Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dma.h
Go to the documentation of this file.
1 #ifndef _M68K_DMA_H
2 #define _M68K_DMA_H 1
3 
4 #ifdef CONFIG_COLDFIRE
5 /*
6  * ColdFire DMA Model:
7  * ColdFire DMA supports two forms of DMA: Single and Dual address. Single
8  * address mode emits a source address, and expects that the device will either
9  * pick up the data (DMA READ) or source data (DMA WRITE). This implies that
10  * the device will place data on the correct byte(s) of the data bus, as the
11  * memory transactions are always 32 bits. This implies that only 32 bit
12  * devices will find single mode transfers useful. Dual address DMA mode
13  * performs two cycles: source read and destination write. ColdFire will
14  * align the data so that the device will always get the correct bytes, thus
15  * is useful for 8 and 16 bit devices. This is the mode that is supported
16  * below.
17  *
18  * AUG/22/2000 : added support for 32-bit Dual-Address-Mode (K) 2000
19  * Oliver Kamphenkel ([email protected])
20  *
21  * AUG/25/2000 : addad support for 8, 16 and 32-bit Single-Address-Mode (K)2000
22  * Oliver Kamphenkel ([email protected])
23  *
24  * APR/18/2002 : added proper support for MCF5272 DMA controller.
25  * Arthur Shipkowski ([email protected])
26  */
27 
28 #include <asm/coldfire.h>
29 #include <asm/mcfsim.h>
30 #include <asm/mcfdma.h>
31 
32 /*
33  * Set number of channels of DMA on ColdFire for different implementations.
34  */
35 #if defined(CONFIG_M5249) || defined(CONFIG_M5307) || defined(CONFIG_M5407) || \
36  defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
37  defined(CONFIG_M528x) || defined(CONFIG_M525x)
38 
39 #define MAX_M68K_DMA_CHANNELS 4
40 #elif defined(CONFIG_M5272)
41 #define MAX_M68K_DMA_CHANNELS 1
42 #elif defined(CONFIG_M532x)
43 #define MAX_M68K_DMA_CHANNELS 0
44 #else
45 #define MAX_M68K_DMA_CHANNELS 2
46 #endif
47 
48 extern unsigned int dma_base_addr[MAX_M68K_DMA_CHANNELS];
49 extern unsigned int dma_device_address[MAX_M68K_DMA_CHANNELS];
50 
51 #if !defined(CONFIG_M5272)
52 #define DMA_MODE_WRITE_BIT 0x01 /* Memory/IO to IO/Memory select */
53 #define DMA_MODE_WORD_BIT 0x02 /* 8 or 16 bit transfers */
54 #define DMA_MODE_LONG_BIT 0x04 /* or 32 bit transfers */
55 #define DMA_MODE_SINGLE_BIT 0x08 /* single-address-mode */
56 
57 /* I/O to memory, 8 bits, mode */
58 #define DMA_MODE_READ 0
59 /* memory to I/O, 8 bits, mode */
60 #define DMA_MODE_WRITE 1
61 /* I/O to memory, 16 bits, mode */
62 #define DMA_MODE_READ_WORD 2
63 /* memory to I/O, 16 bits, mode */
64 #define DMA_MODE_WRITE_WORD 3
65 /* I/O to memory, 32 bits, mode */
66 #define DMA_MODE_READ_LONG 4
67 /* memory to I/O, 32 bits, mode */
68 #define DMA_MODE_WRITE_LONG 5
69 /* I/O to memory, 8 bits, single-address-mode */
70 #define DMA_MODE_READ_SINGLE 8
71 /* memory to I/O, 8 bits, single-address-mode */
72 #define DMA_MODE_WRITE_SINGLE 9
73 /* I/O to memory, 16 bits, single-address-mode */
74 #define DMA_MODE_READ_WORD_SINGLE 10
75 /* memory to I/O, 16 bits, single-address-mode */
76 #define DMA_MODE_WRITE_WORD_SINGLE 11
77 /* I/O to memory, 32 bits, single-address-mode */
78 #define DMA_MODE_READ_LONG_SINGLE 12
