Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
check-integrity.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) STRATO AG 2011. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 /*
20  * This module can be used to catch cases when the btrfs kernel
21  * code executes write requests to the disk that bring the file
22  * system in an inconsistent state. In such a state, a power-loss
23  * or kernel panic event would cause that the data on disk is
24  * lost or at least damaged.
25  *
26  * Code is added that examines all block write requests during
27  * runtime (including writes of the super block). Three rules
28  * are verified and an error is printed on violation of the
29  * rules:
30  * 1. It is not allowed to write a disk block which is
31  * currently referenced by the super block (either directly
32  * or indirectly).
33  * 2. When a super block is written, it is verified that all
34  * referenced (directly or indirectly) blocks fulfill the
35  * following requirements:
36  * 2a. All referenced blocks have either been present when
37  * the file system was mounted, (i.e., they have been
38  * referenced by the super block) or they have been
39  * written since then and the write completion callback
40  * was called and no write error was indicated and a
41  * FLUSH request to the device where these blocks are
42  * located was received and completed.
43  * 2b. All referenced blocks need to have a generation
44  * number which is equal to the parent's number.
45  *
46  * One issue that was found using this module was that the log
47  * tree on disk became temporarily corrupted because disk blocks
48  * that had been in use for the log tree had been freed and
49  * reused too early, while being referenced by the written super
50  * block.
51  *
52  * The search term in the kernel log that can be used to filter
53  * on the existence of detected integrity issues is
54  * "btrfs: attempt".
55  *
56  * The integrity check is enabled via mount options. These
57  * mount options are only supported if the integrity check
58  * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59  *
60  * Example #1, apply integrity checks to all metadata:
61  * mount /dev/sdb1 /mnt -o check_int
62  *
63  * Example #2, apply integrity checks to all metadata and
64  * to data extents:
65  * mount /dev/sdb1 /mnt -o check_int_data
66  *
67  * Example #3, apply integrity checks to all metadata and dump
68  * the tree that the super block references to kernel messages
69  * each time after a super block was written:
70  * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71  *
72  * If the integrity check tool is included and activated in
73  * the mount options, plenty of kernel memory is used, and
74  * plenty of additional CPU cycles are spent. Enabling this
75  * functionality is not intended for normal use. In most
76  * cases, unless you are a btrfs developer who needs to verify
77  * the integrity of (super)-block write requests, do not
78  * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79  * include and compile the integrity check tool.
80  */
81 
82 #include <linux/sched.h>
83 #include <linux/slab.h>
84 #include <linux/buffer_head.h>
85 #include <linux/mutex.h>
86 #include <linux/crc32c.h>
87 #include <linux/genhd.h>
88 #include <linux/blkdev.h>
89 #include "ctree.h"
90 #include "disk-io.h"
91 #include "transaction.h"
92 #include "extent_io.h"
93 #include "volumes.h"
94 #include "print-tree.h"
95 #include "locking.h"
96 #include "check-integrity.h"
97 #include "rcu-string.h"
98 
99 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
100 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
101 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
102 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
103 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
104 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
105 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
106 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
107  * excluding " [...]" */
108 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
109 
110 /*
111  * The definition of the bitmask fields for the print_mask.
112  * They are specified with the mount option check_integrity_print_mask.
113  */
114 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
115 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
116 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
117 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
118 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
119 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
120 #define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
121 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
122 #define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
123 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
124 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
125 #define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
126 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
127 
128 struct btrfsic_dev_state;
129 struct btrfsic_state;
132  u32 magic_num; /* only used for debug purposes */
133  unsigned int is_metadata:1; /* if it is meta-data, not data-data */
134  unsigned int is_superblock:1; /* if it is one of the superblocks */
135  unsigned int is_iodone:1; /* if is done by lower subsystem */
136  unsigned int iodone_w_error:1; /* error was indicated to endio */
137  unsigned int never_written:1; /* block was added because it was
138  * referenced, not because it was
139  * written */
140  unsigned int mirror_num:2; /* large enough to hold
141  * BTRFS_SUPER_MIRROR_MAX */
143  u64 dev_bytenr; /* key, physical byte num on disk */
144  u64 logical_bytenr; /* logical byte num on disk */
146  struct btrfs_disk_key disk_key; /* extra info to print in case of
147  * issues, will not always be correct */
148  struct list_head collision_resolving_node; /* list node */
149  struct list_head all_blocks_node; /* list node */
150 
151  /* the following two lists contain block_link items */
152  struct list_head ref_to_list; /* list */
153  struct list_head ref_from_list; /* list */
155  void *orig_bio_bh_private;
156  union {
157  bio_end_io_t *bio;
158  bh_end_io_t *bh;
161  u64 flush_gen; /* only valid if !never_written */
162 };
163 
164 /*
165  * Elements of this type are allocated dynamically and required because
166  * each block object can refer to and can be ref from multiple blocks.
167  * The key to lookup them in the hashtable is the dev_bytenr of
168  * the block ref to plus the one from the block refered from.
169  * The fact that they are searchable via a hashtable and that a
170  * ref_cnt is maintained is not required for the btrfs integrity
171  * check algorithm itself, it is only used to make the output more
172  * beautiful in case that an error is detected (an error is defined
173  * as a write operation to a block while that block is still referenced).
174  */
176  u32 magic_num; /* only used for debug purposes */
178  struct list_head node_ref_to; /* list node */
179  struct list_head node_ref_from; /* list node */
180  struct list_head collision_resolving_node; /* list node */
184 };
187  u32 magic_num; /* only used for debug purposes */
190  struct list_head collision_resolving_node; /* list node */
193  char name[BDEVNAME_SIZE];
194 };
197  struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
198 };
201  struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
202 };
205  struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
206 };
209  u64 start; /* virtual bytenr */
210  u64 dev_bytenr; /* physical bytenr on device */
213  char **datav;
214  struct page **pagev;
215  void *mem_to_free;
216 };
217 
218 /* This structure is used to implement recursion without occupying
219  * any stack space, refer to btrfsic_process_metablock() */
223  int error;
224  int i;
232  struct btrfs_header *hdr;
233  struct btrfsic_stack_frame *prev;
234 };
235 
236 /* Some state per mounted filesystem */
244  struct btrfs_root *root;
249 };
250 
251 static void btrfsic_block_init(struct btrfsic_block *b);
252 static struct btrfsic_block *btrfsic_block_alloc(void);
253 static void btrfsic_block_free(struct btrfsic_block *b);
254 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
255 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
256 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
257 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
258 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
259 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
260 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
261 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
262  struct btrfsic_block_hashtable *h);
263 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
264 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
