Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
perf.c
Go to the documentation of this file.
1 /*
2  * Parisc performance counters
3  * Copyright (C) 2001 Randolph Chung <[email protected]>
4  *
5  * This code is derived, with permission, from HP/UX sources.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 /*
23  * Edited comment from original sources:
24  *
25  * This driver programs the PCX-U/PCX-W performance counters
26  * on the PA-RISC 2.0 chips. The driver keeps all images now
27  * internally to the kernel to hopefully eliminate the possibility
28  * of a bad image halting the CPU. Also, there are different
29  * images for the PCX-W and later chips vs the PCX-U chips.
30  *
31  * Only 1 process is allowed to access the driver at any time,
32  * so the only protection that is needed is at open and close.
33  * A variable "perf_enabled" is used to hold the state of the
34  * driver. The spinlock "perf_lock" is used to protect the
35  * modification of the state during open/close operations so
36  * multiple processes don't get into the driver simultaneously.
37  *
38  * This driver accesses the processor directly vs going through
39  * the PDC INTRIGUE calls. This is done to eliminate bugs introduced
40  * in various PDC revisions. The code is much more maintainable
41  * and reliable this way vs having to debug on every version of PDC
42  * on every box.
43  */
44 
45 #include <linux/capability.h>
46 #include <linux/init.h>
47 #include <linux/proc_fs.h>
48 #include <linux/miscdevice.h>
49 #include <linux/spinlock.h>
50 
51 #include <asm/uaccess.h>
52 #include <asm/perf.h>
53 #include <asm/parisc-device.h>
54 #include <asm/processor.h>
55 #include <asm/runway.h>
56 #include <asm/io.h> /* for __raw_read() */
57 
58 #include "perf_images.h"
59 
60 #define MAX_RDR_WORDS 24
61 #define PERF_VERSION 2 /* derived from hpux's PI v2 interface */
62 
63 /* definition of RDR regs */
64 struct rdr_tbl_ent {
68 };
69 
70 static int perf_processor_interface __read_mostly = UNKNOWN_INTF;
71 static int perf_enabled __read_mostly;
72 static spinlock_t perf_lock;
73 struct parisc_device *cpu_device __read_mostly;
74 
75 /* RDRs to write for PCX-W */
76 static const int perf_rdrs_W[] =
77  { 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
78 
79 /* RDRs to write for PCX-U */
80 static const int perf_rdrs_U[] =
81  { 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
82 
83 /* RDR register descriptions for PCX-W */
84 static const struct rdr_tbl_ent perf_rdr_tbl_W[] = {
85  { 19, 1, 8 }, /* RDR 0 */
86  { 16, 1, 16 }, /* RDR 1 */
87  { 72, 2, 0 }, /* RDR 2 */
88  { 81, 2, 0 }, /* RDR 3 */
89  { 328, 6, 0 }, /* RDR 4 */
