Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
flush.c
Go to the documentation of this file.
1 /*
2  * linux/arch/arm/mm/flush.c
3  *
4  * Copyright (C) 1995-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 
15 #include <asm/cacheflush.h>
16 #include <asm/cachetype.h>
17 #include <asm/highmem.h>
18 #include <asm/smp_plat.h>
19 #include <asm/tlbflush.h>
20 
21 #include "mm.h"
22 
23 #ifdef CONFIG_CPU_CACHE_VIPT
24 
25 static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr)
26 {
27  unsigned long to = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
28  const int zero = 0;
29 
30  set_top_pte(to, pfn_pte(pfn, PAGE_KERNEL));
31 
32  asm( "mcrr p15, 0, %1, %0, c14\n"
33  " mcr p15, 0, %2, c7, c10, 4"
34  :
35  : "r" (to), "r" (to + PAGE_SIZE - L1_CACHE_BYTES), "r" (zero)
36  : "cc");
37 }
38 
39 static void flush_icache_alias(unsigned long pfn, unsigned long vaddr, unsigned long len)
40 {
41  unsigned long va = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
42  unsigned long offset = vaddr & (PAGE_SIZE - 1);
43  unsigned long to;
44 
45  set_top_pte(va, pfn_pte(pfn, PAGE_KERNEL));
46  to = va + offset;
47  flush_icache_range(to, to + len);
48 }
49 
50 void flush_cache_mm(struct mm_struct *mm)
51 {
52  if (cache_is_vivt()) {
53  vivt_flush_cache_mm(mm);
54  return;
55  }
56 
57  if (cache_is_vipt_aliasing()) {
58  asm( "mcr p15, 0, %0, c7, c14, 0\n"
59  " mcr p15, 0, %0, c7, c10, 4"
60  :
61  : "r" (0)
62  : "cc");
63  }
64 }
65 
66 void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
67 {
68  if (cache_is_vivt()) {
69  vivt_flush_cache_range(vma, start, end);
70  return;
71  }
72 
73  if (cache_is_vipt_aliasing()) {
74  asm( "mcr p15, 0, %0, c7, c14, 0\n"
75  " mcr p15, 0, %0, c7, c10, 4"
76  :
77  : "r" (0)
78  : "cc");
79  }
80 
81  if (vma->vm_flags & VM_EXEC)
82  __flush_icache_all();
83 }
84 
85 void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
86 {
87  if (cache_is_vivt()) {
88  vivt_flush_cache_page(vma, user_addr, pfn);
89  return;
90  }
91 
92  if (cache_is_vipt_aliasing()) {
93  flush_pfn_alias(pfn, user_addr);
94  __flush_icache_all();
95  }
96 
97  if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged())
98  __flush_icache_all();
99 }
100 
101 #else
102 #define flush_pfn_alias(pfn,vaddr) do { } while (0)
103 #define flush_icache_alias(pfn,vaddr,len) do { } while (0)
104 #endif
105 
106 static void flush_ptrace_access_other(void *args)
107 {
108  __flush_icache_all();
109 }
110 
111 static
112 void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
113  unsigned long uaddr, void *kaddr, unsigned long len)
114 {
115  if (cache_is_vivt()) {
116  if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) {
117  unsigned long addr = (unsigned long)kaddr;
118  __cpuc_coherent_kern_range(addr, addr + len);
119  }
120  return;
121  }
122 
123  if (cache_is_vipt_aliasing()) {
124  flush_pfn_alias(page_to_pfn(page), uaddr);
125  __flush_icache_all();
126  return;
127  }
128 
129  /* VIPT non-aliasing D-cache */
130  if (vma->vm_flags & VM_EXEC) {
131  unsigned long addr = (unsigned long)kaddr;
133  flush_icache_alias(page_to_pfn(page), uaddr, len);
134  else
135  __cpuc_coherent_kern_range(addr, addr + len);
137  smp_call_function(flush_ptrace_access_other,
138  NULL, 1);
139  }
140 }
141 
142 /*
143  * Copy user data from/to a page which is mapped into a different
144  * processes address space. Really, we want to allow our "user
145  * space" model to handle this.
146  *
147  * Note that this code needs to run on the current CPU.
148  */
149 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
150  unsigned long uaddr, void *dst, const void *src,
151  unsigned long len)
152 {
153 #ifdef CONFIG_SMP
154  preempt_disable();
155 #endif
156  memcpy(dst, src, len);
157  flush_ptrace_access(vma, page, uaddr, dst, len);
158 #ifdef CONFIG_SMP
159  preempt_enable();
160 #endif
161 }
162 
163 void __flush_dcache_page(struct address_space *mapping, struct page *page)
164 {
165  /*
166  * Writeback any data associated with the kernel mapping of this
167  * page. This ensures that data in the physical page is mutually
168  * coherent with the kernels mapping.
