Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
init.c
Go to the documentation of this file.
1 /*
2  * linux/arch/unicore32/mm/init.c
3  *
4  * Copyright (C) 2010 GUAN Xue-tao
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/highmem.h>
19 #include <linux/gfp.h>
20 #include <linux/memblock.h>
21 #include <linux/sort.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/export.h>
24 
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/sizes.h>
28 #include <asm/tlb.h>
29 #include <asm/memblock.h>
30 #include <mach/map.h>
31 
32 #include "mm.h"
33 
34 static unsigned long phys_initrd_start __initdata = 0x01000000;
35 static unsigned long phys_initrd_size __initdata = SZ_8M;
36 
37 static int __init early_initrd(char *p)
38 {
39  unsigned long start, size;
40  char *endp;
41 
42  start = memparse(p, &endp);
43  if (*endp == ',') {
44  size = memparse(endp + 1, NULL);
45 
46  phys_initrd_start = start;
47  phys_initrd_size = size;
48  }
49  return 0;
50 }
51 early_param("initrd", early_initrd);
52 
53 /*
54  * This keeps memory configuration data used by a couple memory
55  * initialization functions, as well as show_mem() for the skipping
56  * of holes in the memory map. It is populated by uc32_add_memory().
57  */
59 
60 void show_mem(unsigned int filter)
61 {
62  int free = 0, total = 0, reserved = 0;
63  int shared = 0, cached = 0, slab = 0, i;
64  struct meminfo *mi = &meminfo;
65 
66  printk(KERN_DEFAULT "Mem-info:\n");
67  show_free_areas(filter);
68 
69  for_each_bank(i, mi) {
70  struct membank *bank = &mi->bank[i];
71  unsigned int pfn1, pfn2;
72  struct page *page, *end;
73 
74  pfn1 = bank_pfn_start(bank);
75  pfn2 = bank_pfn_end(bank);
76 
77  page = pfn_to_page(pfn1);
78  end = pfn_to_page(pfn2 - 1) + 1;
79 
80  do {
81  total++;
82  if (PageReserved(page))
83  reserved++;
84  else if (PageSwapCache(page))
85  cached++;
86  else if (PageSlab(page))
87  slab++;
88  else if (!page_count(page))
89  free++;
90  else
91  shared += page_count(page) - 1;
92  page++;
93  } while (page < end);
94  }
95 
96  printk(KERN_DEFAULT "%d pages of RAM\n", total);
97  printk(KERN_DEFAULT "%d free pages\n", free);
98  printk(KERN_DEFAULT "%d reserved pages\n", reserved);
99  printk(KERN_DEFAULT "%d slab pages\n", slab);
100  printk(KERN_DEFAULT "%d pages shared\n", shared);
101  printk(KERN_DEFAULT "%d pages swap cached\n", cached);
102 }
103 
104 static void __init find_limits(unsigned long *min, unsigned long *max_low,
105  unsigned long *max_high)
106 {
107  struct meminfo *mi = &meminfo;
108  int i;
109 
110  *min = -1UL;
111  *max_low = *max_high = 0;
112 
113  for_each_bank(i, mi) {
114  struct membank *bank = &mi->bank[i];
115  unsigned long start, end;
116 
117  start = bank_pfn_start(bank);
118  end = bank_pfn_end(bank);
119 
120  if (*min > start)
121  *min = start;
122  if (*max_high < end)
123  *max_high = end;
124  if (bank->highmem)
125  continue;
126  if (*max_low < end)
127  *max_low = end;
128  }
129 }
130 
131 static void __init uc32_bootmem_init(unsigned long start_pfn,
132  unsigned long end_pfn)
133 {
134  struct memblock_region *reg;
135  unsigned int boot_pages;
137  pg_data_t *pgdat;
138 
139  /*
140  * Allocate the bootmem bitmap page. This must be in a region
141  * of memory which has already been mapped.
