Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
blockcheck.c
Go to the documentation of this file.
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * blockcheck.c
5  *
6  * Checksum and ECC codes for the OCFS2 userspace library.
7  *
8  * Copyright (C) 2006, 2008 Oracle. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License, version 2, as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * General Public License for more details.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/types.h>
22 #include <linux/crc32.h>
23 #include <linux/buffer_head.h>
24 #include <linux/bitops.h>
25 #include <linux/debugfs.h>
26 #include <linux/module.h>
27 #include <linux/fs.h>
28 #include <asm/byteorder.h>
29 
30 #include <cluster/masklog.h>
31 
32 #include "ocfs2.h"
33 
34 #include "blockcheck.h"
35 
36 
37 /*
38  * We use the following conventions:
39  *
40  * d = # data bits
41  * p = # parity bits
42  * c = # total code bits (d + p)
43  */
44 
45 
46 /*
47  * Calculate the bit offset in the hamming code buffer based on the bit's
48  * offset in the data buffer. Since the hamming code reserves all
49  * power-of-two bits for parity, the data bit number and the code bit
50  * number are offset by all the parity bits beforehand.
51  *
52  * Recall that bit numbers in hamming code are 1-based. This function
53  * takes the 0-based data bit from the caller.
54  *
55  * An example. Take bit 1 of the data buffer. 1 is a power of two (2^0),
56  * so it's a parity bit. 2 is a power of two (2^1), so it's a parity bit.
57  * 3 is not a power of two. So bit 1 of the data buffer ends up as bit 3
58  * in the code buffer.
59  *
60  * The caller can pass in *p if it wants to keep track of the most recent
61  * number of parity bits added. This allows the function to start the
62  * calculation at the last place.
63  */
64 static unsigned int calc_code_bit(unsigned int i, unsigned int *p_cache)
65 {
66  unsigned int b, p = 0;
67 
68  /*
69  * Data bits are 0-based, but we're talking code bits, which
70  * are 1-based.
71  */
72  b = i + 1;
73 
74  /* Use the cache if it is there */
75  if (p_cache)
76  p = *p_cache;
77  b += p;
78 
79  /*
80  * For every power of two below our bit number, bump our bit.
81  *
82  * We compare with (b + 1) because we have to compare with what b
83  * would be _if_ it were bumped up by the parity bit. Capice?
84  *
85  * p is set above.
86  */
87  for (; (1 << p) < (b + 1); p++)
88  b++;
89 
90  if (p_cache)
91  *p_cache = p;
92 
93  return b;
94 }
95 
96 /*
97  * This is the low level encoder function. It can be called across
98  * multiple hunks just like the crc32 code. 'd' is the number of bits
99  * _in_this_hunk_. nr is the bit offset of this hunk. So, if you had
100  * two 512B buffers, you would do it like so:
101  *
102  * parity = ocfs2_hamming_encode(0, buf1, 512 * 8, 0);
103  * parity = ocfs2_hamming_encode(parity, buf2, 512 * 8, 512 * 8);
104  *
105  * If you just have one buffer, use ocfs2_hamming_encode_block().
106  */
107 u32 ocfs2_hamming_encode(u32 parity, void *data, unsigned int d, unsigned int nr)
108 {
109  unsigned int i, b, p = 0;
110 
111  BUG_ON(!d);
112 
113  /*
114  * b is the hamming code bit number. Hamming code specifies a
115  * 1-based array, but C uses 0-based. So 'i' is for C, and 'b' is
116  * for the algorithm.
117  *
118  * The i++ in the for loop is so that the start offset passed
119  * to ocfs2_find_next_bit_set() is one greater than the previously
120  * found bit.
121  */
122  for (i = 0; (i = ocfs2_find_next_bit(data, d, i)) < d; i++)
123  {
124  /*
125  * i is the offset in this hunk, nr + i is the total bit
126  * offset.
127  */
128  b = calc_code_bit(nr + i, &p);
129 
130  /*
131  * Data bits in the resultant code are checked by
132  * parity bits that are part of the bit number
133  * representation. Huh?