265  struct block_device *bdev,
266  u64 dev_bytenr,
267  struct btrfsic_block_hashtable *h);
268 static void btrfsic_block_link_hashtable_init(
270 static void btrfsic_block_link_hashtable_add(
271  struct btrfsic_block_link *l,
273 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
274 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
275  struct block_device *bdev_ref_to,
276  u64 dev_bytenr_ref_to,
277  struct block_device *bdev_ref_from,
278  u64 dev_bytenr_ref_from,
280 static void btrfsic_dev_state_hashtable_init(
282 static void btrfsic_dev_state_hashtable_add(
283  struct btrfsic_dev_state *ds,
285 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
286 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
287  struct block_device *bdev,
289 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
290 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
291 static int btrfsic_process_superblock(struct btrfsic_state *state,
292  struct btrfs_fs_devices *fs_devices);
293 static int btrfsic_process_metablock(struct btrfsic_state *state,
294  struct btrfsic_block *block,
296  int limit_nesting, int force_iodone_flag);
297 static void btrfsic_read_from_block_data(
299  void *dst, u32 offset, size_t len);
300 static int btrfsic_create_link_to_next_block(
301  struct btrfsic_state *state,
302  struct btrfsic_block *block,
304  *block_ctx, u64 next_bytenr,
305  int limit_nesting,
307  struct btrfsic_block **next_blockp,
308  int force_iodone_flag,
309  int *num_copiesp, int *mirror_nump,
310  struct btrfs_disk_key *disk_key,
311  u64 parent_generation);
312 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
313  struct btrfsic_block *block,
315  u32 item_offset, int force_iodone_flag);
316 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
317  struct btrfsic_block_data_ctx *block_ctx_out,
318  int mirror_num);
319 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
320  u32 len, struct block_device *bdev,
321  struct btrfsic_block_data_ctx *block_ctx_out);
322 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
323 static int btrfsic_read_block(struct btrfsic_state *state,
325 static void btrfsic_dump_database(struct btrfsic_state *state);
326 static void btrfsic_complete_bio_end_io(struct bio *bio, int err);
327 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
328  char **datav, unsigned int num_pages);
329 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
330  u64 dev_bytenr, char **mapped_datav,
331  unsigned int num_pages,
332  struct bio *bio, int *bio_is_patched,
333  struct buffer_head *bh,
334  int submit_bio_bh_rw);
335 static int btrfsic_process_written_superblock(
336  struct btrfsic_state *state,
337  struct btrfsic_block *const block,
338  struct btrfs_super_block *const super_hdr);
339 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
340 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
341 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
342  const struct btrfsic_block *block,
343  int recursion_level);
344 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
345  struct btrfsic_block *const block,
346  int recursion_level);
347 static void btrfsic_print_add_link(const struct btrfsic_state *state,
348  const struct btrfsic_block_link *l);
349 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
350  const struct btrfsic_block_link *l);
351 static char btrfsic_get_block_type(const struct btrfsic_state *state,
352  const struct btrfsic_block *block);
353 static void btrfsic_dump_tree(const struct btrfsic_state *state);
354 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
355  const struct btrfsic_block *block,
356  int indent_level);
357 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
358  struct btrfsic_state *state,
359  struct btrfsic_block_data_ctx *next_block_ctx,
360  struct btrfsic_block *next_block,
361  struct btrfsic_block *from_block,
363 static struct btrfsic_block *btrfsic_block_lookup_or_add(
364  struct btrfsic_state *state,
365  struct btrfsic_block_data_ctx *block_ctx,
366  const char *additional_string,
367  int is_metadata,
368  int is_iodone,
369  int never_written,
370  int mirror_num,
371  int *was_created);
372 static int btrfsic_process_superblock_dev_mirror(
373  struct btrfsic_state *state,
375  struct btrfs_device *device,
376  int superblock_mirror_num,
377  struct btrfsic_dev_state **selected_dev_state,
378  struct btrfs_super_block *selected_super);
379 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
380  struct block_device *bdev);
381 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
382  u64 bytenr,
384  u64 dev_bytenr);
385 
386 static struct mutex btrfsic_mutex;
387 static int btrfsic_is_initialized;
389 
390 
391 static void btrfsic_block_init(struct btrfsic_block *b)
392 {
394  b->dev_state = NULL;
395  b->dev_bytenr = 0;
396  b->logical_bytenr = 0;
398  b->disk_key.objectid = 0;
399  b->disk_key.type = 0;
400  b->disk_key.offset = 0;
401  b->is_metadata = 0;
402  b->is_superblock = 0;
403  b->is_iodone = 0;
404  b->iodone_w_error = 0;
405  b->never_written = 0;
406  b->mirror_num = 0;
407  b->next_in_same_bio = NULL;
410  INIT_LIST_HEAD(&b->collision_resolving_node);
411  INIT_LIST_HEAD(&b->all_blocks_node);
412  INIT_LIST_HEAD(&b->ref_to_list);
413  INIT_LIST_HEAD(&b->ref_from_list);
414  b->submit_bio_bh_rw = 0;
415  b->flush_gen = 0;
416 }
417 
418 static struct btrfsic_block *btrfsic_block_alloc(void)
419 {
420  struct btrfsic_block *b;
421 
422  b = kzalloc(sizeof(*b), GFP_NOFS);
423  if (NULL != b)
424  btrfsic_block_init(b);
425 
426  return b;
427 }
428 
429 static void btrfsic_block_free(struct btrfsic_block *b)
430 {
432  kfree(b);
433 }
434 
435 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
436 {
438  l->ref_cnt = 1;
439  INIT_LIST_HEAD(&l->node_ref_to);
440  INIT_LIST_HEAD(&l->node_ref_from);
441  INIT_LIST_HEAD(&l->collision_resolving_node);
442  l->block_ref_to = NULL;
443  l->block_ref_from = NULL;
444 }
445 
446 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
447 {
448  struct btrfsic_block_link *l;
449 
450  l = kzalloc(sizeof(*l), GFP_NOFS);
451  if (NULL != l)
452  btrfsic_block_link_init(l);
453 
454  return l;
455 }
456 
457 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
458 {
460  kfree(l);
461 }
462 
463 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
464 {
466  ds->bdev = NULL;
467  ds->state = NULL;
468  ds->name[0] = '\0';
469  INIT_LIST_HEAD(&ds->collision_resolving_node);
470  ds->last_flush_gen = 0;
471  btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
472  ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
473  ds->dummy_block_for_bio_bh_flush.dev_state = ds;
474 }
475 
476 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
477 {
478  struct btrfsic_dev_state *ds;
479 
480  ds = kzalloc(sizeof(*ds), GFP_NOFS);
481  if (NULL != ds)
482  btrfsic_dev_state_init(ds);
483 
484  return ds;
485 }
486 
487 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
488 {
489  BUG_ON(!(NULL == ds ||
491  kfree(ds);
492 }
493 
494 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
495 {
496  int i;
497 
498  for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
499  INIT_LIST_HEAD(h->table + i);
500 }
501 
502 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
503  struct btrfsic_block_hashtable *h)
504 {
505  const unsigned int hashval =
506  (((unsigned int)(b->dev_bytenr >> 16)) ^
507  ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
508  (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
509 
510  list_add(&b->collision_resolving_node, h->table + hashval);
511 }
512 
513 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
514 {
516 }
517 
518 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
519  struct block_device *bdev,
520  u64 dev_bytenr,
521  struct btrfsic_block_hashtable *h)
522 {
523  const unsigned int hashval =
524  (((unsigned int)(dev_bytenr >> 16)) ^
525  ((unsigned int)((uintptr_t)bdev))) &
526  (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
527  struct list_head *elem;
528 
529  list_for_each(elem, h->table + hashval) {
530  struct btrfsic_block *const b =
531  list_entry(elem, struct btrfsic_block,
533 
534  if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
535  return b;
536  }
537 
538  return NULL;
539 }
540 
541 static void btrfsic_block_link_hashtable_init(
543 {
544  int i;
545 
546  for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
547  INIT_LIST_HEAD(h->table + i);
548 }
549 
550 static void btrfsic_block_link_hashtable_add(
551  struct btrfsic_block_link *l,
553 {
554  const unsigned int hashval =
555  (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
556  ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
557  ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
558  ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
