Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
kprobes.c
Go to the documentation of this file.
1 /*
2  * Kernel probes (kprobes) for SuperH
3  *
4  * Copyright (C) 2007 Chris Smith <[email protected]>
5  * Copyright (C) 2006 Lineo Solutions, Inc.
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License. See the file "COPYING" in the main directory of this archive
9  * for more details.
10  */
11 #include <linux/kprobes.h>
12 #include <linux/module.h>
13 #include <linux/ptrace.h>
14 #include <linux/preempt.h>
15 #include <linux/kdebug.h>
16 #include <linux/slab.h>
17 #include <asm/cacheflush.h>
18 #include <asm/uaccess.h>
19 
20 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
22 
23 static DEFINE_PER_CPU(struct kprobe, saved_current_opcode);
24 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode);
25 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode2);
26 
27 #define OPCODE_JMP(x) (((x) & 0xF0FF) == 0x402b)
28 #define OPCODE_JSR(x) (((x) & 0xF0FF) == 0x400b)
29 #define OPCODE_BRA(x) (((x) & 0xF000) == 0xa000)
30 #define OPCODE_BRAF(x) (((x) & 0xF0FF) == 0x0023)
31 #define OPCODE_BSR(x) (((x) & 0xF000) == 0xb000)
32 #define OPCODE_BSRF(x) (((x) & 0xF0FF) == 0x0003)
33 
34 #define OPCODE_BF_S(x) (((x) & 0xFF00) == 0x8f00)
35 #define OPCODE_BT_S(x) (((x) & 0xFF00) == 0x8d00)
36 
37 #define OPCODE_BF(x) (((x) & 0xFF00) == 0x8b00)
38 #define OPCODE_BT(x) (((x) & 0xFF00) == 0x8900)
39 
40 #define OPCODE_RTS(x) (((x) & 0x000F) == 0x000b)
41 #define OPCODE_RTE(x) (((x) & 0xFFFF) == 0x002b)
42 
44 {
46 
47  if (OPCODE_RTE(opcode))
48  return -EFAULT; /* Bad breakpoint */
49 
50  p->opcode = opcode;
51 
52  return 0;
53 }
54 
56 {
57  memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
58  p->opcode = *p->addr;
59 }
60 
62 {
64  flush_icache_range((unsigned long)p->addr,
65  (unsigned long)p->addr + sizeof(kprobe_opcode_t));
66 }
67 
69 {
70  *p->addr = p->opcode;
71  flush_icache_range((unsigned long)p->addr,
72  (unsigned long)p->addr + sizeof(kprobe_opcode_t));
73 }
74 
76 {
77  if (*p->addr == BREAKPOINT_INSTRUCTION)
78  return 1;
79 
80  return 0;
81 }
82 
90 {
91  struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1);
92 
93  if (p != NULL) {
94  printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
95  (unsigned int)pc + 2);
97  return 0;
98  }
99 
100  return 1;
101 }
102 
104 {
105  struct kprobe *saved = &__get_cpu_var(saved_next_opcode);
106 
107  if (saved->addr) {
109  arch_disarm_kprobe(saved);
110 
111  saved->addr = NULL;
112  saved->opcode = 0;
113 
114  saved = &__get_cpu_var(saved_next_opcode2);
115  if (saved->addr) {
116  arch_disarm_kprobe(saved);
117 
118  saved->addr = NULL;
119  saved->opcode = 0;
120  }
121  }
122 }
123 
124 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
125 {
126  kcb->prev_kprobe.kp = kprobe_running();
127  kcb->prev_kprobe.status = kcb->kprobe_status;
128 }
129 
130 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
131 {
132  __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
133  kcb->kprobe_status = kcb->prev_kprobe.status;
134 }
135 
136 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
137  struct kprobe_ctlblk *kcb)
138 {
139  __get_cpu_var(current_kprobe) = p;
140 }
141 
142 /*
143  * Singlestep is implemented by disabling the current kprobe and setting one
144  * on the next instruction, following branches. Two probes are set if the
145  * branch is conditional.