79 /* memory to I/O, 32 bits, single-address-mode */
80 #define DMA_MODE_WRITE_LONG_SINGLE 13
81 
82 #else /* CONFIG_M5272 is defined */
83 
84 /* Source static-address mode */
85 #define DMA_MODE_SRC_SA_BIT 0x01
86 /* Two bits to select between all four modes */
87 #define DMA_MODE_SSIZE_MASK 0x06
88 /* Offset to shift bits in */
89 #define DMA_MODE_SSIZE_OFF 0x01
90 /* Destination static-address mode */
91 #define DMA_MODE_DES_SA_BIT 0x10
92 /* Two bits to select between all four modes */
93 #define DMA_MODE_DSIZE_MASK 0x60
94 /* Offset to shift bits in */
95 #define DMA_MODE_DSIZE_OFF 0x05
96 /* Size modifiers */
97 #define DMA_MODE_SIZE_LONG 0x00
98 #define DMA_MODE_SIZE_BYTE 0x01
99 #define DMA_MODE_SIZE_WORD 0x02
100 #define DMA_MODE_SIZE_LINE 0x03
101 
102 /*
103  * Aliases to help speed quick ports; these may be suboptimal, however. They
104  * do not include the SINGLE mode modifiers since the MCF5272 does not have a
105  * mode where the device is in control of its addressing.
106  */
107 
108 /* I/O to memory, 8 bits, mode */
109 #define DMA_MODE_READ ((DMA_MODE_SIZE_BYTE << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_BYTE << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
110 /* memory to I/O, 8 bits, mode */
111 #define DMA_MODE_WRITE ((DMA_MODE_SIZE_BYTE << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_BYTE << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
112 /* I/O to memory, 16 bits, mode */
113 #define DMA_MODE_READ_WORD ((DMA_MODE_SIZE_WORD << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_WORD << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
114 /* memory to I/O, 16 bits, mode */
115 #define DMA_MODE_WRITE_WORD ((DMA_MODE_SIZE_WORD << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_WORD << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
116 /* I/O to memory, 32 bits, mode */
117 #define DMA_MODE_READ_LONG ((DMA_MODE_SIZE_LONG << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_LONG << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
118 /* memory to I/O, 32 bits, mode */
119 #define DMA_MODE_WRITE_LONG ((DMA_MODE_SIZE_LONG << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_LONG << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
120 
121 #endif /* !defined(CONFIG_M5272) */
122 
123 #if !defined(CONFIG_M5272)
124 /* enable/disable a specific DMA channel */
125 static __inline__ void enable_dma(unsigned int dmanr)
126 {
127  volatile unsigned short *dmawp;
128 
129 #ifdef DMA_DEBUG
130  printk("enable_dma(dmanr=%d)\n", dmanr);
131 #endif
132 
133  dmawp = (unsigned short *) dma_base_addr[dmanr];
134  dmawp[MCFDMA_DCR] |= MCFDMA_DCR_EEXT;
135 }
136 
137 static __inline__ void disable_dma(unsigned int dmanr)
138 {
139  volatile unsigned short *dmawp;
140  volatile unsigned char *dmapb;
141 
142 #ifdef DMA_DEBUG
143  printk("disable_dma(dmanr=%d)\n", dmanr);
144 #endif
145 
146  dmawp = (unsigned short *) dma_base_addr[dmanr];
147  dmapb = (unsigned char *) dma_base_addr[dmanr];
148 
149  /* Turn off external requests, and stop any DMA in progress */
150  dmawp[MCFDMA_DCR] &= ~MCFDMA_DCR_EEXT;
151  dmapb[MCFDMA_DSR] = MCFDMA_DSR_DONE;
152 }
153 
154 /*
155  * Clear the 'DMA Pointer Flip Flop'.