559  & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
560 
561  BUG_ON(NULL == l->block_ref_to);
562  BUG_ON(NULL == l->block_ref_from);
563  list_add(&l->collision_resolving_node, h->table + hashval);
564 }
565 
566 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
567 {
569 }
570 
571 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
572  struct block_device *bdev_ref_to,
573  u64 dev_bytenr_ref_to,
574  struct block_device *bdev_ref_from,
575  u64 dev_bytenr_ref_from,
577 {
578  const unsigned int hashval =
579  (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
580  ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
581  ((unsigned int)((uintptr_t)bdev_ref_to)) ^
582  ((unsigned int)((uintptr_t)bdev_ref_from))) &
583  (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
584  struct list_head *elem;
585 
586  list_for_each(elem, h->table + hashval) {
587  struct btrfsic_block_link *const l =
588  list_entry(elem, struct btrfsic_block_link,
590 
591  BUG_ON(NULL == l->block_ref_to);
592  BUG_ON(NULL == l->block_ref_from);
593  if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
594  l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
595  l->block_ref_from->dev_state->bdev == bdev_ref_from &&
596  l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
597  return l;
598  }
599 
600  return NULL;
601 }
602 
603 static void btrfsic_dev_state_hashtable_init(
604  struct btrfsic_dev_state_hashtable *h)
605 {
606  int i;
607 
608  for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
609  INIT_LIST_HEAD(h->table + i);
610 }
611 
612 static void btrfsic_dev_state_hashtable_add(
613  struct btrfsic_dev_state *ds,
614  struct btrfsic_dev_state_hashtable *h)
615 {
616  const unsigned int hashval =
617  (((unsigned int)((uintptr_t)ds->bdev)) &
618  (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
619 
620  list_add(&ds->collision_resolving_node, h->table + hashval);
621 }
622 
623 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
624 {
626 }
627 
628 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
629  struct block_device *bdev,
630  struct btrfsic_dev_state_hashtable *h)
631 {
632  const unsigned int hashval =
633  (((unsigned int)((uintptr_t)bdev)) &
634  (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
635  struct list_head *elem;
636 
637  list_for_each(elem, h->table + hashval) {
638  struct btrfsic_dev_state *const ds =
639  list_entry(elem, struct btrfsic_dev_state,
641 
642  if (ds->bdev == bdev)
643  return ds;
644  }
645 
646  return NULL;
647 }
648 
649 static int btrfsic_process_superblock(struct btrfsic_state *state,
650  struct btrfs_fs_devices *fs_devices)
651 {
652  int ret = 0;
653  struct btrfs_super_block *selected_super;
654  struct list_head *dev_head = &fs_devices->devices;
655  struct btrfs_device *device;
656  struct btrfsic_dev_state *selected_dev_state = NULL;
657  int pass;
658 
659  BUG_ON(NULL == state);
660  selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
661  if (NULL == selected_super) {
662  printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
663  return -1;
664  }
665 
666  list_for_each_entry(device, dev_head, dev_list) {
667  int i;
669 
670  if (!device->bdev || !device->name)
671  continue;
672 
673  dev_state = btrfsic_dev_state_lookup(device->bdev);
674  BUG_ON(NULL == dev_state);
675  for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
676  ret = btrfsic_process_superblock_dev_mirror(
677  state, dev_state, device, i,
678  &selected_dev_state, selected_super);
679  if (0 != ret && 0 == i) {
680  kfree(selected_super);
681  return ret;
682  }
683  }
684  }
685 
686  if (NULL == state->latest_superblock) {
687  printk(KERN_INFO "btrfsic: no superblock found!\n");
688  kfree(selected_super);
689  return -1;
690  }
691 
692  state->csum_size = btrfs_super_csum_size(selected_super);
693 
694  for (pass = 0; pass < 3; pass++) {
695  int num_copies;
696  int mirror_num;
697  u64 next_bytenr;
698 
699  switch (pass) {
700  case 0:
701  next_bytenr = btrfs_super_root(selected_super);
702  if (state->print_mask &
704  printk(KERN_INFO "root@%llu\n",
705  (unsigned long long)next_bytenr);
706  break;
707  case 1:
708  next_bytenr = btrfs_super_chunk_root(selected_super);
709  if (state->print_mask &
711  printk(KERN_INFO "chunk@%llu\n",
712  (unsigned long long)next_bytenr);
713  break;
714  case 2:
715  next_bytenr = btrfs_super_log_root(selected_super);
716  if (0 == next_bytenr)
717  continue;
718  if (state->print_mask &
720  printk(KERN_INFO "log@%llu\n",
721  (unsigned long long)next_bytenr);
722  break;
723  }
724 
725  num_copies =
726  btrfs_num_copies(&state->root->fs_info->mapping_tree,
727  next_bytenr, state->metablock_size);
729  printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
730  (unsigned long long)next_bytenr, num_copies);
731 
732  for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
733  struct btrfsic_block *next_block;
734  struct btrfsic_block_data_ctx tmp_next_block_ctx;
735  struct btrfsic_block_link *l;
736 
737  ret = btrfsic_map_block(state, next_bytenr,
738  state->metablock_size,
739  &tmp_next_block_ctx,
740  mirror_num);
741  if (ret) {
742  printk(KERN_INFO "btrfsic:"
743  " btrfsic_map_block(root @%llu,"
744  " mirror %d) failed!\n",
745  (unsigned long long)next_bytenr,
746  mirror_num);
747  kfree(selected_super);
748  return -1;
749  }
750 
751  next_block = btrfsic_block_hashtable_lookup(
752  tmp_next_block_ctx.dev->bdev,
753  tmp_next_block_ctx.dev_bytenr,
754  &state->block_hashtable);
755  BUG_ON(NULL == next_block);
756 
757  l = btrfsic_block_link_hashtable_lookup(
758  tmp_next_block_ctx.dev->bdev,
759  tmp_next_block_ctx.dev_bytenr,
760  state->latest_superblock->dev_state->
761  bdev,
762  state->latest_superblock->dev_bytenr,
763  &state->block_link_hashtable);
764  BUG_ON(NULL == l);
765 
766  ret = btrfsic_read_block(state, &tmp_next_block_ctx);
767  if (ret < (int)PAGE_CACHE_SIZE) {
769  "btrfsic: read @logical %llu failed!\n",
770  (unsigned long long)
771  tmp_next_block_ctx.start);
772  btrfsic_release_block_ctx(&tmp_next_block_ctx);
773  kfree(selected_super);
774  return -1;
775  }
776 
777  ret = btrfsic_process_metablock(state,
778  next_block,
779  &tmp_next_block_ctx,
780  BTRFS_MAX_LEVEL + 3, 1);
781  btrfsic_release_block_ctx(&tmp_next_block_ctx);
782  }
783  }
784 
785  kfree(selected_super);
786  return ret;
787 }
788 
789 static int btrfsic_process_superblock_dev_mirror(
790  struct btrfsic_state *state,
791  struct btrfsic_dev_state *dev_state,
792  struct btrfs_device *device,
793  int superblock_mirror_num,
794  struct btrfsic_dev_state **selected_dev_state,
795  struct btrfs_super_block *selected_super)
796 {
797  struct btrfs_super_block *super_tmp;
798  u64 dev_bytenr;
799  struct buffer_head *bh;
800  struct btrfsic_block *superblock_tmp;
801  int pass;
802  struct block_device *const superblock_bdev = device->bdev;
803 
804  /* super block bytenr is always the unmapped device bytenr */
805  dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
806  if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
807  return -1;
808  bh = __bread(superblock_bdev, dev_bytenr / 4096,
810  if (NULL == bh)
811  return -1;
812  super_tmp = (struct btrfs_super_block *)
813  (bh->b_data + (dev_bytenr & 4095));
814 
815  if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
816  strncmp((char *)(&(super_tmp->magic)), BTRFS_MAGIC,
817  sizeof(super_tmp->magic)) ||
818  memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
819  btrfs_super_nodesize(super_tmp) != state->metablock_size ||
820  btrfs_super_leafsize(super_tmp) != state->metablock_size ||
821  btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
822  brelse(bh);
823  return 0;
824  }
825 
826  superblock_tmp =
827  btrfsic_block_hashtable_lookup(superblock_bdev,
828  dev_bytenr,
829  &state->block_hashtable);
830  if (NULL == superblock_tmp) {
831  superblock_tmp = btrfsic_block_alloc();
832  if (NULL == superblock_tmp) {
833  printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
834  brelse(bh);
835  return -1;
836  }
837  /* for superblock, only the dev_bytenr makes sense */
838  superblock_tmp->dev_bytenr = dev_bytenr;
839  superblock_tmp->dev_state = dev_state;
840  superblock_tmp->logical_bytenr = dev_bytenr;
841  superblock_tmp->generation = btrfs_super_generation(super_tmp);
842  superblock_tmp->is_metadata = 1;
843  superblock_tmp->is_superblock = 1;
844  superblock_tmp->is_iodone = 1;
845  superblock_tmp->never_written = 0;
846  superblock_tmp->mirror_num = 1 + superblock_mirror_num;
848  printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
849  " @%llu (%s/%llu/%d)\n",
850  superblock_bdev,
851  rcu_str_deref(device->name),
852  (unsigned long long)dev_bytenr,
853  dev_state->name,
854  (unsigned long long)dev_bytenr,
855  superblock_mirror_num);