90  { 160, 3, 0 }, /* RDR 5 */
91  { 336, 6, 0 }, /* RDR 6 */
92  { 164, 3, 0 }, /* RDR 7 */
93  { 0, 0, 0 }, /* RDR 8 */
94  { 35, 1, 0 }, /* RDR 9 */
95  { 6, 1, 0 }, /* RDR 10 */
96  { 18, 1, 0 }, /* RDR 11 */
97  { 13, 1, 0 }, /* RDR 12 */
98  { 8, 1, 0 }, /* RDR 13 */
99  { 8, 1, 0 }, /* RDR 14 */
100  { 8, 1, 0 }, /* RDR 15 */
101  { 1530, 24, 0 }, /* RDR 16 */
102  { 16, 1, 0 }, /* RDR 17 */
103  { 4, 1, 0 }, /* RDR 18 */
104  { 0, 0, 0 }, /* RDR 19 */
105  { 152, 3, 24 }, /* RDR 20 */
106  { 152, 3, 24 }, /* RDR 21 */
107  { 233, 4, 48 }, /* RDR 22 */
108  { 233, 4, 48 }, /* RDR 23 */
109  { 71, 2, 0 }, /* RDR 24 */
110  { 71, 2, 0 }, /* RDR 25 */
111  { 11, 1, 0 }, /* RDR 26 */
112  { 18, 1, 0 }, /* RDR 27 */
113  { 128, 2, 0 }, /* RDR 28 */
114  { 0, 0, 0 }, /* RDR 29 */
115  { 16, 1, 0 }, /* RDR 30 */
116  { 16, 1, 0 }, /* RDR 31 */
117 };
118 
119 /* RDR register descriptions for PCX-U */
120 static const struct rdr_tbl_ent perf_rdr_tbl_U[] = {
121  { 19, 1, 8 }, /* RDR 0 */
122  { 32, 1, 16 }, /* RDR 1 */
123  { 20, 1, 0 }, /* RDR 2 */
124  { 0, 0, 0 }, /* RDR 3 */
125  { 344, 6, 0 }, /* RDR 4 */
126  { 176, 3, 0 }, /* RDR 5 */
127  { 336, 6, 0 }, /* RDR 6 */
128  { 0, 0, 0 }, /* RDR 7 */
129  { 0, 0, 0 }, /* RDR 8 */
130  { 0, 0, 0 }, /* RDR 9 */
131  { 28, 1, 0 }, /* RDR 10 */
132  { 33, 1, 0 }, /* RDR 11 */
133  { 0, 0, 0 }, /* RDR 12 */
134  { 230, 4, 0 }, /* RDR 13 */
135  { 32, 1, 0 }, /* RDR 14 */
136  { 128, 2, 0 }, /* RDR 15 */
137  { 1494, 24, 0 }, /* RDR 16 */
138  { 18, 1, 0 }, /* RDR 17 */
139  { 4, 1, 0 }, /* RDR 18 */
140  { 0, 0, 0 }, /* RDR 19 */
141  { 158, 3, 24 }, /* RDR 20 */
142  { 158, 3, 24 }, /* RDR 21 */
143  { 194, 4, 48 }, /* RDR 22 */
144  { 194, 4, 48 }, /* RDR 23 */
145  { 71, 2, 0 }, /* RDR 24 */
146  { 71, 2, 0 }, /* RDR 25 */
147  { 28, 1, 0 }, /* RDR 26 */
148  { 33, 1, 0 }, /* RDR 27 */
149  { 88, 2, 0 }, /* RDR 28 */
150  { 32, 1, 0 }, /* RDR 29 */
151  { 24, 1, 0 }, /* RDR 30 */
152  { 16, 1, 0 }, /* RDR 31 */
153 };
154 
155 /*
156  * A non-zero write_control in the above tables is a byte offset into
157  * this array.
158  */
159 static const uint64_t perf_bitmasks[] = {
160  0x0000000000000000ul, /* first dbl word must be zero */
161  0xfdffe00000000000ul, /* RDR0 bitmask */
162  0x003f000000000000ul, /* RDR1 bitmask */
163  0x00fffffffffffffful, /* RDR20-RDR21 bitmask (152 bits) */
164  0xfffffffffffffffful,
165  0xfffffffc00000000ul,
166  0xfffffffffffffffful, /* RDR22-RDR23 bitmask (233 bits) */
167  0xfffffffffffffffful,
168  0xfffffffffffffffcul,
169  0xff00000000000000ul
170 };
171 
172 /*
173  * Write control bitmasks for Pa-8700 processor given
174  * some things have changed slightly.