134  *
135  * <wikipedia href="http://en.wikipedia.org/wiki/Hamming_code">
136  * In other words, the parity bit at position 2^k
137  * checks bits in positions having bit k set in
138  * their binary representation. Conversely, for
139  * instance, bit 13, i.e. 1101(2), is checked by
140  * bits 1000(2) = 8, 0100(2)=4 and 0001(2) = 1.
141  * </wikipedia>
142  *
143  * Note that 'k' is the _code_ bit number. 'b' in
144  * our loop.
145  */
146  parity ^= b;
147  }
148 
149  /* While the data buffer was treated as little endian, the
150  * return value is in host endian. */
151  return parity;
152 }
153 
154 u32 ocfs2_hamming_encode_block(void *data, unsigned int blocksize)
155 {
156  return ocfs2_hamming_encode(0, data, blocksize * 8, 0);
157 }
158 
159 /*
160  * Like ocfs2_hamming_encode(), this can handle hunks. nr is the bit
161  * offset of the current hunk. If bit to be fixed is not part of the
162  * current hunk, this does nothing.
163  *
164  * If you only have one hunk, use ocfs2_hamming_fix_block().
165  */
166 void ocfs2_hamming_fix(void *data, unsigned int d, unsigned int nr,
167  unsigned int fix)
168 {
169  unsigned int i, b;
170 
171  BUG_ON(!d);
172 
173  /*
174  * If the bit to fix has an hweight of 1, it's a parity bit. One
175  * busted parity bit is its own error. Nothing to do here.
176  */
177  if (hweight32(fix) == 1)
178  return;
179 
180  /*
181  * nr + d is the bit right past the data hunk we're looking at.
182  * If fix after that, nothing to do
183  */
184  if (fix >= calc_code_bit(nr + d, NULL))
185  return;
186 
187  /*
188  * nr is the offset in the data hunk we're starting at. Let's
189  * start b at the offset in the code buffer. See hamming_encode()
190  * for a more detailed description of 'b'.
191  */
192  b = calc_code_bit(nr, NULL);
193  /* If the fix is before this hunk, nothing to do */
194  if (fix < b)
195  return;
196 
197  for (i = 0; i < d; i++, b++)
198  {
199  /* Skip past parity bits */
200  while (hweight32(b) == 1)
201  b++;
202 
203  /*
204  * i is the offset in this data hunk.
205  * nr + i is the offset in the total data buffer.
206  * b is the offset in the total code buffer.
207  *
208  * Thus, when b == fix, bit i in the current hunk needs
209  * fixing.
210  */
211  if (b == fix)
212  {
213  if (ocfs2_test_bit(i, data))
214  ocfs2_clear_bit(i, data);
215  else
216  ocfs2_set_bit(i, data);
217  break;
218  }
219  }
220 }
221 
222 void ocfs2_hamming_fix_block(void *data, unsigned int blocksize,
223  unsigned int fix)
224 {
225  ocfs2_hamming_fix(data, blocksize * 8, 0, fix);
226 }
227 
228 
229 /*
230  * Debugfs handling.