856  list_add(&superblock_tmp->all_blocks_node,
857  &state->all_blocks_list);
858  btrfsic_block_hashtable_add(superblock_tmp,
859  &state->block_hashtable);
860  }
861 
862  /* select the one with the highest generation field */
863  if (btrfs_super_generation(super_tmp) >
864  state->max_superblock_generation ||
865  0 == state->max_superblock_generation) {
866  memcpy(selected_super, super_tmp, sizeof(*selected_super));
867  *selected_dev_state = dev_state;
869  btrfs_super_generation(super_tmp);
870  state->latest_superblock = superblock_tmp;
871  }
872 
873  for (pass = 0; pass < 3; pass++) {
874  u64 next_bytenr;
875  int num_copies;
876  int mirror_num;
877  const char *additional_string = NULL;
878  struct btrfs_disk_key tmp_disk_key;
879 
880  tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
881  tmp_disk_key.offset = 0;
882  switch (pass) {
883  case 0:
884  tmp_disk_key.objectid =
886  additional_string = "initial root ";
887  next_bytenr = btrfs_super_root(super_tmp);
888  break;
889  case 1:
890  tmp_disk_key.objectid =
892  additional_string = "initial chunk ";
893  next_bytenr = btrfs_super_chunk_root(super_tmp);
894  break;
895  case 2:
896  tmp_disk_key.objectid =
898  additional_string = "initial log ";
899  next_bytenr = btrfs_super_log_root(super_tmp);
900  if (0 == next_bytenr)
901  continue;
902  break;
903  }
904 
905  num_copies =
906  btrfs_num_copies(&state->root->fs_info->mapping_tree,
907  next_bytenr, state->metablock_size);
909  printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
910  (unsigned long long)next_bytenr, num_copies);
911  for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
912  struct btrfsic_block *next_block;
913  struct btrfsic_block_data_ctx tmp_next_block_ctx;
914  struct btrfsic_block_link *l;
915 
916  if (btrfsic_map_block(state, next_bytenr,
917  state->metablock_size,
918  &tmp_next_block_ctx,
919  mirror_num)) {
920  printk(KERN_INFO "btrfsic: btrfsic_map_block("
921  "bytenr @%llu, mirror %d) failed!\n",
922  (unsigned long long)next_bytenr,
923  mirror_num);
924  brelse(bh);
925  return -1;
926  }
927 
928  next_block = btrfsic_block_lookup_or_add(
929  state, &tmp_next_block_ctx,
930  additional_string, 1, 1, 0,
931  mirror_num, NULL);
932  if (NULL == next_block) {
933  btrfsic_release_block_ctx(&tmp_next_block_ctx);
934  brelse(bh);
935  return -1;
936  }
937 
938  next_block->disk_key = tmp_disk_key;
940  l = btrfsic_block_link_lookup_or_add(
941  state, &tmp_next_block_ctx,
942  next_block, superblock_tmp,
944  btrfsic_release_block_ctx(&tmp_next_block_ctx);
945  if (NULL == l) {
946  brelse(bh);
947  return -1;
948  }
949  }
950  }
952  btrfsic_dump_tree_sub(state, superblock_tmp, 0);
953 
954  brelse(bh);
955  return 0;
956 }
957 
958 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
959 {
960  struct btrfsic_stack_frame *sf;
961 
962  sf = kzalloc(sizeof(*sf), GFP_NOFS);
963  if (NULL == sf)
964  printk(KERN_INFO "btrfsic: alloc memory failed!\n");
965  else
967  return sf;
968 }
969 
970 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
971 {
972  BUG_ON(!(NULL == sf ||
974  kfree(sf);
975 }
976 
977 static int btrfsic_process_metablock(
978  struct btrfsic_state *state,
979  struct btrfsic_block *const first_block,
980  struct btrfsic_block_data_ctx *const first_block_ctx,
981  int first_limit_nesting, int force_iodone_flag)
982 {
983  struct btrfsic_stack_frame initial_stack_frame = { 0 };
984  struct btrfsic_stack_frame *sf;
985  struct btrfsic_stack_frame *next_stack;
986  struct btrfs_header *const first_hdr =
987  (struct btrfs_header *)first_block_ctx->datav[0];
988 
989  BUG_ON(!first_hdr);
990  sf = &initial_stack_frame;
991  sf->error = 0;
992  sf->i = -1;
993  sf->limit_nesting = first_limit_nesting;
994  sf->block = first_block;
995  sf->block_ctx = first_block_ctx;
996  sf->next_block = NULL;
997  sf->hdr = first_hdr;
998  sf->prev = NULL;
999 
1000 continue_with_new_stack_frame:
1001  sf->block->generation = le64_to_cpu(sf->hdr->generation);
1002  if (0 == sf->hdr->level) {
1003  struct btrfs_leaf *const leafhdr =
1004  (struct btrfs_leaf *)sf->hdr;
1005 
1006  if (-1 == sf->i) {
1007  sf->nr = le32_to_cpu(leafhdr->header.nritems);
1008 
1011  "leaf %llu items %d generation %llu"
1012  " owner %llu\n",
1013  (unsigned long long)
1014  sf->block_ctx->start,
1015  sf->nr,
1016  (unsigned long long)
1017  le64_to_cpu(leafhdr->header.generation),
1018  (unsigned long long)
1019  le64_to_cpu(leafhdr->header.owner));
1020  }
1021 
1022 continue_with_current_leaf_stack_frame:
1023  if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1024  sf->i++;
1025  sf->num_copies = 0;
1026  }
1027 
1028  if (sf->i < sf->nr) {
1029  struct btrfs_item disk_item;
1030  u32 disk_item_offset =
1031  (uintptr_t)(leafhdr->items + sf->i) -
1032  (uintptr_t)leafhdr;
1033  struct btrfs_disk_key *disk_key;
1034  u8 type;
1035  u32 item_offset;
1036  u32 item_size;
1037 
1038  if (disk_item_offset + sizeof(struct btrfs_item) >
1039  sf->block_ctx->len) {
1040 leaf_item_out_of_bounce_error:
1042  "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1043  sf->block_ctx->start,
1044  sf->block_ctx->dev->name);
1045  goto one_stack_frame_backwards;
1046  }
1047  btrfsic_read_from_block_data(sf->block_ctx,
1048  &disk_item,
1049  disk_item_offset,
1050  sizeof(struct btrfs_item));
1051  item_offset = le32_to_cpu(disk_item.offset);
1052  item_size = le32_to_cpu(disk_item.size);
1053  disk_key = &disk_item.key;
1054  type = disk_key->type;
1055 
1056  if (BTRFS_ROOT_ITEM_KEY == type) {
1057  struct btrfs_root_item root_item;
1058  u32 root_item_offset;
1059  u64 next_bytenr;
1060 
1061  root_item_offset = item_offset +
1062  offsetof(struct btrfs_leaf, items);
1063  if (root_item_offset + item_size >
1064  sf->block_ctx->len)
1065  goto leaf_item_out_of_bounce_error;
1066  btrfsic_read_from_block_data(
1067  sf->block_ctx, &root_item,
1068  root_item_offset,
1069  item_size);
1070  next_bytenr = le64_to_cpu(root_item.bytenr);
1071 
1072  sf->error =
1073  btrfsic_create_link_to_next_block(
1074  state,
1075  sf->block,
1076  sf->block_ctx,
1077  next_bytenr,
1078  sf->limit_nesting,
1079  &sf->next_block_ctx,
1080  &sf->next_block,
1081  force_iodone_flag,
1082  &sf->num_copies,
1083  &sf->mirror_num,
1084  disk_key,
1085  le64_to_cpu(root_item.
1086  generation));
1087  if (sf->error)
1088  goto one_stack_frame_backwards;
1089 
1090  if (NULL != sf->next_block) {
1091  struct btrfs_header *const next_hdr =
1092  (struct btrfs_header *)
1093  sf->next_block_ctx.datav[0];
1094 
1095  next_stack =
1096  btrfsic_stack_frame_alloc();
1097  if (NULL == next_stack) {
1098  btrfsic_release_block_ctx(
1099  &sf->
1100  next_block_ctx);
1101  goto one_stack_frame_backwards;
1102  }
1103 
1104  next_stack->i = -1;
1105  next_stack->block = sf->next_block;
1106  next_stack->block_ctx =
1107  &sf->next_block_ctx;
1108  next_stack->next_block = NULL;
1109  next_stack->hdr = next_hdr;
1110  next_stack->limit_nesting =
1111  sf->limit_nesting - 1;
1112  next_stack->prev = sf;
1113  sf = next_stack;
1114  goto continue_with_new_stack_frame;
1115  }
1116  } else if (BTRFS_EXTENT_DATA_KEY == type &&
1117  state->include_extent_data) {
1118  sf->error = btrfsic_handle_extent_data(
1119  state,
1120  sf->block,
1121  sf->block_ctx,
1122  item_offset,
1123  force_iodone_flag);
1124  if (sf->error)
1125  goto one_stack_frame_backwards;
1126  }
1127 
1128  goto continue_with_current_leaf_stack_frame;
1129  }
1130  } else {
1131  struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1132 
1133  if (-1 == sf->i) {
1134  sf->nr = le32_to_cpu(nodehdr->header.nritems);
1135 
1137  printk(KERN_INFO "node %llu level %d items %d"
1138  " generation %llu owner %llu\n",
1139  (unsigned long long)
1140  sf->block_ctx->start,
1141  nodehdr->header.level, sf->nr,
1142  (unsigned long long)
1143  le64_to_cpu(nodehdr->header.generation),
1144  (unsigned long long)
1145  le64_to_cpu(nodehdr->header.owner));
1146  }
1147 
1148 continue_with_current_node_stack_frame:
1149  if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1150  sf->i++;
1151  sf->num_copies = 0;
1152  }
1153 
1154  if (sf->i < sf->nr) {
1155  struct btrfs_key_ptr key_ptr;
1156  u32 key_ptr_offset;
1157  u64 next_bytenr;
1158 
1159  key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1160  (uintptr_t)nodehdr;
1161  if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1162  sf->block_ctx->len) {
1164  "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1165  sf->block_ctx->start,
1166  sf->block_ctx->dev->name);
1167  goto one_stack_frame_backwards;
1168  }
1169  btrfsic_read_from_block_data(
1170  sf->block_ctx, &key_ptr, key_ptr_offset,
1171  sizeof(struct btrfs_key_ptr));
1172  next_bytenr = le64_to_cpu(key_ptr.blockptr);
1173 
1174  sf->error = btrfsic_create_link_to_next_block(
1175  state,