175  */
176 static const uint64_t perf_bitmasks_piranha[] = {
177  0x0000000000000000ul, /* first dbl word must be zero */
178  0xfdffe00000000000ul, /* RDR0 bitmask */
179  0x003f000000000000ul, /* RDR1 bitmask */
180  0x00fffffffffffffful, /* RDR20-RDR21 bitmask (158 bits) */
181  0xfffffffffffffffful,
182  0xfffffffc00000000ul,
183  0xfffffffffffffffful, /* RDR22-RDR23 bitmask (210 bits) */
184  0xfffffffffffffffful,
185  0xfffffffffffffffful,
186  0xfffc000000000000ul
187 };
188 
189 static const uint64_t *bitmask_array; /* array of bitmasks to use */
190 
191 /******************************************************************************
192  * Function Prototypes
193  *****************************************************************************/
194 static int perf_config(uint32_t *image_ptr);
195 static int perf_release(struct inode *inode, struct file *file);
196 static int perf_open(struct inode *inode, struct file *file);
197 static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
198 static ssize_t perf_write(struct file *file, const char __user *buf, size_t count,
199  loff_t *ppos);
200 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
201 static void perf_start_counters(void);
202 static int perf_stop_counters(uint32_t *raddr);
203 static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
204 static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer);
205 static int perf_rdr_clear(uint32_t rdr_num);
206 static int perf_write_image(uint64_t *memaddr);
207 static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
208 
209 /* External Assembly Routines */
212 extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
213 extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
214 extern void perf_intrigue_enable_perf_counters (void);
215 extern void perf_intrigue_disable_perf_counters (void);
216 
217 /******************************************************************************
218  * Function Definitions
219  *****************************************************************************/
220 
221 
222 /*
223  * configure:
224  *
225  * Configure the cpu with a given data image. First turn off the counters,
226  * then download the image, then turn the counters back on.
227  */
228 static int perf_config(uint32_t *image_ptr)
229 {
230  long error;
231  uint32_t raddr[4];
232 
233  /* Stop the counters*/
234  error = perf_stop_counters(raddr);
235  if (error != 0) {
236  printk("perf_config: perf_stop_counters = %ld\n", error);
237  return -EINVAL;
238  }
239 
240 printk("Preparing to write image\n");
241  /* Write the image to the chip */
242  error = perf_write_image((uint64_t *)image_ptr);
243  if (error != 0) {
244  printk("perf_config: DOWNLOAD = %ld\n", error);
245  return -EINVAL;
246  }
247 
248 printk("Preparing to start counters\n");
249 
250  /* Start the counters */
251  perf_start_counters();
252 
253  return sizeof(uint32_t);
254 }
255 
256 /*
257  * Open the device and initialize all of its memory. The device is only
258  * opened once, but can be "queried" by multiple processes that know its
259  * file descriptor.
260  */
261 static int perf_open(struct inode *inode, struct file *file)
262 {
263  spin_lock(&perf_lock);
264  if (perf_enabled) {
265  spin_unlock(&perf_lock);
266  return -EBUSY;
267  }
268  perf_enabled = 1;
269  spin_unlock(&perf_lock);
270 
271  return 0;
272 }
273 
274 /*
275  * Close the device.
276  */
277 static int perf_release(struct inode *inode, struct file *file)
278 {
279  spin_lock(&perf_lock);
280  perf_enabled = 0;
281  spin_unlock(&perf_lock);
282 
283  return 0;
284 }
285 
286 /*
287  * Read does nothing for this driver
288  */
289 static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
290 {
291  return 0;
292 }
293 
294 /*
295  * write:
296  *
297  * This routine downloads the image to the chip. It must be
298  * called on the processor that the download should happen
299  * on.