156  * Write 0 for LSB/MSB, 1 for MSB/LSB access.
157  * Use this once to initialize the FF to a known state.
158  * After that, keep track of it. :-)
159  * --- In order to do that, the DMA routines below should ---
160  * --- only be used while interrupts are disabled! ---
161  *
162  * This is a NOP for ColdFire. Provide a stub for compatibility.
163  */
164 static __inline__ void clear_dma_ff(unsigned int dmanr)
165 {
166 }
167 
168 /* set mode (above) for a specific DMA channel */
169 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
170 {
171 
172  volatile unsigned char *dmabp;
173  volatile unsigned short *dmawp;
174 
175 #ifdef DMA_DEBUG
176  printk("set_dma_mode(dmanr=%d,mode=%d)\n", dmanr, mode);
177 #endif
178 
179  dmabp = (unsigned char *) dma_base_addr[dmanr];
180  dmawp = (unsigned short *) dma_base_addr[dmanr];
181 
182  /* Clear config errors */
183  dmabp[MCFDMA_DSR] = MCFDMA_DSR_DONE;
184 
185  /* Set command register */
186  dmawp[MCFDMA_DCR] =
187  MCFDMA_DCR_INT | /* Enable completion irq */
188  MCFDMA_DCR_CS | /* Force one xfer per request */
189  MCFDMA_DCR_AA | /* Enable auto alignment */
190  /* single-address-mode */
191  ((mode & DMA_MODE_SINGLE_BIT) ? MCFDMA_DCR_SAA : 0) |
192  /* sets s_rw (-> r/w) high if Memory to I/0 */
193  ((mode & DMA_MODE_WRITE_BIT) ? MCFDMA_DCR_S_RW : 0) |
194  /* Memory to I/O or I/O to Memory */
195  ((mode & DMA_MODE_WRITE_BIT) ? MCFDMA_DCR_SINC : MCFDMA_DCR_DINC) |
196  /* 32 bit, 16 bit or 8 bit transfers */
197  ((mode & DMA_MODE_WORD_BIT) ? MCFDMA_DCR_SSIZE_WORD :
198  ((mode & DMA_MODE_LONG_BIT) ? MCFDMA_DCR_SSIZE_LONG :
200  ((mode & DMA_MODE_WORD_BIT) ? MCFDMA_DCR_DSIZE_WORD :
201  ((mode & DMA_MODE_LONG_BIT) ? MCFDMA_DCR_DSIZE_LONG :
203 
204 #ifdef DEBUG_DMA
205  printk("%s(%d): dmanr=%d DSR[%x]=%x DCR[%x]=%x\n", __FILE__, __LINE__,
206  dmanr, (int) &dmabp[MCFDMA_DSR], dmabp[MCFDMA_DSR],
207  (int) &dmawp[MCFDMA_DCR], dmawp[MCFDMA_DCR]);
208 #endif
209 }
210 
211 /* Set transfer address for specific DMA channel */
212 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
213 {
214  volatile unsigned short *dmawp;
215  volatile unsigned int *dmalp;
216 
217 #ifdef DMA_DEBUG
218  printk("set_dma_addr(dmanr=%d,a=%x)\n", dmanr, a);
219 #endif
220 
221  dmawp = (unsigned short *) dma_base_addr[dmanr];
222  dmalp = (unsigned int *) dma_base_addr[dmanr];
223 
224  /* Determine which address registers are used for memory/device accesses */
225  if (dmawp[MCFDMA_DCR] & MCFDMA_DCR_SINC) {
226  /* Source incrementing, must be memory */
227  dmalp[MCFDMA_SAR] = a;
228  /* Set dest address, must be device */
229  dmalp[MCFDMA_DAR] = dma_device_address[dmanr];
230  } else {
231  /* Destination incrementing, must be memory */
232  dmalp[MCFDMA_DAR] = a;
233  /* Set source address, must be device */
234  dmalp[MCFDMA_SAR] = dma_device_address[dmanr];
235  }
236 
237 #ifdef DEBUG_DMA
238  printk("%s(%d): dmanr=%d DCR[%x]=%x SAR[%x]=%08x DAR[%x]=%08x\n",
239  __FILE__, __LINE__, dmanr, (int) &dmawp[MCFDMA_DCR], dmawp[MCFDMA_DCR],
240  (int) &dmalp[MCFDMA_SAR], dmalp[MCFDMA_SAR],
241  (int) &dmalp[MCFDMA_DAR], dmalp[MCFDMA_DAR]);
242 #endif
243 }
244 
245 /*
246  * Specific for Coldfire - sets device address.
