Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pgtable.h
Go to the documentation of this file.
1 #ifndef _ASM_X86_PGTABLE_H
2 #define _ASM_X86_PGTABLE_H
3 
4 #include <asm/page.h>
5 #include <asm/e820.h>
6 
7 #include <asm/pgtable_types.h>
8 
9 /*
10  * Macro to mark a page protection value as UC-
11  */
12 #define pgprot_noncached(prot) \
13  ((boot_cpu_data.x86 > 3) \
14  ? (__pgprot(pgprot_val(prot) | _PAGE_CACHE_UC_MINUS)) \
15  : (prot))
16 
17 #ifndef __ASSEMBLY__
18 
19 #include <asm/x86_init.h>
20 
21 /*
22  * ZERO_PAGE is a global shared page that is always zero: used
23  * for zero-mapped memory areas etc..
24  */
25 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
26 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
27 
28 extern spinlock_t pgd_lock;
29 extern struct list_head pgd_list;
30 
31 extern struct mm_struct *pgd_page_get_mm(struct page *page);
32 
33 #ifdef CONFIG_PARAVIRT
34 #include <asm/paravirt.h>
35 #else /* !CONFIG_PARAVIRT */
36 #define set_pte(ptep, pte) native_set_pte(ptep, pte)
37 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
38 #define set_pmd_at(mm, addr, pmdp, pmd) native_set_pmd_at(mm, addr, pmdp, pmd)
39 
40 #define set_pte_atomic(ptep, pte) \
41  native_set_pte_atomic(ptep, pte)
42 
43 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
44 
45 #ifndef __PAGETABLE_PUD_FOLDED
46 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
47 #define pgd_clear(pgd) native_pgd_clear(pgd)
48 #endif
49 
50 #ifndef set_pud
51 # define set_pud(pudp, pud) native_set_pud(pudp, pud)
52 #endif
53 
54 #ifndef __PAGETABLE_PMD_FOLDED
55 #define pud_clear(pud) native_pud_clear(pud)
56 #endif
57 
58 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
59 #define pmd_clear(pmd) native_pmd_clear(pmd)
60 
61 #define pte_update(mm, addr, ptep) do { } while (0)
62 #define pte_update_defer(mm, addr, ptep) do { } while (0)
63 #define pmd_update(mm, addr, ptep) do { } while (0)
64 #define pmd_update_defer(mm, addr, ptep) do { } while (0)
65 
66 #define pgd_val(x) native_pgd_val(x)
67 #define __pgd(x) native_make_pgd(x)
68 
69 #ifndef __PAGETABLE_PUD_FOLDED
70 #define pud_val(x) native_pud_val(x)
71 #define __pud(x) native_make_pud(x)
72 #endif
73 
74 #ifndef __PAGETABLE_PMD_FOLDED
75 #define pmd_val(x) native_pmd_val(x)
76 #define __pmd(x) native_make_pmd(x)
77 #endif
78 
79 #define pte_val(x) native_pte_val(x)
80 #define __pte(x) native_make_pte(x)
81 
82 #define arch_end_context_switch(prev) do {} while(0)
83 
84 #endif /* CONFIG_PARAVIRT */
85 
86 /*
87  * The following only work if pte_present() is true.
88  * Undefined behaviour if not..