300  */
301 static ssize_t perf_write(struct file *file, const char __user *buf, size_t count,
302  loff_t *ppos)
303 {
304  int err;
305  size_t image_size;
306  uint32_t image_type;
308  uint32_t test;
309 
310  if (perf_processor_interface == ONYX_INTF)
311  image_size = PCXU_IMAGE_SIZE;
312  else if (perf_processor_interface == CUDA_INTF)
313  image_size = PCXW_IMAGE_SIZE;
314  else
315  return -EFAULT;
316 
317  if (!capable(CAP_SYS_ADMIN))
318  return -EACCES;
319 
320  if (count != sizeof(uint32_t))
321  return -EIO;
322 
323  if ((err = copy_from_user(&image_type, buf, sizeof(uint32_t))) != 0)
324  return err;
325 
326  /* Get the interface type and test type */
327  interface_type = (image_type >> 16) & 0xffff;
328  test = (image_type & 0xffff);
329 
330  /* Make sure everything makes sense */
331 
332  /* First check the machine type is correct for
333  the requested image */
334  if (((perf_processor_interface == CUDA_INTF) &&
335  (interface_type != CUDA_INTF)) ||
336  ((perf_processor_interface == ONYX_INTF) &&
337  (interface_type != ONYX_INTF)))
338  return -EINVAL;
339 
340  /* Next check to make sure the requested image
341  is valid */
342  if (((interface_type == CUDA_INTF) &&
343  (test >= MAX_CUDA_IMAGES)) ||
344  ((interface_type == ONYX_INTF) &&
345  (test >= MAX_ONYX_IMAGES)))
346  return -EINVAL;
347 
348  /* Copy the image into the processor */
349  if (interface_type == CUDA_INTF)
350  return perf_config(cuda_images[test]);
351  else
352  return perf_config(onyx_images[test]);
353 
354  return count;
355 }
356 
357 /*
358  * Patch the images that need to know the IVA addresses.
359  */
360 static void perf_patch_images(void)
361 {
362 #if 0 /* FIXME!! */
363 /*
364  * NOTE: this routine is VERY specific to the current TLB image.
365  * If the image is changed, this routine might also need to be changed.
366  */
367  extern void $i_itlb_miss_2_0();
368  extern void $i_dtlb_miss_2_0();
369  extern void PA2_0_iva();
370 
371  /*
372  * We can only use the lower 32-bits, the upper 32-bits should be 0
373  * anyway given this is in the kernel
374  */
375  uint32_t itlb_addr = (uint32_t)&($i_itlb_miss_2_0);
376  uint32_t dtlb_addr = (uint32_t)&($i_dtlb_miss_2_0);
377  uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
378 
379  if (perf_processor_interface == ONYX_INTF) {
380  /* clear last 2 bytes */
381  onyx_images[TLBMISS][15] &= 0xffffff00;
382  /* set 2 bytes */
383  onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
384  onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
385  onyx_images[TLBMISS][17] = itlb_addr;
386 
387  /* clear last 2 bytes */
388  onyx_images[TLBHANDMISS][15] &= 0xffffff00;
389  /* set 2 bytes */
390  onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
391  onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
392  onyx_images[TLBHANDMISS][17] = itlb_addr;
393 
394  /* clear last 2 bytes */
395  onyx_images[BIG_CPI][15] &= 0xffffff00;
396  /* set 2 bytes */
397  onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
398  onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
399  onyx_images[BIG_CPI][17] = itlb_addr;
400 
401  onyx_images[PANIC][15] &= 0xffffff00; /* clear last 2 bytes */
402  onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
403  onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
404 
405 
406  } else if (perf_processor_interface == CUDA_INTF) {
407  /* Cuda interface */
408  cuda_images[TLBMISS][16] =
409  (cuda_images[TLBMISS][16]&0xffff0000) |
410  ((dtlb_addr >> 8)&0x0000ffff);
411  cuda_images[TLBMISS][17] =
412  ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
413  cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
414 
415  cuda_images[TLBHANDMISS][16] =
416  (cuda_images[TLBHANDMISS][16]&0xffff0000) |
417  ((dtlb_addr >> 8)&0x0000ffff);
418  cuda_images[TLBHANDMISS][17] =
419  ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
420  cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
421 
422  cuda_images[BIG_CPI][16] =
423  (cuda_images[BIG_CPI][16]&0xffff0000) |
424  ((dtlb_addr >> 8)&0x0000ffff);
425  cuda_images[BIG_CPI][17] =
426  ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
427  cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
428  } else {
429  /* Unknown type */
430  }
431 #endif
432 }
433 
434 
435 /*
436  * ioctl routine
437  * All routines effect the processor that they are executed on. Thus you
438  * must be running on the processor that you wish to change.