247  * Should be called after the mode set call, and before set DMA address.
248  */
249 static __inline__ void set_dma_device_addr(unsigned int dmanr, unsigned int a)
250 {
251 #ifdef DMA_DEBUG
252  printk("set_dma_device_addr(dmanr=%d,a=%x)\n", dmanr, a);
253 #endif
254 
255  dma_device_address[dmanr] = a;
256 }
257 
258 /*
259  * NOTE 2: "count" represents _bytes_.
260  */
261 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
262 {
263  volatile unsigned short *dmawp;
264 
265 #ifdef DMA_DEBUG
266  printk("set_dma_count(dmanr=%d,count=%d)\n", dmanr, count);
267 #endif
268 
269  dmawp = (unsigned short *) dma_base_addr[dmanr];
270  dmawp[MCFDMA_BCR] = (unsigned short)count;
271 }
272 
273 /*
274  * Get DMA residue count. After a DMA transfer, this
275  * should return zero. Reading this while a DMA transfer is
276  * still in progress will return unpredictable results.
277  * Otherwise, it returns the number of _bytes_ left to transfer.
278  */
279 static __inline__ int get_dma_residue(unsigned int dmanr)
280 {
281  volatile unsigned short *dmawp;
282  unsigned short count;
283 
284 #ifdef DMA_DEBUG
285  printk("get_dma_residue(dmanr=%d)\n", dmanr);
286 #endif
287 
288  dmawp = (unsigned short *) dma_base_addr[dmanr];
289  count = dmawp[MCFDMA_BCR];
290  return((int) count);
291 }
292 #else /* CONFIG_M5272 is defined */
293 
294 /*
295  * The MCF5272 DMA controller is very different than the controller defined above
296  * in terms of register mapping. For instance, with the exception of the 16-bit
297  * interrupt register (IRQ#85, for reference), all of the registers are 32-bit.
298  *
299  * The big difference, however, is the lack of device-requested DMA. All modes
300  * are dual address transfer, and there is no 'device' setup or direction bit.
301  * You can DMA between a device and memory, between memory and memory, or even between
302  * two devices directly, with any combination of incrementing and non-incrementing
303  * addresses you choose. This puts a crimp in distinguishing between the 'device
304  * address' set up by set_dma_device_addr.
305  *
306  * Therefore, there are two options. One is to use set_dma_addr and set_dma_device_addr,
307  * which will act exactly as above in -- it will look to see if the source is set to
308  * autoincrement, and if so it will make the source use the set_dma_addr value and the
309  * destination the set_dma_device_addr value. Otherwise the source will be set to the
310  * set_dma_device_addr value and the destination will get the set_dma_addr value.
311  *
312  * The other is to use the provided set_dma_src_addr and set_dma_dest_addr functions
313  * and make it explicit. Depending on what you're doing, one of these two should work
314  * for you, but don't mix them in the same transfer setup.
