Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
time.c
Go to the documentation of this file.
1 /*
2  * linux/arch/parisc/kernel/time.c
3  *
4  * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5  * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6  * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, [email protected])
7  *
8  * 1994-07-02 Alan Modra
9  * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11  * "A Kernel Model for Precision Timekeeping" by Dave Mills
12  */
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/profile.h>
25 #include <linux/clocksource.h>
26 #include <linux/platform_device.h>
27 #include <linux/ftrace.h>
28 
29 #include <asm/uaccess.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <asm/page.h>
33 #include <asm/param.h>
34 #include <asm/pdc.h>
35 #include <asm/led.h>
36 
37 #include <linux/timex.h>
38 
39 static unsigned long clocktick __read_mostly; /* timer cycles per tick */
40 
41 /*
42  * We keep time on PA-RISC Linux by using the Interval Timer which is
43  * a pair of registers; one is read-only and one is write-only; both
44  * accessed through CR16. The read-only register is 32 or 64 bits wide,
45  * and increments by 1 every CPU clock tick. The architecture only
46  * guarantees us a rate between 0.5 and 2, but all implementations use a
47  * rate of 1. The write-only register is 32-bits wide. When the lowest
48  * 32 bits of the read-only register compare equal to the write-only
49  * register, it raises a maskable external interrupt. Each processor has
50  * an Interval Timer of its own and they are not synchronised.
51  *
52  * We want to generate an interrupt every 1/HZ seconds. So we program
53  * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
54  * is programmed with the intended time of the next tick. We can be
55  * held off for an arbitrarily long period of time by interrupts being
56  * disabled, so we may miss one or more ticks.
57  */
59 {
60  unsigned long now, now2;
61  unsigned long next_tick;
62  unsigned long cycles_elapsed, ticks_elapsed = 1;
63  unsigned long cycles_remainder;
64  unsigned int cpu = smp_processor_id();
65  struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
66 
67  /* gcc can optimize for "read-only" case with a local clocktick */
68  unsigned long cpt = clocktick;
69 
71 
72  /* Initialize next_tick to the expected tick time. */
73  next_tick = cpuinfo->it_value;
74 
75  /* Get current cycle counter (Control Register 16). */
76  now = mfctl(16);
77 
78  cycles_elapsed = now - next_tick;
79 
80  if ((cycles_elapsed >> 6) < cpt) {
81  /* use "cheap" math (add/subtract) instead
82  * of the more expensive div/mul method
83  */
84  cycles_remainder = cycles_elapsed;
85  while (cycles_remainder > cpt) {
86  cycles_remainder -= cpt;
87  ticks_elapsed++;
88  }
89  } else {
90  /* TODO: Reduce this to one fdiv op */
91  cycles_remainder = cycles_elapsed % cpt;
92  ticks_elapsed += cycles_elapsed / cpt;
93  }
94 
95  /* convert from "division remainder" to "remainder of clock tick" */
96  cycles_remainder = cpt - cycles_remainder;
97 
98  /* Determine when (in CR16 cycles) next IT interrupt will fire.
99  * We want IT to fire modulo clocktick even if we miss/skip some.
100  * But those interrupts don't in fact get delivered that regularly.
101  */
102  next_tick = now + cycles_remainder;
103 
104  cpuinfo->it_value = next_tick;
105 
106  /* Program the IT when to deliver the next interrupt.
107  * Only bottom 32-bits of next_tick are writable in CR16!
108  */
109  mtctl(next_tick, 16);
110 
111  /* Skip one clocktick on purpose if we missed next_tick.
112  * The new CR16 must be "later" than current CR16 otherwise
113  * itimer would not fire until CR16 wrapped - e.g 4 seconds
114  * later on a 1Ghz processor. We'll account for the missed
115  * tick on the next timer interrupt.
116  *
117  * "next_tick - now" will always give the difference regardless
118  * if one or the other wrapped. If "now" is "bigger" we'll end up
119  * with a very large unsigned number.
120  */
121  now2 = mfctl(16);
122  if (next_tick - now2 > cpt)
123  mtctl(next_tick+cpt, 16);
124 
125 #if 1
126 /*
127  * GGG: DEBUG code for how many cycles programming CR16 used.