231  */
232 
233 #ifdef CONFIG_DEBUG_FS
234 
235 static int blockcheck_u64_get(void *data, u64 *val)
236 {
237  *val = *(u64 *)data;
238  return 0;
239 }
240 DEFINE_SIMPLE_ATTRIBUTE(blockcheck_fops, blockcheck_u64_get, NULL, "%llu\n");
241 
242 static struct dentry *blockcheck_debugfs_create(const char *name,
243  struct dentry *parent,
244  u64 *value)
245 {
246  return debugfs_create_file(name, S_IFREG | S_IRUSR, parent, value,
247  &blockcheck_fops);
248 }
249 
250 static void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
251 {
252  if (stats) {
254  stats->b_debug_check = NULL;
256  stats->b_debug_failure = NULL;
258  stats->b_debug_recover = NULL;
259  debugfs_remove(stats->b_debug_dir);
260  stats->b_debug_dir = NULL;
261  }
262 }
263 
264 static int ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
265  struct dentry *parent)
266 {
267  int rc = -EINVAL;
268 
269  if (!stats)
270  goto out;
271 
272  stats->b_debug_dir = debugfs_create_dir("blockcheck", parent);
273  if (!stats->b_debug_dir)
274  goto out;
275 
276  stats->b_debug_check =
277  blockcheck_debugfs_create("blocks_checked",
278  stats->b_debug_dir,
279  &stats->b_check_count);
280 
281  stats->b_debug_failure =
282  blockcheck_debugfs_create("checksums_failed",
283  stats->b_debug_dir,
284  &stats->b_failure_count);
285 
286  stats->b_debug_recover =
287  blockcheck_debugfs_create("ecc_recoveries",
288  stats->b_debug_dir,
289  &stats->b_recover_count);
290  if (stats->b_debug_check && stats->b_debug_failure &&
291  stats->b_debug_recover)
292  rc = 0;
293 
294 out:
295  if (rc)
296  ocfs2_blockcheck_debug_remove(stats);
297  return rc;
298 }
299 #else
300 static inline int ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
301  struct dentry *parent)
302 {
303  return 0;
304 }
305 
306 static inline void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
307 {
308 }
309 #endif /* CONFIG_DEBUG_FS */
310 
311 /* Always-called wrappers for starting and stopping the debugfs files */
313  struct dentry *parent)
314 {
315  return ocfs2_blockcheck_debug_install(stats, parent);
316 }
317 
319 {
320  ocfs2_blockcheck_debug_remove(stats);
321 }
322 
323 static void ocfs2_blockcheck_inc_check(struct ocfs2_blockcheck_stats *stats)
324 {
325  u64 new_count;
326 
327  if (!stats)
328  return;
329 
330  spin_lock(&stats->b_lock);
331  stats->b_check_count++;
332  new_count = stats->b_check_count;
333  spin_unlock(&stats->b_lock);
334 
335  if (!new_count)
336  mlog(ML_NOTICE, "Block check count has wrapped\n");
337 }
338 
339 static void ocfs2_blockcheck_inc_failure(struct ocfs2_blockcheck_stats *stats)
340 {
341  u64 new_count;
342 
343  if (!stats)
344  return;
345 
346  spin_lock(&stats->b_lock);
347  stats->b_failure_count++;
348  new_count = stats->b_failure_count;
349  spin_unlock(&stats->b_lock);
350 
351  if (!new_count)
352  mlog(ML_NOTICE, "Checksum failure count has wrapped\n");
353 }
354 
355 static void ocfs2_blockcheck_inc_recover(struct ocfs2_blockcheck_stats *stats)
356 {
357  u64 new_count;
358 
359  if (!stats)
360  return;
361 
362  spin_lock(&stats->b_lock);
363  stats->b_recover_count++;
364  new_count = stats->b_recover_count;
365  spin_unlock(&stats->b_lock);
366 
367  if (!new_count)
368  mlog(ML_NOTICE, "ECC recovery count has wrapped\n");
369 }
370 
371 
372 
373 /*
374  * These are the low-level APIs for using the ocfs2_block_check structure.
375  */
376 
377 /*
378  * This function generates check information for a block.
379  * data is the block to be checked. bc is a pointer to the
380  * ocfs2_block_check structure describing the crc32 and the ecc.
381  *
382  * bc should be a pointer inside data, as the function will
383  * take care of zeroing it before calculating the check information. If
384  * bc does not point inside data, the caller must make sure any inline
385  * ocfs2_block_check structures are zeroed.
386  *
387  * The data buffer must be in on-disk endian (little endian for ocfs2).
388  * bc will be filled with little-endian values and will be ready to go to
389  * disk.
390  */
391 void ocfs2_block_check_compute(void *data, size_t blocksize,
392  struct ocfs2_block_check *bc)
393 {
394  u32 crc;
395  u32 ecc;
396 
397  memset(bc, 0, sizeof(struct ocfs2_block_check));
398 
399  crc = crc32_le(~0, data, blocksize);
400  ecc = ocfs2_hamming_encode_block(data, blocksize);
401 
402  /*
403  * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
404  * larger than 16 bits.
405  */
406  BUG_ON(ecc > USHRT_MAX);
407 
408  bc->bc_crc32e = cpu_to_le32(crc);
409  bc->bc_ecc = cpu_to_le16((u16)ecc);
410 }
411 
412 /*
413  * This function validates existing check information. Like _compute,
414  * the function will take care of zeroing bc before calculating check codes.