146  */
147 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
148 {
149  __get_cpu_var(saved_current_opcode).addr = (kprobe_opcode_t *)regs->pc;
150 
151  if (p != NULL) {
152  struct kprobe *op1, *op2;
153 
155 
156  op1 = &__get_cpu_var(saved_next_opcode);
157  op2 = &__get_cpu_var(saved_next_opcode2);
158 
159  if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) {
160  unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
161  op1->addr = (kprobe_opcode_t *) regs->regs[reg_nr];
162  } else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) {
163  unsigned long disp = (p->opcode & 0x0FFF);
164  op1->addr =
165  (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
166 
167  } else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) {
168  unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
169  op1->addr =
170  (kprobe_opcode_t *) (regs->pc + 4 +
171  regs->regs[reg_nr]);
172 
173  } else if (OPCODE_RTS(p->opcode)) {
174  op1->addr = (kprobe_opcode_t *) regs->pr;
175 
176  } else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) {
177  unsigned long disp = (p->opcode & 0x00FF);
178  /* case 1 */
179  op1->addr = p->addr + 1;
180  /* case 2 */
181  op2->addr =
182  (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
183  op2->opcode = *(op2->addr);
184  arch_arm_kprobe(op2);
185 
186  } else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) {
187  unsigned long disp = (p->opcode & 0x00FF);
188  /* case 1 */
189  op1->addr = p->addr + 2;
190  /* case 2 */
191  op2->addr =
192  (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
193  op2->opcode = *(op2->addr);
194  arch_arm_kprobe(op2);
195 
196  } else {
197  op1->addr = p->addr + 1;
198  }
199 
200  op1->opcode = *(op1->addr);
201  arch_arm_kprobe(op1);
202  }
203 }
204 
205 /* Called with kretprobe_lock held */
207  struct pt_regs *regs)
208 {
209  ri->ret_addr = (kprobe_opcode_t *) regs->pr;
210 
211  /* Replace the return addr with trampoline addr */
212  regs->pr = (unsigned long)kretprobe_trampoline;
213 }
214 
215 static int __kprobes kprobe_handler(struct pt_regs *regs)
216 {
217  struct kprobe *p;
218  int ret = 0;
220  struct kprobe_ctlblk *kcb;
221 
222  /*
223  * We don't want to be preempted for the entire
224  * duration of kprobe processing
225  */
226  preempt_disable();
227  kcb = get_kprobe_ctlblk();
228 
229  addr = (kprobe_opcode_t *) (regs->pc);
230 
231  /* Check we're not actually recursing */
232  if (kprobe_running()) {
233  p = get_kprobe(addr);
234  if (p) {
235  if (kcb->kprobe_status == KPROBE_HIT_SS &&
236  *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
237  goto no_kprobe;
238  }
239  /* We have reentered the kprobe_handler(), since
240  * another probe was hit while within the handler.
241  * We here save the original kprobes variables and
242  * just single step on the instruction of the new probe
243  * without calling any user handlers.
244  */
245  save_previous_kprobe(kcb);
246  set_current_kprobe(p, regs, kcb);
248  prepare_singlestep(p, regs);
249  kcb->kprobe_status = KPROBE_REENTER;
250  return 1;
251  } else {
252  p = __get_cpu_var(current_kprobe);
253  if (p->break_handler && p->break_handler(p, regs)) {
254  goto ss_probe;
255  }
256  }
257  goto no_kprobe;
258  }
259 
260  p = get_kprobe(addr);
261  if (!p) {
262  /* Not one of ours: let kernel handle it */
263  if (*(kprobe_opcode_t *)addr != BREAKPOINT_INSTRUCTION) {
264  /*
265  * The breakpoint instruction was removed right
266  * after we hit it. Another cpu has removed
267  * either a probepoint or a debugger breakpoint
268  * at this address. In either case, no further
269  * handling of this interrupt is appropriate.
270  */
271  ret = 1;
272  }
273 
274  goto no_kprobe;
275  }
276 
277  set_current_kprobe(p, regs, kcb);
279 
280  if (p->pre_handler && p->pre_handler(p, regs))
281  /* handler has already set things up, so skip ss setup */
282  return 1;
283 
284 ss_probe:
285  prepare_singlestep(p, regs);
287  return 1;
288 
289 no_kprobe:
291  return ret;
292 }
293 
294 /*
295  * For function-return probes, init_kprobes() establishes a probepoint
296  * here. When a retprobed function returns, this probe is hit and
297  * trampoline_probe_handler() runs, calling the kretprobe's handler.