89  */
90 static inline int pte_dirty(pte_t pte)
91 {
92  return pte_flags(pte) & _PAGE_DIRTY;
93 }
94 
95 static inline int pte_young(pte_t pte)
96 {
97  return pte_flags(pte) & _PAGE_ACCESSED;
98 }
99 
100 static inline int pmd_young(pmd_t pmd)
101 {
102  return pmd_flags(pmd) & _PAGE_ACCESSED;
103 }
104 
105 static inline int pte_write(pte_t pte)
106 {
107  return pte_flags(pte) & _PAGE_RW;
108 }
109 
110 static inline int pte_file(pte_t pte)
111 {
112  return pte_flags(pte) & _PAGE_FILE;
113 }
114 
115 static inline int pte_huge(pte_t pte)
116 {
117  return pte_flags(pte) & _PAGE_PSE;
118 }
119 
120 static inline int pte_global(pte_t pte)
121 {
122  return pte_flags(pte) & _PAGE_GLOBAL;
123 }
124 
125 static inline int pte_exec(pte_t pte)
126 {
127  return !(pte_flags(pte) & _PAGE_NX);
128 }
129 
130 static inline int pte_special(pte_t pte)
131 {
132  return pte_flags(pte) & _PAGE_SPECIAL;
133 }
134 
135 static inline unsigned long pte_pfn(pte_t pte)
136 {
137  return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
138 }
139 
140 static inline unsigned long pmd_pfn(pmd_t pmd)
141 {
142  return (pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT;
143 }
144 
145 #define pte_page(pte) pfn_to_page(pte_pfn(pte))
146 
147 static inline int pmd_large(pmd_t pte)
148 {
149  return pmd_flags(pte) & _PAGE_PSE;
150 }
151 
152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
153 static inline int pmd_trans_splitting(pmd_t pmd)
154 {
155  return pmd_val(pmd) & _PAGE_SPLITTING;
156 }
157 
158 static inline int pmd_trans_huge(pmd_t pmd)
159 {
160  return pmd_val(pmd) & _PAGE_PSE;
161 }
162 
163 static inline int has_transparent_hugepage(void)
164 {
165  return cpu_has_pse;
166 }
167 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
168 
169 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
170 {
171  pteval_t v = native_pte_val(pte);
172 
173  return native_make_pte(v | set);
174 }
175 
176 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
177 {
178  pteval_t v = native_pte_val(pte);
179 
180  return native_make_pte(v & ~clear);
181 }
182 
183 static inline pte_t pte_mkclean(pte_t pte)
184 {
185  return pte_clear_flags(pte, _PAGE_DIRTY);
186 }
187 
188 static inline pte_t pte_mkold(pte_t pte)
189 {
190  return pte_clear_flags(pte, _PAGE_ACCESSED);
191 }
192 
193 static inline pte_t pte_wrprotect(pte_t pte)
194 {
195  return pte_clear_flags(pte, _PAGE_RW);
196 }
197 
198 static inline pte_t pte_mkexec(pte_t pte)
199 {
200  return pte_clear_flags(pte, _PAGE_NX);
201 }
202 
203 static inline pte_t pte_mkdirty(pte_t pte)
204 {
205  return pte_set_flags(pte, _PAGE_DIRTY);
206 }
207 
208 static inline pte_t pte_mkyoung(pte_t pte)
209 {
210  return pte_set_flags(pte, _PAGE_ACCESSED);
211 }
212 
213 static inline pte_t pte_mkwrite(pte_t pte)
214 {
215  return pte_set_flags(pte, _PAGE_RW);
216 }
217 
218 static inline pte_t pte_mkhuge(pte_t pte)
219 {
220  return pte_set_flags(pte, _PAGE_PSE);
221 }
222 
223 static inline pte_t pte_clrhuge(pte_t pte)
224 {
225  return pte_clear_flags(pte, _PAGE_PSE);
226 }
227 
228 static inline pte_t pte_mkglobal(pte_t pte)
229 {
230  return pte_set_flags(pte, _PAGE_GLOBAL);
231 }
232 
233 static inline pte_t pte_clrglobal(pte_t pte)
234 {
235  return pte_clear_flags(pte, _PAGE_GLOBAL);
236 }
237 
238 static inline pte_t pte_mkspecial(pte_t pte)
239 {
240  return pte_set_flags(pte, _PAGE_SPECIAL);
241 }
242 
243 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
244 {
245  pmdval_t v = native_pmd_val(pmd);
246 
247  return __pmd(v | set);
248 }
249 
250 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
251 {
252  pmdval_t v = native_pmd_val(pmd);
253 
254  return __pmd(v & ~clear);
255 }
256 
257 static inline pmd_t pmd_mkold(pmd_t pmd)
258 {
259  return pmd_clear_flags(pmd, _PAGE_ACCESSED);
260 }
261 
262 static inline pmd_t pmd_wrprotect(pmd_t pmd)
263 {
264  return pmd_clear_flags(pmd, _PAGE_RW);
265 }
266 
267 static inline pmd_t pmd_mkdirty(pmd_t pmd)
268 {
269  return pmd_set_flags(pmd, _PAGE_DIRTY);
270 }
271 
272 static inline pmd_t pmd_mkhuge(pmd_t pmd)
273 {
274  return pmd_set_flags(pmd, _PAGE_PSE);
275 }
276 
277 static inline pmd_t pmd_mkyoung(pmd_t pmd)
278 {
279  return pmd_set_flags(pmd, _PAGE_ACCESSED);
280 }
281 
282 static inline pmd_t pmd_mkwrite(pmd_t pmd)
283 {
284  return pmd_set_flags(pmd, _PAGE_RW);
285 }
286 
287 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
288 {
289  return pmd_clear_flags(pmd, _PAGE_PRESENT);
290 }
291 
292 /*
293  * Mask out unsupported bits in a present pgprot. Non-present pgprots
294  * can use those bits for other purposes, so leave them be.