415  * If bc is not a pointer inside data, the caller must have zeroed any
416  * inline ocfs2_block_check structures.
417  *
418  * Again, the data passed in should be the on-disk endian.
419  */
420 int ocfs2_block_check_validate(void *data, size_t blocksize,
421  struct ocfs2_block_check *bc,
422  struct ocfs2_blockcheck_stats *stats)
423 {
424  int rc = 0;
425  u32 bc_crc32e;
426  u16 bc_ecc;
427  u32 crc, ecc;
428 
429  ocfs2_blockcheck_inc_check(stats);
430 
431  bc_crc32e = le32_to_cpu(bc->bc_crc32e);
432  bc_ecc = le16_to_cpu(bc->bc_ecc);
433 
434  memset(bc, 0, sizeof(struct ocfs2_block_check));
435 
436  /* Fast path - if the crc32 validates, we're good to go */
437  crc = crc32_le(~0, data, blocksize);
438  if (crc == bc_crc32e)
439  goto out;
440 
441  ocfs2_blockcheck_inc_failure(stats);
442  mlog(ML_ERROR,
443  "CRC32 failed: stored: 0x%x, computed 0x%x. Applying ECC.\n",
444  (unsigned int)bc_crc32e, (unsigned int)crc);
445 
446  /* Ok, try ECC fixups */
447  ecc = ocfs2_hamming_encode_block(data, blocksize);
448  ocfs2_hamming_fix_block(data, blocksize, ecc ^ bc_ecc);
449 
450  /* And check the crc32 again */
451  crc = crc32_le(~0, data, blocksize);
452  if (crc == bc_crc32e) {
453  ocfs2_blockcheck_inc_recover(stats);
454  goto out;
455  }
456 
457  mlog(ML_ERROR, "Fixed CRC32 failed: stored: 0x%x, computed 0x%x\n",
458  (unsigned int)bc_crc32e, (unsigned int)crc);
459 
460  rc = -EIO;
461 
462 out:
463  bc->bc_crc32e = cpu_to_le32(bc_crc32e);
464  bc->bc_ecc = cpu_to_le16(bc_ecc);
465 
466  return rc;
467 }
468 
469 /*
470  * This function generates check information for a list of buffer_heads.
471  * bhs is the blocks to be checked. bc is a pointer to the
472  * ocfs2_block_check structure describing the crc32 and the ecc.
473  *
474  * bc should be a pointer inside data, as the function will
475  * take care of zeroing it before calculating the check information. If
476  * bc does not point inside data, the caller must make sure any inline
477  * ocfs2_block_check structures are zeroed.
478  *
479  * The data buffer must be in on-disk endian (little endian for ocfs2).
480  * bc will be filled with little-endian values and will be ready to go to
481  * disk.
482  */
483 void ocfs2_block_check_compute_bhs(struct buffer_head **bhs, int nr,
484  struct ocfs2_block_check *bc)
485 {
486  int i;
487  u32 crc, ecc;
488 
489  BUG_ON(nr < 0);
490 
491  if (!nr)
492  return;
493 
494  memset(bc, 0, sizeof(struct ocfs2_block_check));
495 
496  for (i = 0, crc = ~0, ecc = 0; i < nr; i++) {
497  crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
498  /*
499  * The number of bits in a buffer is obviously b_size*8.
500  * The offset of this buffer is b_size*i, so the bit offset
501  * of this buffer is b_size*8*i.
502  */
503  ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
504  bhs[i]->b_size * 8,
505  bhs[i]->b_size * 8 * i);
506  }
507 
508  /*
509  * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
510  * larger than 16 bits.
511  */
512  BUG_ON(ecc > USHRT_MAX);
513 
514  bc->bc_crc32e = cpu_to_le32(crc);
515  bc->bc_ecc = cpu_to_le16((u16)ecc);
516 }
517 
518 /*
519  * This function validates existing check information on a list of
520  * buffer_heads. Like _compute_bhs, the function will take care of
521  * zeroing bc before calculating check codes. If bc is not a pointer
522  * inside data, the caller must have zeroed any inline
523  * ocfs2_block_check structures.
524  *
525  * Again, the data passed in should be the on-disk endian.