439  */
440 
441 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
442 {
443  long error_start;
444  uint32_t raddr[4];
445  int error = 0;
446 
447  switch (cmd) {
448 
449  case PA_PERF_ON:
450  /* Start the counters */
451  perf_start_counters();
452  break;
453 
454  case PA_PERF_OFF:
455  error_start = perf_stop_counters(raddr);
456  if (error_start != 0) {
457  printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
458  error = -EFAULT;
459  break;
460  }
461 
462  /* copy out the Counters */
463  if (copy_to_user((void __user *)arg, raddr,
464  sizeof (raddr)) != 0) {
465  error = -EFAULT;
466  break;
467  }
468  break;
469 
470  case PA_PERF_VERSION:
471  /* Return the version # */
472  error = put_user(PERF_VERSION, (int *)arg);
473  break;
474 
475  default:
476  error = -ENOTTY;
477  }
478 
479  return error;
480 }
481 
482 static const struct file_operations perf_fops = {
483  .llseek = no_llseek,
484  .read = perf_read,
485  .write = perf_write,
486  .unlocked_ioctl = perf_ioctl,
487  .compat_ioctl = perf_ioctl,
488  .open = perf_open,
489  .release = perf_release
490 };
491 
492 static struct miscdevice perf_dev = {
494  PA_PERF_DEV,
495  &perf_fops
496 };
497 
498 /*
499  * Initialize the module
500  */
501 static int __init perf_init(void)
502 {
503  int ret;
504 
505  /* Determine correct processor interface to use */
506  bitmask_array = perf_bitmasks;
507 
508  if (boot_cpu_data.cpu_type == pcxu ||
509  boot_cpu_data.cpu_type == pcxu_) {
510  perf_processor_interface = ONYX_INTF;
511  } else if (boot_cpu_data.cpu_type == pcxw ||
512  boot_cpu_data.cpu_type == pcxw_ ||
513  boot_cpu_data.cpu_type == pcxw2 ||
514  boot_cpu_data.cpu_type == mako ||
515  boot_cpu_data.cpu_type == mako2) {
516  perf_processor_interface = CUDA_INTF;
517  if (boot_cpu_data.cpu_type == pcxw2 ||
518  boot_cpu_data.cpu_type == mako ||
519  boot_cpu_data.cpu_type == mako2)
520  bitmask_array = perf_bitmasks_piranha;
521  } else {
522  perf_processor_interface = UNKNOWN_INTF;
523  printk("Performance monitoring counters not supported on this processor\n");
524  return -ENODEV;
525  }
526 
527  ret = misc_register(&perf_dev);
528  if (ret) {
529  printk(KERN_ERR "Performance monitoring counters: "
530  "cannot register misc device.\n");
531  return ret;
532  }
533 
534  /* Patch the images to match the system */
535  perf_patch_images();
536 
537  spin_lock_init(&perf_lock);
538 
539  /* TODO: this only lets us access the first cpu.. what to do for SMP? */
540  cpu_device = per_cpu(cpu_data, 0).dev;
541  printk("Performance monitoring counters enabled for %s\n",
542  per_cpu(cpu_data, 0).dev->name);
543 
544  return 0;
545 }
546 
547 /*
548  * perf_start_counters(void)
549  *
550  * Start the counters.
551  */
552 static void perf_start_counters(void)
553 {
554  /* Enable performance monitor counters */
556 }
557 
558 /*
559  * perf_stop_counters
560  *
561  * Stop the performance counters and save counts
562  * in a per_processor array.