1176  sf->block,
1177  sf->block_ctx,
1178  next_bytenr,
1179  sf->limit_nesting,
1180  &sf->next_block_ctx,
1181  &sf->next_block,
1182  force_iodone_flag,
1183  &sf->num_copies,
1184  &sf->mirror_num,
1185  &key_ptr.key,
1186  le64_to_cpu(key_ptr.generation));
1187  if (sf->error)
1188  goto one_stack_frame_backwards;
1189 
1190  if (NULL != sf->next_block) {
1191  struct btrfs_header *const next_hdr =
1192  (struct btrfs_header *)
1193  sf->next_block_ctx.datav[0];
1194 
1195  next_stack = btrfsic_stack_frame_alloc();
1196  if (NULL == next_stack)
1197  goto one_stack_frame_backwards;
1198 
1199  next_stack->i = -1;
1200  next_stack->block = sf->next_block;
1201  next_stack->block_ctx = &sf->next_block_ctx;
1202  next_stack->next_block = NULL;
1203  next_stack->hdr = next_hdr;
1204  next_stack->limit_nesting =
1205  sf->limit_nesting - 1;
1206  next_stack->prev = sf;
1207  sf = next_stack;
1208  goto continue_with_new_stack_frame;
1209  }
1210 
1211  goto continue_with_current_node_stack_frame;
1212  }
1213  }
1214 
1215 one_stack_frame_backwards:
1216  if (NULL != sf->prev) {
1217  struct btrfsic_stack_frame *const prev = sf->prev;
1218 
1219  /* the one for the initial block is freed in the caller */
1220  btrfsic_release_block_ctx(sf->block_ctx);
1221 
1222  if (sf->error) {
1223  prev->error = sf->error;
1224  btrfsic_stack_frame_free(sf);
1225  sf = prev;
1226  goto one_stack_frame_backwards;
1227  }
1228 
1229  btrfsic_stack_frame_free(sf);
1230  sf = prev;
1231  goto continue_with_new_stack_frame;
1232  } else {
1233  BUG_ON(&initial_stack_frame != sf);
1234  }
1235 
1236  return sf->error;
1237 }
1238 
1239 static void btrfsic_read_from_block_data(
1241  void *dstv, u32 offset, size_t len)
1242 {
1243  size_t cur;
1244  size_t offset_in_page;
1245  char *kaddr;
1246  char *dst = (char *)dstv;
1247  size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1248  unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1249 
1250  WARN_ON(offset + len > block_ctx->len);
1251  offset_in_page = (start_offset + offset) &
1252  ((unsigned long)PAGE_CACHE_SIZE - 1);
1253 
1254  while (len > 0) {
1255  cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1256  BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >>
1258  kaddr = block_ctx->datav[i];
1259  memcpy(dst, kaddr + offset_in_page, cur);
1260 
1261  dst += cur;
1262  len -= cur;
1263  offset_in_page = 0;
1264  i++;
1265  }
1266 }
1267 
1268 static int btrfsic_create_link_to_next_block(
1269  struct btrfsic_state *state,
1270  struct btrfsic_block *block,
1271  struct btrfsic_block_data_ctx *block_ctx,
1272  u64 next_bytenr,
1273  int limit_nesting,
1275  struct btrfsic_block **next_blockp,
1276  int force_iodone_flag,
1277  int *num_copiesp, int *mirror_nump,
1278  struct btrfs_disk_key *disk_key,
1279  u64 parent_generation)
1280 {
1281  struct btrfsic_block *next_block = NULL;
1282  int ret;
1283  struct btrfsic_block_link *l;
1284  int did_alloc_block_link;
1285  int block_was_created;
1286 
1287  *next_blockp = NULL;
1288  if (0 == *num_copiesp) {
1289  *num_copiesp =
1290  btrfs_num_copies(&state->root->fs_info->mapping_tree,
1291  next_bytenr, state->metablock_size);
1293  printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1294  (unsigned long long)next_bytenr, *num_copiesp);
1295  *mirror_nump = 1;
1296  }
1297 
1298  if (*mirror_nump > *num_copiesp)
1299  return 0;
1300 
1303  "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1304  *mirror_nump);
1305  ret = btrfsic_map_block(state, next_bytenr,
1306  state->metablock_size,
1307  next_block_ctx, *mirror_nump);
1308  if (ret) {
1310  "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1311  (unsigned long long)next_bytenr, *mirror_nump);
1312  btrfsic_release_block_ctx(next_block_ctx);
1313  *next_blockp = NULL;
1314  return -1;
1315  }
1316 
1317  next_block = btrfsic_block_lookup_or_add(state,
1318  next_block_ctx, "referenced ",
1319  1, force_iodone_flag,
1320  !force_iodone_flag,
1321  *mirror_nump,
1322  &block_was_created);
1323  if (NULL == next_block) {
1324  btrfsic_release_block_ctx(next_block_ctx);
1325  *next_blockp = NULL;
1326  return -1;
1327  }
1328  if (block_was_created) {
1329  l = NULL;
1330  next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1331  } else {
1332  if (next_block->logical_bytenr != next_bytenr &&
1333  !(!next_block->is_metadata &&
1334  0 == next_block->logical_bytenr)) {
1336  "Referenced block @%llu (%s/%llu/%d)"
1337  " found in hash table, %c,"
1338  " bytenr mismatch (!= stored %llu).\n",
1339  (unsigned long long)next_bytenr,
1340  next_block_ctx->dev->name,
1341  (unsigned long long)next_block_ctx->dev_bytenr,
1342  *mirror_nump,
1343  btrfsic_get_block_type(state, next_block),
1344  (unsigned long long)next_block->logical_bytenr);
1345  } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1347  "Referenced block @%llu (%s/%llu/%d)"
1348  " found in hash table, %c.\n",
1349  (unsigned long long)next_bytenr,
1350  next_block_ctx->dev->name,
1351  (unsigned long long)next_block_ctx->dev_bytenr,
1352  *mirror_nump,
1353  btrfsic_get_block_type(state, next_block));
1354  next_block->logical_bytenr = next_bytenr;
1355 
1356  next_block->mirror_num = *mirror_nump;
1357  l = btrfsic_block_link_hashtable_lookup(
1358  next_block_ctx->dev->bdev,
1359  next_block_ctx->dev_bytenr,
1360  block_ctx->dev->bdev,
1361  block_ctx->dev_bytenr,
1362  &state->block_link_hashtable);
1363  }
1364 
1365  next_block->disk_key = *disk_key;
1366  if (NULL == l) {
1367  l = btrfsic_block_link_alloc();
1368  if (NULL == l) {
1369  printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1370  btrfsic_release_block_ctx(next_block_ctx);
1371  *next_blockp = NULL;
1372  return -1;
1373  }
1374 
1375  did_alloc_block_link = 1;
1376  l->block_ref_to = next_block;
1377  l->block_ref_from = block;
1378  l->ref_cnt = 1;
1380 
1382  btrfsic_print_add_link(state, l);
1383 
1384  list_add(&l->node_ref_to, &block->ref_to_list);
1385  list_add(&l->node_ref_from, &next_block->ref_from_list);
1386 
1387  btrfsic_block_link_hashtable_add(l,
1388  &state->block_link_hashtable);
1389  } else {
1390  did_alloc_block_link = 0;
1391  if (0 == limit_nesting) {
1392  l->ref_cnt++;
1395  btrfsic_print_add_link(state, l);
1396  }
1397  }
1398 
1399  if (limit_nesting > 0 && did_alloc_block_link) {
1400  ret = btrfsic_read_block(state, next_block_ctx);
1401  if (ret < (int)next_block_ctx->len) {
1403  "btrfsic: read block @logical %llu failed!\n",
1404  (unsigned long long)next_bytenr);
1405  btrfsic_release_block_ctx(next_block_ctx);
1406  *next_blockp = NULL;
1407  return -1;
1408  }
1409 
1410  *next_blockp = next_block;
1411  } else {
1412  *next_blockp = NULL;
1413  }
1414  (*mirror_nump)++;
1415 
1416  return 0;
1417 }
1418 
1419 static int btrfsic_handle_extent_data(
1420  struct btrfsic_state *state,
1421  struct btrfsic_block *block,
1422  struct btrfsic_block_data_ctx *block_ctx,
1423  u32 item_offset, int force_iodone_flag)
1424 {
1425  int ret;
1426  struct btrfs_file_extent_item file_extent_item;
1427  u64 file_extent_item_offset;
1428  u64 next_bytenr;
1429  u64 num_bytes;
1430  u64 generation;
1431  struct btrfsic_block_link *l;
1432 
1433  file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1434  item_offset;
1435  if (file_extent_item_offset +
1437  block_ctx->len) {
1439  "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1440  block_ctx->start, block_ctx->dev->name);
1441  return -1;
1442  }
1443 
1444  btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1445  file_extent_item_offset,
1447  if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1448  ((u64)0) == le64_to_cpu(file_extent_item.disk_bytenr)) {
1450  printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1451  file_extent_item.type,
1452  (unsigned long long)
1453  le64_to_cpu(file_extent_item.disk_bytenr));
1454  return 0;
1455  }
1456 
1457  if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1458  block_ctx->len) {
1460  "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1461  block_ctx->start, block_ctx->dev->name);
1462  return -1;
1463  }
1464  btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1465  file_extent_item_offset,
1466  sizeof(struct btrfs_file_extent_item));
1467  next_bytenr = le64_to_cpu(file_extent_item.disk_bytenr) +
1468  le64_to_cpu(file_extent_item.offset);
1469  generation = le64_to_cpu(file_extent_item.generation);
1470  num_bytes = le64_to_cpu(file_extent_item.num_bytes);
1471  generation = le64_to_cpu(file_extent_item.generation);
1472 
1474  printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1475  " offset = %llu, num_bytes = %llu\n",
1476  file_extent_item.type,
1477  (unsigned long long)
1478  le64_to_cpu(file_extent_item.disk_bytenr),
1479  (unsigned long long)le64_to_cpu(file_extent_item.offset),
1480  (unsigned long long)num_bytes);