298  */
299 static void __used kretprobe_trampoline_holder(void)
300 {
301  asm volatile (".globl kretprobe_trampoline\n"
302  "kretprobe_trampoline:\n\t"
303  "nop\n");
304 }
305 
306 /*
307  * Called when we hit the probe point at kretprobe_trampoline
308  */
309 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
310 {
311  struct kretprobe_instance *ri = NULL;
312  struct hlist_head *head, empty_rp;
313  struct hlist_node *node, *tmp;
314  unsigned long flags, orig_ret_address = 0;
315  unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
316 
317  INIT_HLIST_HEAD(&empty_rp);
318  kretprobe_hash_lock(current, &head, &flags);
319 
320  /*
321  * It is possible to have multiple instances associated with a given
322  * task either because an multiple functions in the call path
323  * have a return probe installed on them, and/or more then one return
324  * return probe was registered for a target function.
325  *
326  * We can handle this because:
327  * - instances are always inserted at the head of the list
328  * - when multiple return probes are registered for the same
329  * function, the first instance's ret_addr will point to the
330  * real return address, and all the rest will point to
331  * kretprobe_trampoline
332  */
333  hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
334  if (ri->task != current)
335  /* another task is sharing our hash bucket */
336  continue;
337 
338  if (ri->rp && ri->rp->handler) {
339  __get_cpu_var(current_kprobe) = &ri->rp->kp;
340  ri->rp->handler(ri, regs);
341  __get_cpu_var(current_kprobe) = NULL;
342  }
343 
344  orig_ret_address = (unsigned long)ri->ret_addr;
345  recycle_rp_inst(ri, &empty_rp);
346 
347  if (orig_ret_address != trampoline_address)
348  /*
349  * This is the real return address. Any other
350  * instances associated with this task are for
351  * other calls deeper on the call stack
352  */
353  break;
354  }
355 
356  kretprobe_assert(ri, orig_ret_address, trampoline_address);
357 
358  regs->pc = orig_ret_address;
360 
362 
363  hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
364  hlist_del(&ri->hlist);
365  kfree(ri);
366  }
367 
368  return orig_ret_address;
369 }
370 
371 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
372 {
373  struct kprobe *cur = kprobe_running();
374  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
375  kprobe_opcode_t *addr = NULL;
376  struct kprobe *p = NULL;
377 
378  if (!cur)
379  return 0;
380 
381  if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
382  kcb->kprobe_status = KPROBE_HIT_SSDONE;
383  cur->post_handler(cur, regs, 0);
384  }
385 
386  p = &__get_cpu_var(saved_next_opcode);
387  if (p->addr) {
389  p->addr = NULL;
390  p->opcode = 0;
391 
392  addr = __get_cpu_var(saved_current_opcode).addr;
393  __get_cpu_var(saved_current_opcode).addr = NULL;
394 
395  p = get_kprobe(addr);
396  arch_arm_kprobe(p);
397 
398  p = &__get_cpu_var(saved_next_opcode2);
399  if (p->addr) {
401  p->addr = NULL;
402  p->opcode = 0;
403  }
404  }
405 
406  /* Restore back the original saved kprobes variables and continue. */
407  if (kcb->kprobe_status == KPROBE_REENTER) {
408  restore_previous_kprobe(kcb);
409  goto out;
410  }
411 
412  reset_current_kprobe();
413 
414 out:
416 
417  return 1;
418 }
419 
420 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
421 {
422  struct kprobe *cur = kprobe_running();
423  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
424  const struct exception_table_entry *entry;
425 
426  switch (kcb->kprobe_status) {
427  case KPROBE_HIT_SS:
428  case KPROBE_REENTER:
429  /*
430  * We are here because the instruction being single
431  * stepped caused a page fault. We reset the current
432  * kprobe, point the pc back to the probe address
433  * and allow the page fault handler to continue as a
434  * normal page fault.
