Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cache-sh4.c
Go to the documentation of this file.
1 /*
2  * arch/sh/mm/cache-sh4.c
3  *
4  * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
5  * Copyright (C) 2001 - 2009 Paul Mundt
6  * Copyright (C) 2003 Richard Curnow
7  * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License. See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/fs.h>
18 #include <linux/highmem.h>
19 #include <asm/pgtable.h>
20 #include <asm/mmu_context.h>
21 #include <asm/cache_insns.h>
22 #include <asm/cacheflush.h>
23 
24 /*
25  * The maximum number of pages we support up to when doing ranged dcache
26  * flushing. Anything exceeding this will simply flush the dcache in its
27  * entirety.
28  */
29 #define MAX_ICACHE_PAGES 32
30 
31 static void __flush_cache_one(unsigned long addr, unsigned long phys,
32  unsigned long exec_offset);
33 
34 /*
35  * Write back the range of D-cache, and purge the I-cache.
36  *
37  * Called from kernel/module.c:sys_init_module and routine for a.out format,
38  * signal handler code and kprobes code
39  */
40 static void sh4_flush_icache_range(void *args)
41 {
42  struct flusher_data *data = args;
43  unsigned long start, end;
44  unsigned long flags, v;
45  int i;
46 
47  start = data->addr1;
48  end = data->addr2;
49 
50  /* If there are too many pages then just blow away the caches */
51  if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
53  return;
54  }
55 
56  /*
57  * Selectively flush d-cache then invalidate the i-cache.
58  * This is inefficient, so only use this for small ranges.
59  */
60  start &= ~(L1_CACHE_BYTES-1);
61  end += L1_CACHE_BYTES-1;
62  end &= ~(L1_CACHE_BYTES-1);
63 
64  local_irq_save(flags);
66 
67  for (v = start; v < end; v += L1_CACHE_BYTES) {
68  unsigned long icacheaddr;
69  int j, n;
70 
71  __ocbwb(v);
72 
73  icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
74  cpu_data->icache.entry_mask);
75 
76  /* Clear i-cache line valid-bit */
77  n = boot_cpu_data.icache.n_aliases;
78  for (i = 0; i < cpu_data->icache.ways; i++) {
79  for (j = 0; j < n; j++)
80  __raw_writel(0, icacheaddr + (j * PAGE_SIZE));
81  icacheaddr += cpu_data->icache.way_incr;
82  }
83  }
84 
86  local_irq_restore(flags);
87 }
88 
89 static inline void flush_cache_one(unsigned long start, unsigned long phys)
90 {
91  unsigned long flags, exec_offset = 0;
92 
93  /*
94  * All types of SH-4 require PC to be uncached to operate on the I-cache.
95  * Some types of SH-4 require PC to be uncached to operate on the D-cache.
96  */
97  if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
98  (start < CACHE_OC_ADDRESS_ARRAY))
99  exec_offset = cached_to_uncached;
100 
101  local_irq_save(flags);
102  __flush_cache_one(start, phys, exec_offset);
103  local_irq_restore(flags);
104 }
105 
106 /*
107  * Write back & invalidate the D-cache of the page.
108  * (To avoid "alias" issues)
109  */
110 static void sh4_flush_dcache_page(void *arg)
111 {
112  struct page *page = arg;
113  unsigned long addr = (unsigned long)page_address(page);
114 #ifndef CONFIG_SMP
115  struct address_space *mapping = page_mapping(page);
116 
117  if (mapping && !mapping_mapped(mapping))
119  else
120 #endif
121  flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
122  (addr & shm_align_mask), page_to_phys(page));
123 
124  wmb();
125 }
126 
127 /* TODO: Selective icache invalidation through IC address array.. */
128 static void flush_icache_all(void)
129 {
130  unsigned long flags, ccr;
131 
132  local_irq_save(flags);
134 
135  /* Flush I-cache */
136  ccr = __raw_readl(CCR);
137  ccr |= CCR_CACHE_ICI;
138  __raw_writel(ccr, CCR);
139 
140  /*
141  * back_to_cached() will take care of the barrier for us, don't add
142  * another one!
143  */
144 
145  back_to_cached();
146  local_irq_restore(flags);
147 }
148 
149 static void flush_dcache_all(void)
150 {
151  unsigned long addr, end_addr, entry_offset;
152 
153  end_addr = CACHE_OC_ADDRESS_ARRAY +
154  (current_cpu_data.dcache.sets <<
155  current_cpu_data.dcache.entry_shift) *
156  current_cpu_data.dcache.ways;
157 
158  entry_offset = 1 << current_cpu_data.dcache.entry_shift;
159 
160  for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) {
161  __raw_writel(0, addr); addr += entry_offset;
162  __raw_writel(0, addr); addr += entry_offset;
163  __raw_writel(0, addr); addr += entry_offset;
164  __raw_writel(0, addr); addr += entry_offset;
165  __raw_writel(0, addr); addr += entry_offset;
166  __raw_writel(0, addr); addr += entry_offset;
167  __raw_writel(0, addr); addr += entry_offset;
168  __raw_writel(0, addr); addr += entry_offset;
169  }
170 }
171 
172 static void sh4_flush_cache_all(void *unused)
173 {
176 }
177 
178 /*
179  * Note : (RPC) since the caches are physically tagged, the only point
180  * of flush_cache_mm for SH-4 is to get rid of aliases from the
181  * D-cache. The assumption elsewhere, e.g. flush_cache_range, is that
182  * lines can stay resident so long as the virtual address they were
183  * accessed with (hence cache set) is in accord with the physical
184  * address (i.e. tag). It's no different here.
185  *
186  * Caller takes mm->mmap_sem.