1481  while (num_bytes > 0) {
1482  u32 chunk_len;
1483  int num_copies;
1484  int mirror_num;
1485 
1486  if (num_bytes > state->datablock_size)
1487  chunk_len = state->datablock_size;
1488  else
1489  chunk_len = num_bytes;
1490 
1491  num_copies =
1492  btrfs_num_copies(&state->root->fs_info->mapping_tree,
1493  next_bytenr, state->datablock_size);
1495  printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1496  (unsigned long long)next_bytenr, num_copies);
1497  for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1498  struct btrfsic_block_data_ctx next_block_ctx;
1499  struct btrfsic_block *next_block;
1500  int block_was_created;
1501 
1503  printk(KERN_INFO "btrfsic_handle_extent_data("
1504  "mirror_num=%d)\n", mirror_num);
1507  "\tdisk_bytenr = %llu, num_bytes %u\n",
1508  (unsigned long long)next_bytenr,
1509  chunk_len);
1510  ret = btrfsic_map_block(state, next_bytenr,
1511  chunk_len, &next_block_ctx,
1512  mirror_num);
1513  if (ret) {
1515  "btrfsic: btrfsic_map_block(@%llu,"
1516  " mirror=%d) failed!\n",
1517  (unsigned long long)next_bytenr,
1518  mirror_num);
1519  return -1;
1520  }
1521 
1522  next_block = btrfsic_block_lookup_or_add(
1523  state,
1524  &next_block_ctx,
1525  "referenced ",
1526  0,
1527  force_iodone_flag,
1528  !force_iodone_flag,
1529  mirror_num,
1530  &block_was_created);
1531  if (NULL == next_block) {
1533  "btrfsic: error, kmalloc failed!\n");
1534  btrfsic_release_block_ctx(&next_block_ctx);
1535  return -1;
1536  }
1537  if (!block_was_created) {
1538  if (next_block->logical_bytenr != next_bytenr &&
1539  !(!next_block->is_metadata &&
1540  0 == next_block->logical_bytenr)) {
1542  "Referenced block"
1543  " @%llu (%s/%llu/%d)"
1544  " found in hash table, D,"
1545  " bytenr mismatch"
1546  " (!= stored %llu).\n",
1547  (unsigned long long)next_bytenr,
1548  next_block_ctx.dev->name,
1549  (unsigned long long)
1550  next_block_ctx.dev_bytenr,
1551  mirror_num,
1552  (unsigned long long)
1553  next_block->logical_bytenr);
1554  }
1555  next_block->logical_bytenr = next_bytenr;
1556  next_block->mirror_num = mirror_num;
1557  }
1558 
1559  l = btrfsic_block_link_lookup_or_add(state,
1560  &next_block_ctx,
1561  next_block, block,
1562  generation);
1563  btrfsic_release_block_ctx(&next_block_ctx);
1564  if (NULL == l)
1565  return -1;
1566  }
1567 
1568  next_bytenr += chunk_len;
1569  num_bytes -= chunk_len;
1570  }
1571 
1572  return 0;
1573 }
1574 
1575 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1576  struct btrfsic_block_data_ctx *block_ctx_out,
1577  int mirror_num)
1578 {
1579  int ret;
1580  u64 length;
1581  struct btrfs_bio *multi = NULL;
1582  struct btrfs_device *device;
1583 
1584  length = len;
1585  ret = btrfs_map_block(&state->root->fs_info->mapping_tree, READ,
1586  bytenr, &length, &multi, mirror_num);
1587 
1588  device = multi->stripes[0].dev;
1589  block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1590  block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1591  block_ctx_out->start = bytenr;
1592  block_ctx_out->len = len;
1593  block_ctx_out->datav = NULL;
1594  block_ctx_out->pagev = NULL;
1595  block_ctx_out->mem_to_free = NULL;
1596 
1597  if (0 == ret)
1598  kfree(multi);
1599  if (NULL == block_ctx_out->dev) {
1600  ret = -ENXIO;
1601  printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1602  }
1603 
1604  return ret;
1605 }
1606 
1607 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1608  u32 len, struct block_device *bdev,
1609  struct btrfsic_block_data_ctx *block_ctx_out)
1610 {
1611  block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1612  block_ctx_out->dev_bytenr = bytenr;
1613  block_ctx_out->start = bytenr;
1614  block_ctx_out->len = len;
1615  block_ctx_out->datav = NULL;
1616  block_ctx_out->pagev = NULL;
1617  block_ctx_out->mem_to_free = NULL;
1618  if (NULL != block_ctx_out->dev) {
1619  return 0;
1620  } else {
1621  printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1622  return -ENXIO;
1623  }
1624 }
1625 
1626 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1627 {
1628  if (block_ctx->mem_to_free) {
1629  unsigned int num_pages;
1630 
1631  BUG_ON(!block_ctx->datav);
1632  BUG_ON(!block_ctx->pagev);
1633  num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1635  while (num_pages > 0) {
1636  num_pages--;
1637  if (block_ctx->datav[num_pages]) {
1638  kunmap(block_ctx->pagev[num_pages]);
1639  block_ctx->datav[num_pages] = NULL;
1640  }
1641  if (block_ctx->pagev[num_pages]) {
1642  __free_page(block_ctx->pagev[num_pages]);
1643  block_ctx->pagev[num_pages] = NULL;
1644  }
1645  }
1646 
1647  kfree(block_ctx->mem_to_free);
1648  block_ctx->mem_to_free = NULL;
1649  block_ctx->pagev = NULL;
1650  block_ctx->datav = NULL;
1651  }
1652 }
1653 
1654 static int btrfsic_read_block(struct btrfsic_state *state,
1655  struct btrfsic_block_data_ctx *block_ctx)
1656 {
1657  unsigned int num_pages;
1658  unsigned int i;
1659  u64 dev_bytenr;
1660  int ret;
1661 
1662  BUG_ON(block_ctx->datav);
1663  BUG_ON(block_ctx->pagev);
1664  BUG_ON(block_ctx->mem_to_free);
1665  if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
1667  "btrfsic: read_block() with unaligned bytenr %llu\n",
1668  (unsigned long long)block_ctx->dev_bytenr);
1669  return -1;
1670  }
1671 
1672  num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1674  block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1675  sizeof(*block_ctx->pagev)) *
1676  num_pages, GFP_NOFS);
1677  if (!block_ctx->mem_to_free)
1678  return -1;
1679  block_ctx->datav = block_ctx->mem_to_free;
1680  block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1681  for (i = 0; i < num_pages; i++) {
1682  block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1683  if (!block_ctx->pagev[i])
1684  return -1;
1685  }
1686 
1687  dev_bytenr = block_ctx->dev_bytenr;
1688  for (i = 0; i < num_pages;) {
1689  struct bio *bio;
1690  unsigned int j;
1692 
1693  bio = bio_alloc(GFP_NOFS, num_pages - i);
1694  if (!bio) {
1696  "btrfsic: bio_alloc() for %u pages failed!\n",
1697  num_pages - i);
1698  return -1;
1699  }
1700  bio->bi_bdev = block_ctx->dev->bdev;
1701  bio->bi_sector = dev_bytenr >> 9;
1702  bio->bi_end_io = btrfsic_complete_bio_end_io;
1703  bio->bi_private = &complete;
1704 
1705  for (j = i; j < num_pages; j++) {
1706  ret = bio_add_page(bio, block_ctx->pagev[j],
1707  PAGE_CACHE_SIZE, 0);
1708  if (PAGE_CACHE_SIZE != ret)
1709  break;
1710  }
1711  if (j == i) {
1713  "btrfsic: error, failed to add a single page!\n");
1714  return -1;
1715  }
1716  submit_bio(READ, bio);
1717 
1718  /* this will also unplug the queue */
1720 
1721  if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1723  "btrfsic: read error at logical %llu dev %s!\n",
1724  block_ctx->start, block_ctx->dev->name);
1725  bio_put(bio);
1726  return -1;
1727  }
1728  bio_put(bio);
1729  dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1730  i = j;
1731  }
1732  for (i = 0; i < num_pages; i++) {
1733  block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1734  if (!block_ctx->datav[i]) {
1735  printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1736  block_ctx->dev->name);
1737  return -1;
1738  }
1739  }
1740 
1741  return block_ctx->len;
1742 }
1743 
1744 static void btrfsic_complete_bio_end_io(struct bio *bio, int err)
1745 {
1746  complete((struct completion *)bio->bi_private);
1747 }
1748 
1749 static void btrfsic_dump_database(struct btrfsic_state *state)
1750 {
1751  struct list_head *elem_all;
1752 
1753  BUG_ON(NULL == state);
1754 
1755  printk(KERN_INFO "all_blocks_list:\n");
1756  list_for_each(elem_all, &state->all_blocks_list) {
1757  const struct btrfsic_block *const b_all =
1758  list_entry(elem_all, struct btrfsic_block,
1759  all_blocks_node);
1760  struct list_head *elem_ref_to;
1761  struct list_head *elem_ref_from;
1762 
1763  printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1764  btrfsic_get_block_type(state, b_all),
1765  (unsigned long long)b_all->logical_bytenr,
1766  b_all->dev_state->name,
1767  (unsigned long long)b_all->dev_bytenr,
1768  b_all->mirror_num);
1769 
1770  list_for_each(elem_ref_to, &b_all->ref_to_list) {
1771  const struct btrfsic_block_link *const l =
1772  list_entry(elem_ref_to,
1773  struct btrfsic_block_link,
1774  node_ref_to);
1775 
1776  printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1777  " refers %u* to"
1778  " %c @%llu (%s/%llu/%d)\n",
1779  btrfsic_get_block_type(state, b_all),
1780  (unsigned long long)b_all->logical_bytenr,
1781  b_all->dev_state->name,
1782  (unsigned long long)b_all->dev_bytenr,
1783  b_all->mirror_num,
1784  l->ref_cnt,
1785  btrfsic_get_block_type(state, l->block_ref_to),
1786  (unsigned long long)
1787  l->block_ref_to->logical_bytenr,
1788  l->block_ref_to->dev_state->name,