295  */
296 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
297 {
298  pgprotval_t protval = pgprot_val(pgprot);
299 
300  if (protval & _PAGE_PRESENT)
301  protval &= __supported_pte_mask;
302 
303  return protval;
304 }
305 
306 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
307 {
308  return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) |
309  massage_pgprot(pgprot));
310 }
311 
312 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
313 {
314  return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) |
315  massage_pgprot(pgprot));
316 }
317 
318 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
319 {
320  pteval_t val = pte_val(pte);
321 
322  /*
323  * Chop off the NX bit (if present), and add the NX portion of
324  * the newprot (if present):
325  */
326  val &= _PAGE_CHG_MASK;
327  val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK;
328 
329  return __pte(val);
330 }
331 
332 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
333 {
334  pmdval_t val = pmd_val(pmd);
335 
336  val &= _HPAGE_CHG_MASK;
337  val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK;
338 
339  return __pmd(val);
340 }
341 
342 /* mprotect needs to preserve PAT bits when updating vm_page_prot */
343 #define pgprot_modify pgprot_modify
344 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
345 {
346  pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
347  pgprotval_t addbits = pgprot_val(newprot);
348  return __pgprot(preservebits | addbits);
349 }
350 
351 #define pte_pgprot(x) __pgprot(pte_flags(x) & PTE_FLAGS_MASK)
352 
353 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
354 
355 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
356  unsigned long flags,
357  unsigned long new_flags)
358 {
359  /*
360  * PAT type is always WB for untracked ranges, so no need to check.
361  */
362  if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
363  return 1;
364 
365  /*
366  * Certain new memtypes are not allowed with certain
367  * requested memtype:
368  * - request is uncached, return cannot be write-back
369  * - request is write-combine, return cannot be write-back
370  */
371  if ((flags == _PAGE_CACHE_UC_MINUS &&
372  new_flags == _PAGE_CACHE_WB) ||
373  (flags == _PAGE_CACHE_WC &&
374  new_flags == _PAGE_CACHE_WB)) {
375  return 0;
376  }
377 
378  return 1;
379 }
380 
381 pmd_t *populate_extra_pmd(unsigned long vaddr);
382 pte_t *populate_extra_pte(unsigned long vaddr);
383 #endif /* __ASSEMBLY__ */
384 
385 #ifdef CONFIG_X86_32
386 # include <asm/pgtable_32.h>
387 #else
388 # include <asm/pgtable_64.h>
389 #endif
390 
391 #ifndef __ASSEMBLY__
392 #include <linux/mm_types.h>
393 
394 static inline int pte_none(pte_t pte)
395 {
396  return !pte.pte;
397 }
398 
399 #define __HAVE_ARCH_PTE_SAME
400 static inline int pte_same(pte_t a, pte_t b)
401 {
402  return a.pte == b.pte;
403 }
404 
405 static inline int pte_present(pte_t a)
406 {
407  return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
408 }
409 
410 static inline int pte_hidden(pte_t pte)
411 {
412  return pte_flags(pte) & _PAGE_HIDDEN;
413 }
414 
415 static inline int pmd_present(pmd_t pmd)
416 {
417  /*
418  * Checking for _PAGE_PSE is needed too because
419  * split_huge_page will temporarily clear the present bit (but
420  * the _PAGE_PSE flag will remain set at all times while the
421  * _PAGE_PRESENT bit is clear).
422  */
423  return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
424 }
425 
426 static inline int pmd_none(pmd_t pmd)
427 {
428  /* Only check low word on 32-bit platforms, since it might be
429  out of sync with upper half. */
430  return (unsigned long)native_pmd_val(pmd) == 0;
431 }
432 
433 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
434 {
435  return (unsigned long)__va(pmd_val(pmd) & PTE_PFN_MASK);
436 }
437 
438 /*
439  * Currently stuck as a macro due to indirect forward reference to
440  * linux/mmzone.h's __section_mem_map_addr() definition:
441  */
442 #define pmd_page(pmd) pfn_to_page((pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT)
443 
444 /*
445  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
446  *
447  * this macro returns the index of the entry in the pmd page which would
448  * control the given virtual address
449  */
450 static inline unsigned long pmd_index(unsigned long address)
451 {
452  return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
453 }
454 
455 /*
456  * Conversion functions: convert a page and protection to a page entry,
457  * and a page entry and page directory to the page they refer to.