435  */
436  regs->pc = (unsigned long)cur->addr;
437  if (kcb->kprobe_status == KPROBE_REENTER)
438  restore_previous_kprobe(kcb);
439  else
440  reset_current_kprobe();
442  break;
443  case KPROBE_HIT_ACTIVE:
444  case KPROBE_HIT_SSDONE:
445  /*
446  * We increment the nmissed count for accounting,
447  * we can also use npre/npostfault count for accounting
448  * these specific fault cases.
449  */
451 
452  /*
453  * We come here because instructions in the pre/post
454  * handler caused the page_fault, this could happen
455  * if handler tries to access user space by
456  * copy_from_user(), get_user() etc. Let the
457  * user-specified handler try to fix it first.
458  */
459  if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
460  return 1;
461 
462  /*
463  * In case the user-specified fault handler returned
464  * zero, try to fix up.
465  */
466  if ((entry = search_exception_tables(regs->pc)) != NULL) {
467  regs->pc = entry->fixup;
468  return 1;
469  }
470 
471  /*
472  * fixup_exception() could not handle it,
473  * Let do_page_fault() fix it.
474  */
475  break;
476  default:
477  break;
478  }
479 
480  return 0;
481 }
482 
483 /*
484  * Wrapper routine to for handling exceptions.
485  */
487  unsigned long val, void *data)
488 {
489  struct kprobe *p = NULL;
490  struct die_args *args = (struct die_args *)data;
491  int ret = NOTIFY_DONE;
492  kprobe_opcode_t *addr = NULL;
493  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
494 
495  addr = (kprobe_opcode_t *) (args->regs->pc);
496  if (val == DIE_TRAP) {
497  if (!kprobe_running()) {
498  if (kprobe_handler(args->regs)) {
499  ret = NOTIFY_STOP;
500  } else {
501  /* Not a kprobe trap */
502  ret = NOTIFY_DONE;
503  }
504  } else {
505  p = get_kprobe(addr);
506  if ((kcb->kprobe_status == KPROBE_HIT_SS) ||
507  (kcb->kprobe_status == KPROBE_REENTER)) {
508  if (post_kprobe_handler(args->regs))
509  ret = NOTIFY_STOP;
510  } else {
511  if (kprobe_handler(args->regs)) {
512  ret = NOTIFY_STOP;
513  } else {
514  p = __get_cpu_var(current_kprobe);
515  if (p->break_handler &&
516  p->break_handler(p, args->regs))
517  ret = NOTIFY_STOP;
518  }
519  }
520  }
521  }
522 
523  return ret;
524 }
525 
526 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
527 {
528  struct jprobe *jp = container_of(p, struct jprobe, kp);
529  unsigned long addr;
530  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
531 
532  kcb->jprobe_saved_regs = *regs;
533  kcb->jprobe_saved_r15 = regs->regs[15];
534  addr = kcb->jprobe_saved_r15;
535 
536  /*
537  * TBD: As Linus pointed out, gcc assumes that the callee
538  * owns the argument space and could overwrite it, e.g.
539  * tailcall optimization. So, to be absolutely safe
540  * we also save and restore enough stack bytes to cover
541  * the argument area.
542  */
543  memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
544  MIN_STACK_SIZE(addr));
545 
546  regs->pc = (unsigned long)(jp->entry);
547 
548  return 1;
549 }
550 
552 {
553  asm volatile ("trapa #0x3a\n\t" "jprobe_return_end:\n\t" "nop\n\t");
554 }
555 
556 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
557 {
558  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
559  unsigned long stack_addr = kcb->jprobe_saved_r15;
560  u8 *addr = (u8 *)regs->pc;
561 
562  if ((addr >= (u8 *)jprobe_return) &&
563  (addr <= (u8 *)jprobe_return_end)) {
564  *regs = kcb->jprobe_saved_regs;
565 
566  memcpy((kprobe_opcode_t *)stack_addr, kcb->jprobes_stack,
567  MIN_STACK_SIZE(stack_addr));
568 
571  return 1;
572  }
573 
574  return 0;
575 }
576 
577 static struct kprobe trampoline_p = {
580 };
581 
583 {
584  return register_kprobe(&trampoline_p);
585 }