1789  (unsigned long long)l->block_ref_to->dev_bytenr,
1790  l->block_ref_to->mirror_num);
1791  }
1792 
1793  list_for_each(elem_ref_from, &b_all->ref_from_list) {
1794  const struct btrfsic_block_link *const l =
1795  list_entry(elem_ref_from,
1796  struct btrfsic_block_link,
1797  node_ref_from);
1798 
1799  printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1800  " is ref %u* from"
1801  " %c @%llu (%s/%llu/%d)\n",
1802  btrfsic_get_block_type(state, b_all),
1803  (unsigned long long)b_all->logical_bytenr,
1804  b_all->dev_state->name,
1805  (unsigned long long)b_all->dev_bytenr,
1806  b_all->mirror_num,
1807  l->ref_cnt,
1808  btrfsic_get_block_type(state, l->block_ref_from),
1809  (unsigned long long)
1810  l->block_ref_from->logical_bytenr,
1811  l->block_ref_from->dev_state->name,
1812  (unsigned long long)
1813  l->block_ref_from->dev_bytenr,
1814  l->block_ref_from->mirror_num);
1815  }
1816 
1817  printk(KERN_INFO "\n");
1818  }
1819 }
1820 
1821 /*
1822  * Test whether the disk block contains a tree block (leaf or node)
1823  * (note that this test fails for the super block)
1824  */
1825 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1826  char **datav, unsigned int num_pages)
1827 {
1828  struct btrfs_header *h;
1830  u32 crc = ~(u32)0;
1831  unsigned int i;
1832 
1833  if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1834  return 1; /* not metadata */
1835  num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1836  h = (struct btrfs_header *)datav[0];
1837 
1838  if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1839  return 1;
1840 
1841  for (i = 0; i < num_pages; i++) {
1842  u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1843  size_t sublen = i ? PAGE_CACHE_SIZE :
1845 
1846  crc = crc32c(crc, data, sublen);
1847  }
1848  btrfs_csum_final(crc, csum);
1849  if (memcmp(csum, h->csum, state->csum_size))
1850  return 1;
1851 
1852  return 0; /* is metadata */
1853 }
1854 
1855 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1856  u64 dev_bytenr, char **mapped_datav,
1857  unsigned int num_pages,
1858  struct bio *bio, int *bio_is_patched,
1859  struct buffer_head *bh,
1860  int submit_bio_bh_rw)
1861 {
1862  int is_metadata;
1863  struct btrfsic_block *block;
1864  struct btrfsic_block_data_ctx block_ctx;
1865  int ret;
1866  struct btrfsic_state *state = dev_state->state;
1867  struct block_device *bdev = dev_state->bdev;
1868  unsigned int processed_len;
1869 
1870  if (NULL != bio_is_patched)
1871  *bio_is_patched = 0;
1872 
1873 again:
1874  if (num_pages == 0)
1875  return;
1876 
1877  processed_len = 0;
1878  is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1879  num_pages));
1880 
1881  block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1882  &state->block_hashtable);
1883  if (NULL != block) {
1884  u64 bytenr = 0;
1885  struct list_head *elem_ref_to;
1886  struct list_head *tmp_ref_to;
1887 
1888  if (block->is_superblock) {
1889  bytenr = le64_to_cpu(((struct btrfs_super_block *)
1890  mapped_datav[0])->bytenr);
1891  if (num_pages * PAGE_CACHE_SIZE <
1894  "btrfsic: cannot work with too short bios!\n");
1895  return;
1896  }
1897  is_metadata = 1;
1899  processed_len = BTRFS_SUPER_INFO_SIZE;
1900  if (state->print_mask &
1903  "[before new superblock is written]:\n");
1904  btrfsic_dump_tree_sub(state, block, 0);
1905  }
1906  }
1907  if (is_metadata) {
1908  if (!block->is_superblock) {
1909  if (num_pages * PAGE_CACHE_SIZE <
1910  state->metablock_size) {
1912  "btrfsic: cannot work with too short bios!\n");
1913  return;
1914  }
1915  processed_len = state->metablock_size;
1916  bytenr = le64_to_cpu(((struct btrfs_header *)
1917  mapped_datav[0])->bytenr);
1918  btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1919  dev_state,
1920  dev_bytenr);
1921  }
1922  if (block->logical_bytenr != bytenr) {
1924  "Written block @%llu (%s/%llu/%d)"
1925  " found in hash table, %c,"
1926  " bytenr mismatch"
1927  " (!= stored %llu).\n",
1928  (unsigned long long)bytenr,
1929  dev_state->name,
1930  (unsigned long long)dev_bytenr,
1931  block->mirror_num,
1932  btrfsic_get_block_type(state, block),
1933  (unsigned long long)
1934  block->logical_bytenr);
1935  block->logical_bytenr = bytenr;
1936  } else if (state->print_mask &
1939  "Written block @%llu (%s/%llu/%d)"
1940  " found in hash table, %c.\n",
1941  (unsigned long long)bytenr,
1942  dev_state->name,
1943  (unsigned long long)dev_bytenr,
1944  block->mirror_num,
1945  btrfsic_get_block_type(state, block));
1946  } else {
1947  if (num_pages * PAGE_CACHE_SIZE <
1948  state->datablock_size) {
1950  "btrfsic: cannot work with too short bios!\n");
1951  return;
1952  }
1953  processed_len = state->datablock_size;
1954  bytenr = block->logical_bytenr;
1957  "Written block @%llu (%s/%llu/%d)"
1958  " found in hash table, %c.\n",
1959  (unsigned long long)bytenr,
1960  dev_state->name,
1961  (unsigned long long)dev_bytenr,
1962  block->mirror_num,
1963  btrfsic_get_block_type(state, block));
1964  }
1965 
1968  "ref_to_list: %cE, ref_from_list: %cE\n",
1969  list_empty(&block->ref_to_list) ? ' ' : '!',
1970  list_empty(&block->ref_from_list) ? ' ' : '!');
1971  if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1972  printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1973  " @%llu (%s/%llu/%d), old(gen=%llu,"
1974  " objectid=%llu, type=%d, offset=%llu),"
1975  " new(gen=%llu),"
1976  " which is referenced by most recent superblock"
1977  " (superblockgen=%llu)!\n",
1978  btrfsic_get_block_type(state, block),
1979  (unsigned long long)bytenr,
1980  dev_state->name,
1981  (unsigned long long)dev_bytenr,
1982  block->mirror_num,
1983  (unsigned long long)block->generation,
1984  (unsigned long long)
1985  le64_to_cpu(block->disk_key.objectid),
1986  block->disk_key.type,
1987  (unsigned long long)
1988  le64_to_cpu(block->disk_key.offset),
1989  (unsigned long long)
1990  le64_to_cpu(((struct btrfs_header *)
1991  mapped_datav[0])->generation),
1992  (unsigned long long)
1993  state->max_superblock_generation);
1994  btrfsic_dump_tree(state);
1995  }
1996 
1997  if (!block->is_iodone && !block->never_written) {
1998  printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1999  " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
2000  " which is not yet iodone!\n",
2001  btrfsic_get_block_type(state, block),
2002  (unsigned long long)bytenr,
2003  dev_state->name,
2004  (unsigned long long)dev_bytenr,
2005  block->mirror_num,
2006  (unsigned long long)block->generation,
2007  (unsigned long long)
2008  le64_to_cpu(((struct btrfs_header *)
2009  mapped_datav[0])->generation));
2010  /* it would not be safe to go on */
2011  btrfsic_dump_tree(state);
2012  goto continue_loop;
2013  }
2014 
2015  /*
2016  * Clear all references of this block. Do not free
2017  * the block itself even if is not referenced anymore
2018  * because it still carries valueable information
2019  * like whether it was ever written and IO completed.
2020  */
2021  list_for_each_safe(elem_ref_to, tmp_ref_to,
2022  &block->ref_to_list) {
2023  struct btrfsic_block_link *const l =
2024  list_entry(elem_ref_to,
2025  struct btrfsic_block_link,
2026  node_ref_to);
2027 
2029  btrfsic_print_rem_link(state, l);
2030  l->ref_cnt--;
2031  if (0 == l->ref_cnt) {
2032  list_del(&l->node_ref_to);
2033  list_del(&l->node_ref_from);
2034  btrfsic_block_link_hashtable_remove(l);
2035  btrfsic_block_link_free(l);
2036  }
2037  }
2038 
2039  if (block->is_superblock)
2040  ret = btrfsic_map_superblock(state, bytenr,
2041  processed_len,
2042  bdev, &block_ctx);
2043  else
2044  ret = btrfsic_map_block(state, bytenr, processed_len,
2045  &block_ctx, 0);
2046  if (ret) {
2048  "btrfsic: btrfsic_map_block(root @%llu)"
2049  " failed!\n", (unsigned long long)bytenr);
2050  goto continue_loop;
2051  }
2052  block_ctx.datav = mapped_datav;
2053  /* the following is required in case of writes to mirrors,
2054  * use the same that was used for the lookup */
2055  block_ctx.dev = dev_state;
2056  block_ctx.dev_bytenr = dev_bytenr;
2057 
2058  if (is_metadata || state->include_extent_data) {
2059  block->never_written = 0;
2060  block->iodone_w_error = 0;
2061  if (NULL != bio) {
2062  block->is_iodone = 0;
2063  BUG_ON(NULL == bio_is_patched);
2064  if (!*bio_is_patched) {
2065  block->orig_bio_bh_private =
2066  bio->bi_private;
2067  block->orig_bio_bh_end_io.bio =
2068  bio->bi_end_io;
2069  block->next_in_same_bio = NULL;
2070  bio->bi_private = block;
2071  bio->bi_end_io = btrfsic_bio_end_io;
2072  *bio_is_patched = 1;
2073  } else {
2074  struct btrfsic_block *chained_block =
2075  (struct btrfsic_block *)
2076  bio->bi_private;
2077 
2078  BUG_ON(NULL == chained_block);
2079  block->orig_bio_bh_private =
2080  chained_block->orig_bio_bh_private;
2081  block->orig_bio_bh_end_io.bio =
2082  chained_block->orig_bio_bh_end_io.