187  */
188 static void sh4_flush_cache_mm(void *arg)
189 {
190  struct mm_struct *mm = arg;
191 
193  return;
194 
196 }
197 
198 /*
199  * Write back and invalidate I/D-caches for the page.
200  *
201  * ADDR: Virtual Address (U0 address)
202  * PFN: Physical page number
203  */
204 static void sh4_flush_cache_page(void *args)
205 {
206  struct flusher_data *data = args;
207  struct vm_area_struct *vma;
208  struct page *page;
209  unsigned long address, pfn, phys;
210  int map_coherent = 0;
211  pgd_t *pgd;
212  pud_t *pud;
213  pmd_t *pmd;
214  pte_t *pte;
215  void *vaddr;
216 
217  vma = data->vma;
218  address = data->addr1 & PAGE_MASK;
219  pfn = data->addr2;
220  phys = pfn << PAGE_SHIFT;
221  page = pfn_to_page(pfn);
222 
224  return;
225 
226  pgd = pgd_offset(vma->vm_mm, address);
227  pud = pud_offset(pgd, address);
228  pmd = pmd_offset(pud, address);
229  pte = pte_offset_kernel(pmd, address);
230 
231  /* If the page isn't present, there is nothing to do here. */
232  if (!(pte_val(*pte) & _PAGE_PRESENT))
233  return;
234 
235  if ((vma->vm_mm == current->active_mm))
236  vaddr = NULL;
237  else {
238  /*
239  * Use kmap_coherent or kmap_atomic to do flushes for
240  * another ASID than the current one.
241  */
242  map_coherent = (current_cpu_data.dcache.n_aliases &&
243  test_bit(PG_dcache_clean, &page->flags) &&
244  page_mapped(page));
245  if (map_coherent)
246  vaddr = kmap_coherent(page, address);
247  else
248  vaddr = kmap_atomic(page);
249 
250  address = (unsigned long)vaddr;
251  }
252 
253  flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
254  (address & shm_align_mask), phys);
255 
256  if (vma->vm_flags & VM_EXEC)
258 
259  if (vaddr) {
260  if (map_coherent)
261  kunmap_coherent(vaddr);
262  else
263  kunmap_atomic(vaddr);
264  }
265 }
266 
267 /*
268  * Write back and invalidate D-caches.
269  *
270  * START, END: Virtual Address (U0 address)
271  *
272  * NOTE: We need to flush the _physical_ page entry.
273  * Flushing the cache lines for U0 only isn't enough.
274  * We need to flush for P1 too, which may contain aliases.
275  */
276 static void sh4_flush_cache_range(void *args)
277 {
278  struct flusher_data *data = args;
279  struct vm_area_struct *vma;
280  unsigned long start, end;
281 
282  vma = data->vma;
283  start = data->addr1;
284  end = data->addr2;
285 
287  return;
288 
289  /*
290  * If cache is only 4k-per-way, there are never any 'aliases'. Since
291  * the cache is physically tagged, the data can just be left in there.
292  */
293  if (boot_cpu_data.dcache.n_aliases == 0)
294  return;
295 
297 
298  if (vma->vm_flags & VM_EXEC)
300 }
301 
316 static void __flush_cache_one(unsigned long addr, unsigned long phys,
317  unsigned long exec_offset)
318 {
319  int way_count;
320  unsigned long base_addr = addr;
321  struct cache_info *dcache;
322  unsigned long way_incr;
323  unsigned long a, ea, p;
324  unsigned long temp_pc;
325 
326  dcache = &boot_cpu_data.dcache;
327  /* Write this way for better assembly. */
328  way_count = dcache->ways;
329  way_incr = dcache->way_incr;
330 
331  /*
332  * Apply exec_offset (i.e. branch to P2 if required.).
333  *
334  * FIXME:
335  *
336  * If I write "=r" for the (temp_pc), it puts this in r6 hence
337  * trashing exec_offset before it's been added on - why? Hence
338  * "=&r" as a 'workaround'
339  */
340  asm volatile("mov.l 1f, %0\n\t"
341  "add %1, %0\n\t"
342  "jmp @%0\n\t"
343  "nop\n\t"
344  ".balign 4\n\t"
345  "1: .long 2f\n\t"
346  "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
347 
348  /*
349  * We know there will be >=1 iteration, so write as do-while to avoid
350  * pointless nead-of-loop check for 0 iterations.
351  */
352  do {
353  ea = base_addr + PAGE_SIZE;
354  a = base_addr;
355  p = phys;
356 
357  do {
358  *(volatile unsigned long *)a = p;
359  /*
360  * Next line: intentionally not p+32, saves an add, p
361  * will do since only the cache tag bits need to
362  * match.
363  */
364  *(volatile unsigned long *)(a+32) = p;
365  a += 64;
366  p += 64;
367  } while (a < ea);
368 
369  base_addr += way_incr;
370  } while (--way_count != 0);
371 }
372 
373 extern void __weak sh4__flush_region_init(void);
374 
375 /*
376  * SH-4 has virtually indexed and physically tagged cache.
377  */
379 {
380  printk("PVR=%08x CVR=%08x PRR=%08x\n",
381  __raw_readl(CCN_PVR),
382  __raw_readl(CCN_CVR),
383  __raw_readl(CCN_PRR));
384 
385  local_flush_icache_range = sh4_flush_icache_range;
386  local_flush_dcache_page = sh4_flush_dcache_page;
387  local_flush_cache_all = sh4_flush_cache_all;
388  local_flush_cache_mm = sh4_flush_cache_mm;
389  local_flush_cache_dup_mm = sh4_flush_cache_mm;
390  local_flush_cache_page = sh4_flush_cache_page;
391  local_flush_cache_range = sh4_flush_cache_range;
392 
394 }