458  *
459  * (Currently stuck as a macro because of indirect forward reference
460  * to linux/mm.h:page_to_nid())
461  */
462 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
463 
464 /*
465  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
466  *
467  * this function returns the index of the entry in the pte page which would
468  * control the given virtual address
469  */
470 static inline unsigned long pte_index(unsigned long address)
471 {
472  return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
473 }
474 
475 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
476 {
477  return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
478 }
479 
480 static inline int pmd_bad(pmd_t pmd)
481 {
482  return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
483 }
484 
485 static inline unsigned long pages_to_mb(unsigned long npg)
486 {
487  return npg >> (20 - PAGE_SHIFT);
488 }
489 
490 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
491  remap_pfn_range(vma, vaddr, pfn, size, prot)
492 
493 #if PAGETABLE_LEVELS > 2
494 static inline int pud_none(pud_t pud)
495 {
496  return native_pud_val(pud) == 0;
497 }
498 
499 static inline int pud_present(pud_t pud)
500 {
501  return pud_flags(pud) & _PAGE_PRESENT;
502 }
503 
504 static inline unsigned long pud_page_vaddr(pud_t pud)
505 {
506  return (unsigned long)__va((unsigned long)pud_val(pud) & PTE_PFN_MASK);
507 }
508 
509 /*
510  * Currently stuck as a macro due to indirect forward reference to
511  * linux/mmzone.h's __section_mem_map_addr() definition:
512  */
513 #define pud_page(pud) pfn_to_page(pud_val(pud) >> PAGE_SHIFT)
514 
515 /* Find an entry in the second-level page table.. */
516 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
517 {
518  return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
519 }
520 
521 static inline int pud_large(pud_t pud)
522 {
523  return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
525 }
526 
527 static inline int pud_bad(pud_t pud)
528 {
529  return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
530 }
531 #else
532 static inline int pud_large(pud_t pud)
533 {
534  return 0;
535 }
536 #endif /* PAGETABLE_LEVELS > 2 */
537 
538 #if PAGETABLE_LEVELS > 3
539 static inline int pgd_present(pgd_t pgd)
540 {
541  return pgd_flags(pgd) & _PAGE_PRESENT;
542 }
543 
544 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
545 {
546  return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
547 }
548 
549 /*
550  * Currently stuck as a macro due to indirect forward reference to
551  * linux/mmzone.h's __section_mem_map_addr() definition:
552  */
553 #define pgd_page(pgd) pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT)
554 
555 /* to find an entry in a page-table-directory. */
556 static inline unsigned long pud_index(unsigned long address)
557 {
558  return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
559 }
560 
561 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
562 {
563  return (pud_t *)pgd_page_vaddr(*pgd) + pud_index(address);
564 }
565 
566 static inline int pgd_bad(pgd_t pgd)
567 {
568  return (pgd_flags(pgd) & ~_PAGE_USER) != _KERNPG_TABLE;
569 }
570 
571 static inline int pgd_none(pgd_t pgd)
572 {
573  return !native_pgd_val(pgd);
574 }
575 #endif /* PAGETABLE_LEVELS > 3 */
576 
577 #endif /* __ASSEMBLY__ */
578 
579 /*
580  * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
581  *
582  * this macro returns the index of the entry in the pgd page which would
583  * control the given virtual address
584  */
585 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
586 
587 /*
588  * pgd_offset() returns a (pgd_t *)
589  * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
590  */
591 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
592 /*
593  * a shortcut which implies the use of the kernel's pgd, instead
594  * of a process's
595  */
596 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
597 
598 
599 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET)
600 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
601 
602 #ifndef __ASSEMBLY__
603 
604 extern int direct_gbpages;
605 
606 /* local pte updates need not use xchg for locking */
607 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
608 {
609  pte_t res = *ptep;
610 
611  /* Pure native function needs no input for mm, addr */
612  native_pte_clear(NULL, 0, ptep);
613  return res;
614 }
615 
616 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
617 {
618  pmd_t res = *pmdp;
619 
620  native_pmd_clear(pmdp);
621  return res;
622 }
623 
624 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
625  pte_t *ptep , pte_t pte)
626 {
627  native_set_pte(ptep, pte);
628 }
629 
630 static inline void native_set_pmd_at(struct mm_struct *mm, unsigned long addr,
631  pmd_t *pmdp , pmd_t pmd)
632 {
633  native_set_pmd(pmdp, pmd);
634 }
635 
636 #ifndef CONFIG_PARAVIRT
637 /*
638  * Rules for using pte_update - it must be called after any PTE update which
639  * has not been done using the set_pte / clear_pte interfaces. It is used by
640  * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE
641  * updates should either be sets, clears, or set_pte_atomic for P->P
642  * transitions, which means this hook should only be called for user PTEs.