142  */
143  boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
144  bitmap = memblock_alloc_base(boot_pages << PAGE_SHIFT, L1_CACHE_BYTES,
145  __pfn_to_phys(end_pfn));
146 
147  /*
148  * Initialise the bootmem allocator, handing the
149  * memory banks over to bootmem.
150  */
151  node_set_online(0);
152  pgdat = NODE_DATA(0);
153  init_bootmem_node(pgdat, __phys_to_pfn(bitmap), start_pfn, end_pfn);
154 
155  /* Free the lowmem regions from memblock into bootmem. */
156  for_each_memblock(memory, reg) {
157  unsigned long start = memblock_region_memory_base_pfn(reg);
158  unsigned long end = memblock_region_memory_end_pfn(reg);
159 
160  if (end >= end_pfn)
161  end = end_pfn;
162  if (start >= end)
163  break;
164 
165  free_bootmem(__pfn_to_phys(start), (end - start) << PAGE_SHIFT);
166  }
167 
168  /* Reserve the lowmem memblock reserved regions in bootmem. */
169  for_each_memblock(reserved, reg) {
170  unsigned long start = memblock_region_reserved_base_pfn(reg);
171  unsigned long end = memblock_region_reserved_end_pfn(reg);
172 
173  if (end >= end_pfn)
174  end = end_pfn;
175  if (start >= end)
176  break;
177 
179  (end - start) << PAGE_SHIFT, BOOTMEM_DEFAULT);
180  }
181 }
182 
183 static void __init uc32_bootmem_free(unsigned long min, unsigned long max_low,
184  unsigned long max_high)
185 {
186  unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
187  struct memblock_region *reg;
188 
189  /*
190  * initialise the zones.
191  */
192  memset(zone_size, 0, sizeof(zone_size));
193 
194  /*
195  * The memory size has already been determined. If we need
196  * to do anything fancy with the allocation of this memory
197  * to the zones, now is the time to do it.
198  */
199  zone_size[0] = max_low - min;
200 
201  /*
202  * Calculate the size of the holes.
203  * holes = node_size - sum(bank_sizes)
204  */
205  memcpy(zhole_size, zone_size, sizeof(zhole_size));
206  for_each_memblock(memory, reg) {
207  unsigned long start = memblock_region_memory_base_pfn(reg);
208  unsigned long end = memblock_region_memory_end_pfn(reg);
209 
210  if (start < max_low) {
211  unsigned long low_end = min(end, max_low);
212  zhole_size[0] -= low_end - start;
213  }
214  }
215 
216  /*
217  * Adjust the sizes according to any special requirements for
218  * this machine type.
219  */
220  arch_adjust_zones(zone_size, zhole_size);
221 
222  free_area_init_node(0, zone_size, min, zhole_size);
223 }
224 
225 int pfn_valid(unsigned long pfn)
226 {
227  return memblock_is_memory(pfn << PAGE_SHIFT);
228 }
230 
231 static void uc32_memory_present(void)
232 {
233 }
234 
235 static int __init meminfo_cmp(const void *_a, const void *_b)
236 {
237  const struct membank *a = _a, *b = _b;
238  long cmp = bank_pfn_start(a) - bank_pfn_start(b);
239  return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
240 }
241 
243 {
244  int i;
245 
246  sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]),
247  meminfo_cmp, NULL);
248 
249  for (i = 0; i < mi->nr_banks; i++)
250  memblock_add(mi->bank[i].start, mi->bank[i].size);
251 
252  /* Register the kernel text, kernel data and initrd with memblock. */
254 
255 #ifdef CONFIG_BLK_DEV_INITRD
256  if (phys_initrd_size) {
257  memblock_reserve(phys_initrd_start, phys_initrd_size);
258 
259  /* Now convert initrd to virtual addresses */
260  initrd_start = __phys_to_virt(phys_initrd_start);
261  initrd_end = initrd_start + phys_initrd_size;
262  }
263 #endif
264 
266 
268  memblock_dump_all();
269 }
270 
272 {
273  unsigned long min, max_low, max_high;
274 
275  max_low = max_high = 0;
276 
277  find_limits(&min, &max_low, &max_high);
278 
279  uc32_bootmem_init(min, max_low);
280 
281 #ifdef CONFIG_SWIOTLB
282  swiotlb_init(1);
283 #endif
284  /*
285  * Sparsemem tries to allocate bootmem in memory_present(),
286  * so must be done after the fixed reservations
287  */
288  uc32_memory_present();
289 
290  /*
291  * sparse_init() needs the bootmem allocator up and running.
