type = this_leaf->type + this_leaf->cci.pcci_unified;
233  return sprintf(buf, "%s\n", cache_types[type]);
234 }
235 
236 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
237 {
238  return sprintf(buf, "%u\n", this_leaf->level);
239 }
240 
241 struct cache_attr {
242  struct attribute attr;
243  ssize_t (*show)(struct cache_info *, char *);
244  ssize_t (*store)(struct cache_info *, const char *, size_t count);
245 };
246 
247 #ifdef define_one_ro
248  #undef define_one_ro
249 #endif
250 #define define_one_ro(_name) \
251  static struct cache_attr _name = \
252 __ATTR(_name, 0444, show_##_name, NULL)
253 
256 define_one_ro(coherency_line_size);
257 define_one_ro(ways_of_associativity);
259 define_one_ro(number_of_sets);
262 
263 static struct attribute * cache_default_attrs[] = {
264  &type.attr,
265  &level.attr,
266  &coherency_line_size.attr,
267  &ways_of_associativity.attr,
268  &attributes.attr,
269  &size.attr,
270  &number_of_sets.attr,
271  &shared_cpu_map.attr,
272  NULL
273 };
274 
275 #define to_object(k) container_of(k, struct cache_info, kobj)
276 #define to_attr(a) container_of(a, struct cache_attr, attr)
277 
278 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
279 {
280  struct cache_attr *fattr = to_attr(attr);
281  struct cache_info *this_leaf = to_object(kobj);
282  ssize_t ret;
283 
284  ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
285  return ret;
286 }
287 
288 static const struct sysfs_ops cache_sysfs_ops = {
289  .show = cache_show
290 };
291 
292 static struct kobj_type cache_ktype = {
293  .sysfs_ops = &cache_sysfs_ops,
294  .default_attrs = cache_default_attrs,
295 };
296 
297 static struct kobj_type cache_ktype_percpu_entry = {
298  .sysfs_ops = &cache_sysfs_ops,
299 };
300 
301 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
302 {
303  kfree(all_cpu_cache_info[cpu].cache_leaves);
304  all_cpu_cache_info[cpu].cache_leaves = NULL;
305  all_cpu_cache_info[cpu].num_cache_leaves = 0;
306  memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
307  return;
308 }
309 
310 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
311 {
312  unsigned long i, levels, unique_caches;
314  int j;
315  long status;
316  struct cache_info *this_cache;
317  int num_cache_leaves = 0;
318 
319  if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
320  printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
321  return -1;
322  }
323 
324  this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
325  GFP_KERNEL);
326  if (this_cache == NULL)
327  return -ENOMEM;
328 
329  for (i=0; i < levels; i++) {
330  for (j=2; j >0 ; j--) {
331  if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
333  continue;
334 
335  this_cache[num_cache_leaves].cci = cci;
336  this_cache[num_cache_leaves].level = i + 1;
337  this_cache[num_cache_leaves].type = j;
338 
339  cache_shared_cpu_map_setup(cpu,
340  &this_cache[num_cache_leaves]);
341  num_cache_leaves ++;
342  }
343  }
344 
345  all_cpu_cache_info[cpu].cache_leaves = this_cache;
346  all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
347 
348  memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
349 
350  return 0;
351 }
352 
353 /* Add cache interface for CPU device */
354 static int __cpuinit cache_add_dev(struct device * sys_dev)
355 {
356  unsigned int cpu = sys_dev->id;
357  unsigned long i, j;
358  struct cache_info *this_object;
359  int retval = 0;
360  cpumask_t oldmask;
361 
362  if (all_cpu_cache_info[cpu].kobj.parent)
363  return 0;
364 
365  oldmask = current->cpus_allowed;
366  retval = set_cpus_allowed_ptr(current, cpumask_of(cpu));
367  if (unlikely(retval))
368  return retval;
369 
370  retval = cpu_cache_sysfs_init(cpu);
371  set_cpus_allowed_ptr(current, &oldmask);
372  if (unlikely(retval < 0))
373  return retval;
374 
375  retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
376  &cache_ktype_percpu_entry, &sys_dev->kobj,
377  "%s", "cache");
378  if (unlikely(retval < 0)) {
379  cpu_cache_sysfs_exit(cpu);
380  return retval;
381  }
382 
383  for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
384  this_object = LEAF_KOBJECT_PTR(cpu,i);
385  retval = kobject_init_and_add(&(this_object->kobj),
386  &cache_ktype,
387  &all_cpu_cache_info[cpu].kobj,
388  "index%1lu", i);
389  if (unlikely(retval)) {
390  for (j = 0; j < i; j++) {
391  kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
392  }
393  kobject_put(&all_cpu_cache_info[cpu].kobj);
394  cpu_cache_sysfs_exit(cpu);
395  return retval;
396  }
397  kobject_uevent(&(this_object->kobj), KOBJ_ADD);
398  }
399  kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
400  return retval;
401 }
402 
403 /* Remove cache interface for CPU device */
404 static int __cpuinit cache_remove_dev(struct device * sys_dev)
405 {
406  unsigned int cpu = sys_dev->id;
407  unsigned long i;
408 
409  for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
410  kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
411 
412  if (all_cpu_cache_info[cpu].kobj.parent) {
413  kobject_put(&all_cpu_cache_info[cpu].kobj);
414  memset(&all_cpu_cache_info[cpu].kobj,
415  0,
416  sizeof(struct kobject));
417  }
418 
419  cpu_cache_sysfs_exit(cpu);
420 
421  return 0;
422 }
423 
424 /*
425  * When a cpu is hot-plugged, do a check and initiate
426  * cache kobject if necessary
427  */
428 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
429  unsigned long action, void *hcpu)
430 {
431  unsigned int cpu = (unsigned long)hcpu;
432  struct device *sys_dev;
433 
434  sys_dev = get_cpu_device(cpu);
435  switch (action) {
436  case CPU_ONLINE:
437  case CPU_ONLINE_FROZEN:
438  cache_add_dev(sys_dev);
439  break;
440  case CPU_DEAD:
441  case CPU_DEAD_FROZEN:
442  cache_remove_dev(sys_dev);
443  break;
444  }
445  return NOTIFY_OK;
446 }
447 
448 static struct notifier_block __cpuinitdata cache_cpu_notifier =
449 {
450  .notifier_call = cache_cpu_callback
451 };
452 
453 static int __init cache_sysfs_init(void)
454 {
455  int i;
456 
458  struct device *sys_dev = get_cpu_device((unsigned int)i);
459  cache_add_dev(sys_dev);
460  }
461 
462  register_hotcpu_notifier(&cache_cpu_notifier);
463 
464  return 0;
465 }
466 
467 device_initcall(cache_sysfs_init);
468