169  */
170  if (!PageHighMem(page)) {
172  } else {
173  void *addr = kmap_high_get(page);
174  if (addr) {
176  kunmap_high(page);
177  } else if (cache_is_vipt()) {
178  /* unmapped pages might still be cached */
179  addr = kmap_atomic(page);
181  kunmap_atomic(addr);
182  }
183  }
184 
185  /*
186  * If this is a page cache page, and we have an aliasing VIPT cache,
187  * we only need to do one flush - which would be at the relevant
188  * userspace colour, which is congruent with page->index.
189  */
190  if (mapping && cache_is_vipt_aliasing())
192  page->index << PAGE_CACHE_SHIFT);
193 }
194 
195 static void __flush_dcache_aliases(struct address_space *mapping, struct page *page)
196 {
197  struct mm_struct *mm = current->active_mm;
198  struct vm_area_struct *mpnt;
199  pgoff_t pgoff;
200 
201  /*
202  * There are possible user space mappings of this page:
203  * - VIVT cache: we need to also write back and invalidate all user
204  * data in the current VM view associated with this page.
205  * - aliasing VIPT: we only need to find one mapping of this page.
206  */
207  pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
208 
209  flush_dcache_mmap_lock(mapping);
210  vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
211  unsigned long offset;
212 
213  /*
214  * If this VMA is not in our MM, we can ignore it.
215  */
216  if (mpnt->vm_mm != mm)
217  continue;
218  if (!(mpnt->vm_flags & VM_MAYSHARE))
219  continue;
220  offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
221  flush_cache_page(mpnt, mpnt->vm_start + offset, page_to_pfn(page));
222  }
223  flush_dcache_mmap_unlock(mapping);
224 }
225 
226 #if __LINUX_ARM_ARCH__ >= 6
227 void __sync_icache_dcache(pte_t pteval)
228 {
229  unsigned long pfn;
230  struct page *page;
231  struct address_space *mapping;
232 
233  if (cache_is_vipt_nonaliasing() && !pte_exec(pteval))
234  /* only flush non-aliasing VIPT caches for exec mappings */
235  return;
236  pfn = pte_pfn(pteval);
237  if (!pfn_valid(pfn))
238  return;
239 
240  page = pfn_to_page(pfn);
242  mapping = page_mapping(page);
243  else
244  mapping = NULL;
245 
246  if (!test_and_set_bit(PG_dcache_clean, &page->flags))
247  __flush_dcache_page(mapping, page);
248 
249  if (pte_exec(pteval))
250  __flush_icache_all();
251 }
252 #endif
253 
254 /*
255  * Ensure cache coherency between kernel mapping and userspace mapping
256  * of this page.
257  *
258  * We have three cases to consider:
259  * - VIPT non-aliasing cache: fully coherent so nothing required.
260  * - VIVT: fully aliasing, so we need to handle every alias in our
261  * current VM view.
262  * - VIPT aliasing: need to handle one alias in our current VM view.
263  *
264  * If we need to handle aliasing:
265  * If the page only exists in the page cache and there are no user
266  * space mappings, we can be lazy and remember that we may have dirty
267  * kernel cache lines for later. Otherwise, we assume we have
268  * aliasing mappings.
269  *
270  * Note that we disable the lazy flush for SMP configurations where
271  * the cache maintenance operations are not automatically broadcasted.
272  */
273 void flush_dcache_page(struct page *page)
274 {
275  struct address_space *mapping;
276 
277  /*
278  * The zero page is never written to, so never has any dirty
279  * cache lines, and therefore never needs to be flushed.
280  */
281  if (page == ZERO_PAGE(0))
282  return;
283 
284  mapping = page_mapping(page);
285 
286  if (!cache_ops_need_broadcast() &&
287  mapping && !mapping_mapped(mapping))
289  else {
290  __flush_dcache_page(mapping, page);
291  if (mapping && cache_is_vivt())
292  __flush_dcache_aliases(mapping, page);
293  else if (mapping)
294  __flush_icache_all();
295  set_bit(PG_dcache_clean, &page->flags);
296  }
297 }
299 
300 /*
301  * Flush an anonymous page so that users of get_user_pages()
302  * can safely access the data. The expected sequence is:
303  *
304  * get_user_pages()
305  * -> flush_anon_page
306  * memcpy() to/from page
307  * if written to page, flush_dcache_page()
308  */
309 void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
310 {
311  unsigned long pfn;
312 
313  /* VIPT non-aliasing caches need do nothing */
315  return;
316 
317  /*
318  * Write back and invalidate userspace mapping.
319  */
320  pfn = page_to_pfn(page);
321  if (cache_is_vivt()) {
322  flush_cache_page(vma, vmaddr, pfn);
323  } else {
324  /*
325  * For aliasing VIPT, we can flush an alias of the
326  * userspace address only.
327  */
328  flush_pfn_alias(pfn, vmaddr);
329  __flush_icache_all();
330  }
331 
332  /*
333  * Invalidate kernel mapping. No data should be contained
334  * in this mapping of the page. FIXME: this is overkill
335  * since we actually ask for a write-back and invalidate.
336  */
338 }