292  */
293  sparse_init();
294 
295  /*
296  * Now free the memory - free_area_init_node needs
297  * the sparse mem_map arrays initialized by sparse_init()
298  * for memmap_init_zone(), otherwise all PFNs are invalid.
299  */
300  uc32_bootmem_free(min, max_low, max_high);
301 
302  high_memory = __va((max_low << PAGE_SHIFT) - 1) + 1;
303 
304  /*
305  * This doesn't seem to be used by the Linux memory manager any
306  * more, but is used by ll_rw_block. If we can get rid of it, we
307  * also get rid of some of the stuff above as well.
308  *
309  * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
310  * the system, not the maximum PFN.
311  */
312  max_low_pfn = max_low - PHYS_PFN_OFFSET;
313  max_pfn = max_high - PHYS_PFN_OFFSET;
314 }
315 
316 static inline int free_area(unsigned long pfn, unsigned long end, char *s)
317 {
318  unsigned int pages = 0, size = (end - pfn) << (PAGE_SHIFT - 10);
319 
320  for (; pfn < end; pfn++) {
321  struct page *page = pfn_to_page(pfn);
322  ClearPageReserved(page);
323  init_page_count(page);
324  __free_page(page);
325  pages++;
326  }
327 
328  if (size && s)
329  printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
330 
331  return pages;
332 }
333 
334 static inline void
335 free_memmap(unsigned long start_pfn, unsigned long end_pfn)
336 {
337  struct page *start_pg, *end_pg;
338  unsigned long pg, pgend;
339 
340  /*
341  * Convert start_pfn/end_pfn to a struct page pointer.
342  */
343  start_pg = pfn_to_page(start_pfn - 1) + 1;
344  end_pg = pfn_to_page(end_pfn);
345 
346  /*
347  * Convert to physical addresses, and
348  * round start upwards and end downwards.
349  */
350  pg = PAGE_ALIGN(__pa(start_pg));
351  pgend = __pa(end_pg) & PAGE_MASK;
352 
353  /*
354  * If there are free pages between these,
355  * free the section of the memmap array.
356  */
357  if (pg < pgend)
358  free_bootmem(pg, pgend - pg);
359 }
360 
361 /*
362  * The mem_map array can get very big. Free the unused area of the memory map.
363  */
364 static void __init free_unused_memmap(struct meminfo *mi)
365 {
366  unsigned long bank_start, prev_bank_end = 0;
367  unsigned int i;
368 
369  /*
370  * This relies on each bank being in address order.
371  * The banks are sorted previously in bootmem_init().
372  */
373  for_each_bank(i, mi) {
374  struct membank *bank = &mi->bank[i];
375 
376  bank_start = bank_pfn_start(bank);
377 
378  /*
379  * If we had a previous bank, and there is a space
380  * between the current bank and the previous, free it.
381  */
382  if (prev_bank_end && prev_bank_end < bank_start)
383  free_memmap(prev_bank_end, bank_start);
384 
385  /*
386  * Align up here since the VM subsystem insists that the
387  * memmap entries are valid from the bank end aligned to
388  * MAX_ORDER_NR_PAGES.