563  */
564 static int perf_stop_counters(uint32_t *raddr)
565 {
566  uint64_t userbuf[MAX_RDR_WORDS];
567 
568  /* Disable performance counters */
570 
571  if (perf_processor_interface == ONYX_INTF) {
572  uint64_t tmp64;
573  /*
574  * Read the counters
575  */
576  if (!perf_rdr_read_ubuf(16, userbuf))
577  return -13;
578 
579  /* Counter0 is bits 1398 to 1429 */
580  tmp64 = (userbuf[21] << 22) & 0x00000000ffc00000;
581  tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
582  /* OR sticky0 (bit 1430) to counter0 bit 32 */
583  tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
584  raddr[0] = (uint32_t)tmp64;
585 
586  /* Counter1 is bits 1431 to 1462 */
587  tmp64 = (userbuf[22] >> 9) & 0x00000000ffffffff;
588  /* OR sticky1 (bit 1463) to counter1 bit 32 */
589  tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
590  raddr[1] = (uint32_t)tmp64;
591 
592  /* Counter2 is bits 1464 to 1495 */
593  tmp64 = (userbuf[22] << 24) & 0x00000000ff000000;
594  tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
595  /* OR sticky2 (bit 1496) to counter2 bit 32 */
596  tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
597  raddr[2] = (uint32_t)tmp64;
598 
599  /* Counter3 is bits 1497 to 1528 */
600  tmp64 = (userbuf[23] >> 7) & 0x00000000ffffffff;
601  /* OR sticky3 (bit 1529) to counter3 bit 32 */
602  tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
603  raddr[3] = (uint32_t)tmp64;
604 
605  /*
606  * Zero out the counters
607  */
608 
609  /*
610  * The counters and sticky-bits comprise the last 132 bits
611  * (1398 - 1529) of RDR16 on a U chip. We'll zero these
612  * out the easy way: zero out last 10 bits of dword 21,
613  * all of dword 22 and 58 bits (plus 6 don't care bits) of
614  * dword 23.
615  */
616  userbuf[21] &= 0xfffffffffffffc00ul; /* 0 to last 10 bits */
617  userbuf[22] = 0;
618  userbuf[23] = 0;
619 
620  /*
621  * Write back the zeroed bytes + the image given
622  * the read was destructive.
623  */
624  perf_rdr_write(16, userbuf);
625  } else {
626 
627  /*
628  * Read RDR-15 which contains the counters and sticky bits
629  */
630  if (!perf_rdr_read_ubuf(15, userbuf)) {
631  return -13;
632  }
633 
634  /*
635  * Clear out the counters
636  */
637  perf_rdr_clear(15);
638 
639  /*
640  * Copy the counters
641  */
642  raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
643  raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
644  raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
645  raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
646  }
647 
648  return 0;
649 }
650 
651 /*
652  * perf_rdr_get_entry
653  *
654  * Retrieve a pointer to the description of what this
655  * RDR contains.
656  */
657 static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
658 {
659  if (perf_processor_interface == ONYX_INTF) {
660  return &perf_rdr_tbl_U[rdr_num];
661  } else {
662  return &perf_rdr_tbl_W[rdr_num];
663  }
664 }
665 
666 /*
667  * perf_rdr_read_ubuf
668  *
669  * Read the RDR value into the buffer specified.
