Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ptrace.c
Go to the documentation of this file.
1 /*
2  * linux/arch/unicore32/kernel/ptrace.c
3  *
4  * Code specific to PKUnity SoC and UniCore ISA
5  *
6  * Copyright (C) 2001-2010 GUAN Xue-tao
7  *
8  * By Ross Biro 1/23/92
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 #include <linux/kernel.h>
15 #include <linux/ptrace.h>
16 #include <linux/signal.h>
17 #include <linux/uaccess.h>
18 
19 /*
20  * this routine will get a word off of the processes privileged stack.
21  * the offset is how far from the base addr as stored in the THREAD.
22  * this routine assumes that all the privileged stacks are in our
23  * data space.
24  */
25 static inline long get_user_reg(struct task_struct *task, int offset)
26 {
27  return task_pt_regs(task)->uregs[offset];
28 }
29 
30 /*
31  * this routine will put a word on the processes privileged stack.
32  * the offset is how far from the base addr as stored in the THREAD.
33  * this routine assumes that all the privileged stacks are in our
34  * data space.
35  */
36 static inline int
37 put_user_reg(struct task_struct *task, int offset, long data)
38 {
39  struct pt_regs newregs, *regs = task_pt_regs(task);
40  int ret = -EINVAL;
41 
42  newregs = *regs;
43  newregs.uregs[offset] = data;
44 
45  if (valid_user_regs(&newregs)) {
46  regs->uregs[offset] = data;
47  ret = 0;
48  }
49 
50  return ret;
51 }
52 
53 /*
54  * Called by kernel/ptrace.c when detaching..
55  */
57 {
58 }
59 
60 /*
61  * We actually access the pt_regs stored on the kernel stack.
62  */
63 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
64  unsigned long __user *ret)
65 {
66  unsigned long tmp;
67 
68  tmp = 0;
69  if (off < sizeof(struct pt_regs))
70  tmp = get_user_reg(tsk, off >> 2);
71 
72  return put_user(tmp, ret);
73 }
74 
75 /*
76  * We actually access the pt_regs stored on the kernel stack.
77  */
78 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
79  unsigned long val)
80 {
81  if (off >= sizeof(struct pt_regs))
82  return 0;
83 
84  return put_user_reg(tsk, off >> 2, val);
85 }
86 
87 long arch_ptrace(struct task_struct *child, long request,
88  unsigned long addr, unsigned long data)
89 {
90  int ret;
91  unsigned long __user *datap = (unsigned long __user *) data;
92 
93  switch (request) {
94  case PTRACE_PEEKUSR:
95  ret = ptrace_read_user(child, addr, datap);
96  break;
97 
98  case PTRACE_POKEUSR:
99  ret = ptrace_write_user(child, addr, data);
100  break;
101 
103  ret = put_user(task_pt_regs(child)->UCreg_16,
104  datap);
105  break;
106 
107  default:
108  ret = ptrace_request(child, request, addr, data);
109  break;
110  }
111 
112  return ret;
113 }
114 
115 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
116 {
117  unsigned long ip;
118 
119  if (!test_thread_flag(TIF_SYSCALL_TRACE))
120  return scno;
121  if (!(current->ptrace & PT_PTRACED))
122  return scno;
123 
124  /*
125  * Save IP. IP is used to denote syscall entry/exit:
126  * IP = 0 -> entry, = 1 -> exit
127  */
128  ip = regs->UCreg_ip;
129  regs->UCreg_ip = why;
130 
131  current_thread_info()->syscall = scno;
132 
133  /* the 0x80 provides a way for the tracing parent to distinguish
134  between a syscall stop and SIGTRAP delivery */
136  ? 0x80 : 0));
137  /*
138  * this isn't the same as continuing with a signal, but it will do
139  * for normal use. strace only continues with a signal if the
140  * stopping signal is not SIGTRAP. -brl
141  */
142  if (current->exit_code) {
143  send_sig(current->exit_code, current, 1);
144  current->exit_code = 0;
145  }
146  regs->UCreg_ip = ip;
147 
148  return current_thread_info()->syscall;
149 }