389  */
390  prev_bank_end = ALIGN(bank_pfn_end(bank), MAX_ORDER_NR_PAGES);
391  }
392 }
393 
394 /*
395  * mem_init() marks the free areas in the mem_map and tells us how much
396  * memory is free. This is done after various parts of the system have
397  * claimed their memory after the kernel image.
398  */
399 void __init mem_init(void)
400 {
401  unsigned long reserved_pages, free_pages;
402  struct memblock_region *reg;
403  int i;
404 
406 
407  /* this will put all unused low memory onto the freelists */
408  free_unused_memmap(&meminfo);
409 
410  totalram_pages += free_all_bootmem();
411 
412  reserved_pages = free_pages = 0;
413 
414  for_each_bank(i, &meminfo) {
415  struct membank *bank = &meminfo.bank[i];
416  unsigned int pfn1, pfn2;
417  struct page *page, *end;
418 
419  pfn1 = bank_pfn_start(bank);
420  pfn2 = bank_pfn_end(bank);
421 
422  page = pfn_to_page(pfn1);
423  end = pfn_to_page(pfn2 - 1) + 1;
424 
425  do {
426  if (PageReserved(page))
427  reserved_pages++;
428  else if (!page_count(page))
429  free_pages++;
430  page++;
431  } while (page < end);
432  }
433 
434  /*
435  * Since our memory may not be contiguous, calculate the
436  * real number of pages we have in this system
437  */
438  printk(KERN_INFO "Memory:");
439  num_physpages = 0;
440  for_each_memblock(memory, reg) {
441  unsigned long pages = memblock_region_memory_end_pfn(reg) -
442  memblock_region_memory_base_pfn(reg);
443  num_physpages += pages;
444  printk(" %ldMB", pages >> (20 - PAGE_SHIFT));
445  }
446  printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
447 
448  printk(KERN_NOTICE "Memory: %luk/%luk available, %luk reserved, %luK highmem\n",
449  nr_free_pages() << (PAGE_SHIFT-10),
450  free_pages << (PAGE_SHIFT-10),
451  reserved_pages << (PAGE_SHIFT-10),
452  totalhigh_pages << (PAGE_SHIFT-10));
453 
454  printk(KERN_NOTICE "Virtual kernel memory layout:\n"
455  " vector : 0x%08lx - 0x%08lx (%4ld kB)\n"
456  " vmalloc : 0x%08lx - 0x%08lx (%4ld MB)\n"
457  " lowmem : 0x%08lx - 0x%08lx (%4ld MB)\n"
458  " modules : 0x%08lx - 0x%08lx (%4ld MB)\n"
459  " .init : 0x%p" " - 0x%p" " (%4d kB)\n"
460  " .text : 0x%p" " - 0x%p" " (%4d kB)\n"
461  " .data : 0x%p" " - 0x%p" " (%4d kB)\n",
462 
467  PAGE_OFFSET, (unsigned long)high_memory,
468  DIV_ROUND_UP(((unsigned long)high_memory - PAGE_OFFSET), SZ_1M),
471 
474  _stext, _etext,
476  _sdata, _edata,
478 
481 
482  if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
483  /*
484  * On a machine this small we won't get
485  * anywhere without overcommit, so turn
486  * it on by default.
487  */
489  }
490 }
491 
492 void free_initmem(void)
493 {
494  totalram_pages += free_area(__phys_to_pfn(__pa(__init_begin)),
496  "init");
497 }
498 
499 #ifdef CONFIG_BLK_DEV_INITRD
500 
501 static int keep_initrd;
502 
503 void free_initrd_mem(unsigned long start, unsigned long end)
504 {
505  if (!keep_initrd)
506  totalram_pages += free_area(__phys_to_pfn(__pa(start)),
507  __phys_to_pfn(__pa(end)),
508  "initrd");
509 }
510 
511 static int __init keepinitrd_setup(char *__unused)
512 {
513  keep_initrd = 1;
514  return 1;
515 }
516 
517 __setup("keepinitrd", keepinitrd_setup);
518 #endif