315  */
316 
317 /* enable/disable a specific DMA channel */
318 static __inline__ void enable_dma(unsigned int dmanr)
319 {
320  volatile unsigned int *dmalp;
321 
322 #ifdef DMA_DEBUG
323  printk("enable_dma(dmanr=%d)\n", dmanr);
324 #endif
325 
326  dmalp = (unsigned int *) dma_base_addr[dmanr];
327  dmalp[MCFDMA_DMR] |= MCFDMA_DMR_EN;
328 }
329 
330 static __inline__ void disable_dma(unsigned int dmanr)
331 {
332  volatile unsigned int *dmalp;
333 
334 #ifdef DMA_DEBUG
335  printk("disable_dma(dmanr=%d)\n", dmanr);
336 #endif
337 
338  dmalp = (unsigned int *) dma_base_addr[dmanr];
339 
340  /* Turn off external requests, and stop any DMA in progress */
341  dmalp[MCFDMA_DMR] &= ~MCFDMA_DMR_EN;
342  dmalp[MCFDMA_DMR] |= MCFDMA_DMR_RESET;
343 }
344 
345 /*
346  * Clear the 'DMA Pointer Flip Flop'.
347  * Write 0 for LSB/MSB, 1 for MSB/LSB access.
348  * Use this once to initialize the FF to a known state.
349  * After that, keep track of it. :-)
350  * --- In order to do that, the DMA routines below should ---
351  * --- only be used while interrupts are disabled! ---
352  *
353  * This is a NOP for ColdFire. Provide a stub for compatibility.
354  */
355 static __inline__ void clear_dma_ff(unsigned int dmanr)
356 {
357 }
358 
359 /* set mode (above) for a specific DMA channel */
360 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
361 {
362 
363  volatile unsigned int *dmalp;
364  volatile unsigned short *dmawp;
365 
366 #ifdef DMA_DEBUG
367  printk("set_dma_mode(dmanr=%d,mode=%d)\n", dmanr, mode);
368 #endif
369  dmalp = (unsigned int *) dma_base_addr[dmanr];
370  dmawp = (unsigned short *) dma_base_addr[dmanr];
371 
372  /* Clear config errors */
373  dmalp[MCFDMA_DMR] |= MCFDMA_DMR_RESET;
374 
375  /* Set command register */
376  dmalp[MCFDMA_DMR] =
377  MCFDMA_DMR_RQM_DUAL | /* Mandatory Request Mode setting */
378  MCFDMA_DMR_DSTT_SD | /* Set up addressing types; set to supervisor-data. */
379  MCFDMA_DMR_SRCT_SD | /* Set up addressing types; set to supervisor-data. */
380  /* source static-address-mode */
381  ((mode & DMA_MODE_SRC_SA_BIT) ? MCFDMA_DMR_SRCM_SA : MCFDMA_DMR_SRCM_IA) |
382  /* dest static-address-mode */
383  ((mode & DMA_MODE_DES_SA_BIT) ? MCFDMA_DMR_DSTM_SA : MCFDMA_DMR_DSTM_IA) |
384  /* burst, 32 bit, 16 bit or 8 bit transfers are separately configurable on the MCF5272 */
385  (((mode & DMA_MODE_SSIZE_MASK) >> DMA_MODE_SSIZE_OFF) << MCFDMA_DMR_DSTS_OFF) |
386  (((mode & DMA_MODE_SSIZE_MASK) >> DMA_MODE_SSIZE_OFF) << MCFDMA_DMR_SRCS_OFF);
387 
388  dmawp[MCFDMA_DIR] |= MCFDMA_DIR_ASCEN; /* Enable completion interrupts */
389 
390 #ifdef DEBUG_DMA
391  printk("%s(%d): dmanr=%d DMR[%x]=%x DIR[%x]=%x\n", __FILE__, __LINE__,
392  dmanr, (int) &dmalp[MCFDMA_DMR], dmabp[MCFDMA_DMR],
393  (int) &dmawp[MCFDMA_DIR], dmawp[MCFDMA_DIR]);
394 #endif
395 }
396 
397 /* Set transfer address for specific DMA channel */
398 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
399 {
400  volatile unsigned int *dmalp;
401 