526  */
527 int ocfs2_block_check_validate_bhs(struct buffer_head **bhs, int nr,
528  struct ocfs2_block_check *bc,
529  struct ocfs2_blockcheck_stats *stats)
530 {
531  int i, rc = 0;
532  u32 bc_crc32e;
533  u16 bc_ecc;
534  u32 crc, ecc, fix;
535 
536  BUG_ON(nr < 0);
537 
538  if (!nr)
539  return 0;
540 
541  ocfs2_blockcheck_inc_check(stats);
542 
543  bc_crc32e = le32_to_cpu(bc->bc_crc32e);
544  bc_ecc = le16_to_cpu(bc->bc_ecc);
545 
546  memset(bc, 0, sizeof(struct ocfs2_block_check));
547 
548  /* Fast path - if the crc32 validates, we're good to go */
549  for (i = 0, crc = ~0; i < nr; i++)
550  crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
551  if (crc == bc_crc32e)
552  goto out;
553 
554  ocfs2_blockcheck_inc_failure(stats);
555  mlog(ML_ERROR,
556  "CRC32 failed: stored: %u, computed %u. Applying ECC.\n",
557  (unsigned int)bc_crc32e, (unsigned int)crc);
558 
559  /* Ok, try ECC fixups */
560  for (i = 0, ecc = 0; i < nr; i++) {
561  /*
562  * The number of bits in a buffer is obviously b_size*8.
563  * The offset of this buffer is b_size*i, so the bit offset
564  * of this buffer is b_size*8*i.
565  */
566  ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
567  bhs[i]->b_size * 8,
568  bhs[i]->b_size * 8 * i);
569  }
570  fix = ecc ^ bc_ecc;
571  for (i = 0; i < nr; i++) {
572  /*
573  * Try the fix against each buffer. It will only affect
574  * one of them.
575  */
576  ocfs2_hamming_fix(bhs[i]->b_data, bhs[i]->b_size * 8,
577  bhs[i]->b_size * 8 * i, fix);
578  }
579 
580  /* And check the crc32 again */
581  for (i = 0, crc = ~0; i < nr; i++)
582  crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
583  if (crc == bc_crc32e) {
584  ocfs2_blockcheck_inc_recover(stats);
585  goto out;
586  }
587 
588  mlog(ML_ERROR, "Fixed CRC32 failed: stored: %u, computed %u\n",
589  (unsigned int)bc_crc32e, (unsigned int)crc);
590 
591  rc = -EIO;
592 
593 out:
594  bc->bc_crc32e = cpu_to_le32(bc_crc32e);
595  bc->bc_ecc = cpu_to_le16(bc_ecc);
596 
597  return rc;
598 }
599 
600 /*
601  * These are the main API. They check the superblock flag before
602  * calling the underlying operations.
603  *
604  * They expect the buffer(s) to be in disk format.
605  */
607  struct ocfs2_block_check *bc)
608 {
609  if (ocfs2_meta_ecc(OCFS2_SB(sb)))
610  ocfs2_block_check_compute(data, sb->s_blocksize, bc);
611 }
612 
614  struct ocfs2_block_check *bc)
615 {
616  int rc = 0;
617  struct ocfs2_super *osb = OCFS2_SB(sb);
618 
619  if (ocfs2_meta_ecc(osb))
620  rc = ocfs2_block_check_validate(data, sb->s_blocksize, bc,
621  &osb->osb_ecc_stats);
622 
623  return rc;
624 }
625 
627  struct buffer_head **bhs, int nr,
628  struct ocfs2_block_check *bc)
629 {
630  if (ocfs2_meta_ecc(OCFS2_SB(sb)))
631  ocfs2_block_check_compute_bhs(bhs, nr, bc);
632 }
633 
635  struct buffer_head **bhs, int nr,
636  struct ocfs2_block_check *bc)
637 {
638  int rc = 0;
639  struct ocfs2_super *osb = OCFS2_SB(sb);
640 
641  if (ocfs2_meta_ecc(osb))
642  rc = ocfs2_block_check_validate_bhs(bhs, nr, bc,
643  &osb->osb_ecc_stats);
644 
645  return rc;
646 }
647