128  */
129  if (unlikely(now2 - now > 0x3000)) /* 12K cycles */
130  printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
131  " cyc %lX rem %lX "
132  " next/now %lX/%lX\n",
133  cpu, now2 - now, cycles_elapsed, cycles_remainder,
134  next_tick, now );
135 #endif
136 
137  /* Can we differentiate between "early CR16" (aka Scenario 1) and
138  * "long delay" (aka Scenario 3)? I don't think so.
139  *
140  * Timer_interrupt will be delivered at least a few hundred cycles
141  * after the IT fires. But it's arbitrary how much time passes
142  * before we call it "late". I've picked one second.
143  *
144  * It's important NO printk's are between reading CR16 and
145  * setting up the next value. May introduce huge variance.
146  */
147  if (unlikely(ticks_elapsed > HZ)) {
148  /* Scenario 3: very long delay? bad in any case */
149  printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
150  " cycles %lX rem %lX "
151  " next/now %lX/%lX\n",
152  cpu,
153  cycles_elapsed, cycles_remainder,
154  next_tick, now );
155  }
156 
157  /* Done mucking with unreliable delivery of interrupts.
158  * Go do system house keeping.
159  */
160 
161  if (!--cpuinfo->prof_counter) {
162  cpuinfo->prof_counter = cpuinfo->prof_multiplier;
164  }
165 
166  if (cpu == 0)
167  xtime_update(ticks_elapsed);
168 
169  return IRQ_HANDLED;
170 }
171 
172 
173 unsigned long profile_pc(struct pt_regs *regs)
174 {
175  unsigned long pc = instruction_pointer(regs);
176 
177  if (regs->gr[0] & PSW_N)
178  pc -= 4;
179 
180 #ifdef CONFIG_SMP
181  if (in_lock_functions(pc))
182  pc = regs->gr[2];
183 #endif
184 
185  return pc;
186 }
188 
189 
190 /* clock source code */
191 
192 static cycle_t read_cr16(struct clocksource *cs)
193 {
194  return get_cycles();
195 }
196 
197 static struct clocksource clocksource_cr16 = {
198  .name = "cr16",
199  .rating = 300,
200  .read = read_cr16,
203 };
204 
205 #ifdef CONFIG_SMP
206 int update_cr16_clocksource(void)
207 {
208  /* since the cr16 cycle counters are not synchronized across CPUs,
209  we'll check if we should switch to a safe clocksource: */
210  if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
211  clocksource_change_rating(&clocksource_cr16, 0);
212  return 1;
213  }
214 
215  return 0;
216 }
217 #else
219 {
220  return 0; /* no change */
221 }
222 #endif /*CONFIG_SMP*/
223 
225 {
226  unsigned int cpu = smp_processor_id();
227  unsigned long next_tick = mfctl(16) + clocktick;
228 
229  mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
230 
231  per_cpu(cpu_data, cpu).it_value = next_tick;
232 }
233 
234 static struct platform_device rtc_generic_dev = {
235  .name = "rtc-generic",
236  .id = -1,
237 };
238 
239 static int __init rtc_init(void)
240 {
241  if (platform_device_register(&rtc_generic_dev) < 0)
242  printk(KERN_ERR "unable to register rtc device...\n");
243 
244  /* not necessarily an error */
245  return 0;
246 }
247 module_init(rtc_init);
248 
250 {
251  static struct pdc_tod tod_data;
252  if (pdc_tod_read(&tod_data) == 0) {
253  ts->tv_sec = tod_data.tod_sec;
254  ts->tv_nsec = tod_data.tod_usec * 1000;
255  } else {
256  printk(KERN_ERR "Error reading tod clock\n");
257  ts->tv_sec = 0;
258  ts->tv_nsec = 0;
259  }
260 }
261 
262 void __init time_init(void)
263 {
264  unsigned long current_cr16_khz;
265 
266  clocktick = (100 * PAGE0->mem_10msec) / HZ;
267 
268  start_cpu_itimer(); /* get CPU 0 started */
269 
270  /* register at clocksource framework */
271  current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
272  clocksource_register_khz(&clocksource_cr16, current_cr16_khz);
273 }