643  * This hook implies a P->P protection or access change has taken place, which
644  * requires a subsequent TLB flush. The notification can optionally be delayed
645  * until the TLB flush event by using the pte_update_defer form of the
646  * interface, but care must be taken to assure that the flush happens while
647  * still holding the same page table lock so that the shadow and primary pages
648  * do not become out of sync on SMP.
649  */
650 #define pte_update(mm, addr, ptep) do { } while (0)
651 #define pte_update_defer(mm, addr, ptep) do { } while (0)
652 #endif
653 
654 /*
655  * We only update the dirty/accessed state if we set
656  * the dirty bit by hand in the kernel, since the hardware
657  * will do the accessed bit for us, and we don't want to
658  * race with other CPU's that might be updating the dirty
659  * bit at the same time.
660  */
661 struct vm_area_struct;
662 
663 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
664 extern int ptep_set_access_flags(struct vm_area_struct *vma,
665  unsigned long address, pte_t *ptep,
666  pte_t entry, int dirty);
667 
668 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
669 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
670  unsigned long addr, pte_t *ptep);
671 
672 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
673 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
674  unsigned long address, pte_t *ptep);
675 
676 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
677 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
678  pte_t *ptep)
679 {
680  pte_t pte = native_ptep_get_and_clear(ptep);
681  pte_update(mm, addr, ptep);
682  return pte;
683 }
684 
685 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
686 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
687  unsigned long addr, pte_t *ptep,
688  int full)
689 {
690  pte_t pte;
691  if (full) {
692  /*
693  * Full address destruction in progress; paravirt does not
694  * care about updates and native needs no locking
695  */
696  pte = native_local_ptep_get_and_clear(ptep);
697  } else {
698  pte = ptep_get_and_clear(mm, addr, ptep);
699  }
700  return pte;
701 }
702 
703 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
704 static inline void ptep_set_wrprotect(struct mm_struct *mm,
705  unsigned long addr, pte_t *ptep)
706 {
707  clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
708  pte_update(mm, addr, ptep);
709 }
710 
711 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
712 
713 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
714 
715 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
716 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
717  unsigned long address, pmd_t *pmdp,
718  pmd_t entry, int dirty);
719 
720 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
721 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
722  unsigned long addr, pmd_t *pmdp);
723 
724 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
725 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
726  unsigned long address, pmd_t *pmdp);
727 
728 
729 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
730 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
731  unsigned long addr, pmd_t *pmdp);
732 
733 #define __HAVE_ARCH_PMD_WRITE
734 static inline int pmd_write(pmd_t pmd)
735 {
736  return pmd_flags(pmd) & _PAGE_RW;
737 }
738 
739 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
740 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, unsigned long addr,
741  pmd_t *pmdp)
742 {
743  pmd_t pmd = native_pmdp_get_and_clear(pmdp);
744  pmd_update(mm, addr, pmdp);
745  return pmd;
746 }
747 
748 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
749 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
750  unsigned long addr, pmd_t *pmdp)
751 {
752  clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
753  pmd_update(mm, addr, pmdp);
754 }
755 
756 /*
757  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
758  *
759  * dst - pointer to pgd range anwhere on a pgd page
760  * src - ""
761  * count - the number of pgds to copy.
762  *
763  * dst and src can be on the same page, but the range must not overlap,
764  * and must not cross a page boundary.
765  */
766 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
767 {
768  memcpy(dst, src, count * sizeof(pgd_t));
769 }
770 
771 
772 #include <asm-generic/pgtable.h>
773 #endif /* __ASSEMBLY__ */
774 
775 #endif /* _ASM_X86_PGTABLE_H */