670  */
671 static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer)
672 {
673  uint64_t data, data_mask = 0;
674  uint32_t width, xbits, i;
675  const struct rdr_tbl_ent *tentry;
676 
677  tentry = perf_rdr_get_entry(rdr_num);
678  if ((width = tentry->width) == 0)
679  return 0;
680 
681  /* Clear out buffer */
682  i = tentry->num_words;
683  while (i--) {
684  buffer[i] = 0;
685  }
686 
687  /* Check for bits an even number of 64 */
688  if ((xbits = width & 0x03f) != 0) {
689  data_mask = 1;
690  data_mask <<= (64 - xbits);
691  data_mask--;
692  }
693 
694  /* Grab all of the data */
695  i = tentry->num_words;
696  while (i--) {
697 
698  if (perf_processor_interface == ONYX_INTF) {
699  data = perf_rdr_shift_in_U(rdr_num, width);
700  } else {
701  data = perf_rdr_shift_in_W(rdr_num, width);
702  }
703  if (xbits) {
704  buffer[i] |= (data << (64 - xbits));
705  if (i) {
706  buffer[i-1] |= ((data >> xbits) & data_mask);
707  }
708  } else {
709  buffer[i] = data;
710  }
711  }
712 
713  return 1;
714 }
715 
716 /*
717  * perf_rdr_clear
718  *
719  * Zero out the given RDR register
720  */
721 static int perf_rdr_clear(uint32_t rdr_num)
722 {
723  const struct rdr_tbl_ent *tentry;
724  int32_t i;
725 
726  tentry = perf_rdr_get_entry(rdr_num);
727 
728  if (tentry->width == 0) {
729  return -1;
730  }
731 
732  i = tentry->num_words;
733  while (i--) {
734  if (perf_processor_interface == ONYX_INTF) {
735  perf_rdr_shift_out_U(rdr_num, 0UL);
736  } else {
737  perf_rdr_shift_out_W(rdr_num, 0UL);
738  }
739  }
740 
741  return 0;
742 }
743 
744 
745 /*
746  * perf_write_image
747  *
748  * Write the given image out to the processor
749  */
750 static int perf_write_image(uint64_t *memaddr)
751 {
752  uint64_t buffer[MAX_RDR_WORDS];
753  uint64_t *bptr;
754  uint32_t dwords;
755  const uint32_t *intrigue_rdr;
756  const uint64_t *intrigue_bitmask;
757  uint64_t tmp64;
758  void __iomem *runway;
759  const struct rdr_tbl_ent *tentry;
760  int i;
761 
762  /* Clear out counters */
763  if (perf_processor_interface == ONYX_INTF) {
764 
765  perf_rdr_clear(16);
766 
767  /* Toggle performance monitor */
770 
771  intrigue_rdr = perf_rdrs_U;
772  } else {
773  perf_rdr_clear(15);
774  intrigue_rdr = perf_rdrs_W;
775  }
776 
777  /* Write all RDRs */
778  while (*intrigue_rdr != -1) {
779  tentry = perf_rdr_get_entry(*intrigue_rdr);
780  perf_rdr_read_ubuf(*intrigue_rdr, buffer);
781  bptr = &buffer[0];
782  dwords = tentry->num_words;
783  if (tentry->write_control) {
784  intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
785  while (dwords--) {
786  tmp64 = *intrigue_bitmask & *memaddr++;
787  tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
788  *bptr++ = tmp64;
789  }
790  } else {
791  while (dwords--) {
792  *bptr++ = *memaddr++;
793  }
794  }
795 
796  perf_rdr_write(*intrigue_rdr, buffer);
797  intrigue_rdr++;
798  }
799 
800  /*
801  * Now copy out the Runway stuff which is not in RDRs
802  */
803 
804  if (cpu_device == NULL)
805  {
806  printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
807  return -1;
808  }
809 
810  runway = ioremap_nocache(cpu_device->hpa.start, 4096);
811 
812  /* Merge intrigue bits into Runway STATUS 0 */
813  tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful;
814  __raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul),
815  runway + RUNWAY_STATUS);
816 
817  /* Write RUNWAY DEBUG registers */
818  for (i = 0; i < 8; i++) {
819  __raw_writeq(*memaddr++, runway + RUNWAY_DEBUG);
820  }
821 
822  return 0;
823 }
824 
825 /*
826  * perf_rdr_write
827  *
828  * Write the given RDR register with the contents
829  * of the given buffer.
830  */
831 static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
832 {
833  const struct rdr_tbl_ent *tentry;
834  int32_t i;
835 
836 printk("perf_rdr_write\n");
837  tentry = perf_rdr_get_entry(rdr_num);
838  if (tentry->width == 0) { return; }
839 
840  i = tentry->num_words;
841  while (i--) {
842  if (perf_processor_interface == ONYX_INTF) {
843  perf_rdr_shift_out_U(rdr_num, buffer[i]);
844  } else {
845  perf_rdr_shift_out_W(rdr_num, buffer[i]);
846  }
847  }
848 printk("perf_rdr_write done\n");
849 }
850 
851 module_init(perf_init);