402 #ifdef DMA_DEBUG
403  printk("set_dma_addr(dmanr=%d,a=%x)\n", dmanr, a);
404 #endif
405 
406  dmalp = (unsigned int *) dma_base_addr[dmanr];
407 
408  /* Determine which address registers are used for memory/device accesses */
409  if (dmalp[MCFDMA_DMR] & MCFDMA_DMR_SRCM) {
410  /* Source incrementing, must be memory */
411  dmalp[MCFDMA_DSAR] = a;
412  /* Set dest address, must be device */
413  dmalp[MCFDMA_DDAR] = dma_device_address[dmanr];
414  } else {
415  /* Destination incrementing, must be memory */
416  dmalp[MCFDMA_DDAR] = a;
417  /* Set source address, must be device */
418  dmalp[MCFDMA_DSAR] = dma_device_address[dmanr];
419  }
420 
421 #ifdef DEBUG_DMA
422  printk("%s(%d): dmanr=%d DMR[%x]=%x SAR[%x]=%08x DAR[%x]=%08x\n",
423  __FILE__, __LINE__, dmanr, (int) &dmawp[MCFDMA_DMR], dmawp[MCFDMA_DMR],
424  (int) &dmalp[MCFDMA_DSAR], dmalp[MCFDMA_DSAR],
425  (int) &dmalp[MCFDMA_DDAR], dmalp[MCFDMA_DDAR]);
426 #endif
427 }
428 
429 /*
430  * Specific for Coldfire - sets device address.
431  * Should be called after the mode set call, and before set DMA address.
432  */
433 static __inline__ void set_dma_device_addr(unsigned int dmanr, unsigned int a)
434 {
435 #ifdef DMA_DEBUG
436  printk("set_dma_device_addr(dmanr=%d,a=%x)\n", dmanr, a);
437 #endif
438 
439  dma_device_address[dmanr] = a;
440 }
441 
442 /*
443  * NOTE 2: "count" represents _bytes_.
444  *
445  * NOTE 3: While a 32-bit register, "count" is only a maximum 24-bit value.
446  */
447 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
448 {
449  volatile unsigned int *dmalp;
450 
451 #ifdef DMA_DEBUG
452  printk("set_dma_count(dmanr=%d,count=%d)\n", dmanr, count);
453 #endif
454 
455  dmalp = (unsigned int *) dma_base_addr[dmanr];
456  dmalp[MCFDMA_DBCR] = count;
457 }
458 
459 /*
460  * Get DMA residue count. After a DMA transfer, this
461  * should return zero. Reading this while a DMA transfer is
462  * still in progress will return unpredictable results.
463  * Otherwise, it returns the number of _bytes_ left to transfer.
464  */
465 static __inline__ int get_dma_residue(unsigned int dmanr)
466 {
467  volatile unsigned int *dmalp;
468  unsigned int count;
469 
470 #ifdef DMA_DEBUG
471  printk("get_dma_residue(dmanr=%d)\n", dmanr);
472 #endif
473 
474  dmalp = (unsigned int *) dma_base_addr[dmanr];
475  count = dmalp[MCFDMA_DBCR];
476  return(count);
477 }
478 
479 #endif /* !defined(CONFIG_M5272) */
480 #endif /* CONFIG_COLDFIRE */
481 
482 /* it's useless on the m68k, but unfortunately needed by the new
483  bootmem allocator (but this should do it for this) */
484 #define MAX_DMA_ADDRESS PAGE_OFFSET
485 
486 #define MAX_DMA_CHANNELS 8
487 
488 extern int request_dma(unsigned int dmanr, const char * device_id); /* reserve a DMA channel */
489 extern void free_dma(unsigned int dmanr); /* release it again */
490 
491 #ifdef CONFIG_PCI
492 extern int isa_dma_bridge_buggy;
493 #else
494 #define isa_dma_bridge_buggy (0)
495 #endif
496 
497 #endif /* _M68K_DMA_H */