2083  bio;
2084  block->next_in_same_bio = chained_block;
2085  bio->bi_private = block;
2086  }
2087  } else if (NULL != bh) {
2088  block->is_iodone = 0;
2089  block->orig_bio_bh_private = bh->b_private;
2090  block->orig_bio_bh_end_io.bh = bh->b_end_io;
2091  block->next_in_same_bio = NULL;
2092  bh->b_private = block;
2093  bh->b_end_io = btrfsic_bh_end_io;
2094  } else {
2095  block->is_iodone = 1;
2096  block->orig_bio_bh_private = NULL;
2097  block->orig_bio_bh_end_io.bio = NULL;
2098  block->next_in_same_bio = NULL;
2099  }
2100  }
2101 
2102  block->flush_gen = dev_state->last_flush_gen + 1;
2104  if (is_metadata) {
2105  block->logical_bytenr = bytenr;
2106  block->is_metadata = 1;
2107  if (block->is_superblock) {
2110  ret = btrfsic_process_written_superblock(
2111  state,
2112  block,
2113  (struct btrfs_super_block *)
2114  mapped_datav[0]);
2115  if (state->print_mask &
2118  "[after new superblock is written]:\n");
2119  btrfsic_dump_tree_sub(state, block, 0);
2120  }
2121  } else {
2122  block->mirror_num = 0; /* unknown */
2123  ret = btrfsic_process_metablock(
2124  state,
2125  block,
2126  &block_ctx,
2127  0, 0);
2128  }
2129  if (ret)
2131  "btrfsic: btrfsic_process_metablock"
2132  "(root @%llu) failed!\n",
2133  (unsigned long long)dev_bytenr);
2134  } else {
2135  block->is_metadata = 0;
2136  block->mirror_num = 0; /* unknown */
2138  if (!state->include_extent_data
2139  && list_empty(&block->ref_from_list)) {
2140  /*
2141  * disk block is overwritten with extent
2142  * data (not meta data) and we are configured
2143  * to not include extent data: take the
2144  * chance and free the block's memory
2145  */
2146  btrfsic_block_hashtable_remove(block);
2147  list_del(&block->all_blocks_node);
2148  btrfsic_block_free(block);
2149  }
2150  }
2151  btrfsic_release_block_ctx(&block_ctx);
2152  } else {
2153  /* block has not been found in hash table */
2154  u64 bytenr;
2155 
2156  if (!is_metadata) {
2157  processed_len = state->datablock_size;
2159  printk(KERN_INFO "Written block (%s/%llu/?)"
2160  " !found in hash table, D.\n",
2161  dev_state->name,
2162  (unsigned long long)dev_bytenr);
2163  if (!state->include_extent_data) {
2164  /* ignore that written D block */
2165  goto continue_loop;
2166  }
2167 
2168  /* this is getting ugly for the
2169  * include_extent_data case... */
2170  bytenr = 0; /* unknown */
2171  block_ctx.start = bytenr;
2172  block_ctx.len = processed_len;
2173  block_ctx.mem_to_free = NULL;
2174  block_ctx.pagev = NULL;
2175  } else {
2176  processed_len = state->metablock_size;
2177  bytenr = le64_to_cpu(((struct btrfs_header *)
2178  mapped_datav[0])->bytenr);
2179  btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2180  dev_bytenr);
2183  "Written block @%llu (%s/%llu/?)"
2184  " !found in hash table, M.\n",
2185  (unsigned long long)bytenr,
2186  dev_state->name,
2187  (unsigned long long)dev_bytenr);
2188 
2189  ret = btrfsic_map_block(state, bytenr, processed_len,
2190  &block_ctx, 0);
2191  if (ret) {
2193  "btrfsic: btrfsic_map_block(root @%llu)"
2194  " failed!\n",
2195  (unsigned long long)dev_bytenr);
2196  goto continue_loop;
2197  }
2198  }
2199  block_ctx.datav = mapped_datav;
2200  /* the following is required in case of writes to mirrors,
2201  * use the same that was used for the lookup */
2202  block_ctx.dev = dev_state;
2203  block_ctx.dev_bytenr = dev_bytenr;
2204 
2205  block = btrfsic_block_alloc();
2206  if (NULL == block) {
2207  printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2208  btrfsic_release_block_ctx(&block_ctx);
2209  goto continue_loop;
2210  }
2211  block->dev_state = dev_state;
2212  block->dev_bytenr = dev_bytenr;
2213  block->logical_bytenr = bytenr;
2214  block->is_metadata = is_metadata;
2215  block->never_written = 0;
2216  block->iodone_w_error = 0;
2217  block->mirror_num = 0; /* unknown */
2218  block->flush_gen = dev_state->last_flush_gen + 1;
2220  if (NULL != bio) {
2221  block->is_iodone = 0;
2222  BUG_ON(NULL == bio_is_patched);
2223  if (!*bio_is_patched) {
2224  block->orig_bio_bh_private = bio->bi_private;
2225  block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2226  block->next_in_same_bio = NULL;
2227  bio->bi_private = block;
2228  bio->bi_end_io = btrfsic_bio_end_io;
2229  *bio_is_patched = 1;
2230  } else {
2231  struct btrfsic_block *chained_block =
2232  (struct btrfsic_block *)
2233  bio->bi_private;
2234 
2235  BUG_ON(NULL == chained_block);
2236  block->orig_bio_bh_private =
2237  chained_block->orig_bio_bh_private;
2238  block->orig_bio_bh_end_io.bio =
2239  chained_block->orig_bio_bh_end_io.bio;
2240  block->next_in_same_bio = chained_block;
2241  bio->bi_private = block;
2242  }
2243  } else if (NULL != bh) {
2244  block->is_iodone = 0;
2245  block->orig_bio_bh_private = bh->b_private;
2246  block->orig_bio_bh_end_io.bh = bh->b_end_io;
2247  block->next_in_same_bio = NULL;
2248  bh->b_private = block;
2249  bh->b_end_io = btrfsic_bh_end_io;
2250  } else {
2251  block->is_iodone = 1;
2252  block->orig_bio_bh_private = NULL;
2253  block->orig_bio_bh_end_io.bio = NULL;
2254  block->next_in_same_bio = NULL;
2255  }
2258  "New written %c-block @%llu (%s/%llu/%d)\n",
2259  is_metadata ? 'M' : 'D',
2260  (unsigned long long)block->logical_bytenr,
2261  block->dev_state->name,
2262  (unsigned long long)block->dev_bytenr,
2263  block->mirror_num);
2264  list_add(&block->all_blocks_node, &state->all_blocks_list);
2265  btrfsic_block_hashtable_add(block, &state->block_hashtable);
2266 
2267  if (is_metadata) {
2268  ret = btrfsic_process_metablock(state, block,
2269  &block_ctx, 0, 0);
2270  if (ret)
2272  "btrfsic: process_metablock(root @%llu)"
2273  " failed!\n",
2274  (unsigned long long)dev_bytenr);
2275  }
2276  btrfsic_release_block_ctx(&block_ctx);
2277  }
2278 
2279 continue_loop:
2280  BUG_ON(!processed_len);
2281  dev_bytenr += processed_len;
2282  mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2283  num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2284  goto again;
2285 }
2286 
2287 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2288 {
2289  struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2290  int iodone_w_error;
2291 
2292  /* mutex is not held! This is not save if IO is not yet completed
2293  * on umount */
2294  iodone_w_error = 0;
2295  if (bio_error_status)
2296  iodone_w_error = 1;
2297 
2298  BUG_ON(NULL == block);
2299  bp->bi_private = block->orig_bio_bh_private;
2300  bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2301 
2302  do {
2303  struct btrfsic_block *next_block;
2304  struct btrfsic_dev_state *const dev_state = block->dev_state;
2305 
2306  if ((dev_state->state->print_mask &
2309  "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2310  bio_error_status,
2311  btrfsic_get_block_type(dev_state->state, block),
2312  (unsigned long long)block->logical_bytenr,
2313  dev_state->name,
2314  (unsigned long long)block->dev_bytenr,
2315  block->mirror_num);
2316  next_block = block->next_in_same_bio;
2317  block->iodone_w_error = iodone_w_error;
2318  if (block->submit_bio_bh_rw & REQ_FLUSH) {
2319  dev_state->last_flush_gen++;
2320  if ((dev_state->state->print_mask &
2323  "bio_end_io() new %s flush_gen=%llu\n",
2324  dev_state->name,
2325  (unsigned long long)
2326  dev_state->last_flush_gen);
2327  }
2328  if (block->submit_bio_bh_rw & REQ_FUA)
2329  block->flush_gen = 0; /* FUA completed means block is
2330  * on disk */
2331  block->is_iodone = 1; /* for FLUSH, this releases the block */
2332  block = next_block;
2333  } while (NULL != block);
2334 
2335  bp->bi_end_io(bp, bio_error_status);
2336 }
2337 
2338 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2339 {
2340  struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2341  int iodone_w_error = !uptodate;
2342  struct btrfsic_dev_state *dev_state;
2343 
2344  BUG_ON(NULL == block);
2345  dev_state = block->dev_state;
2346  if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2348  "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2350  btrfsic_get_block_type(dev_state->state, block),
2351  (unsigned long long)block->logical_bytenr,
2352  block->dev_state->name,
2353  (unsigned long long)block->dev_bytenr,
2354  block->mirror_num);
2355 
2356  block->iodone_w_error = iodone_w_error;
2357  if (block->submit_bio_bh_rw & REQ_FLUSH) {
2358  dev_state->last_flush_gen++;
2359  if ((dev_state->state->print_mask &
2362  "bh_end_io() new %s flush_gen=%llu\n",
2363  dev_state->name,
2364  (unsigned long long)dev_state->last_flush_gen);
2365  }
2366  if (block->submit_bio_bh_rw & REQ_FUA)
2367  block->flush_gen = 0; /* FUA completed means block is on disk */
2368 
2369  bh->b_private = block->orig_bio_bh_private;
2370  bh->b_end_io = block->orig_bio_bh_end_io.bh;
2371  block->is_iodone = 1; /* for FLUSH, this releases the block */
2372  bh->b_end_io(bh, uptodate);
2373 }
2374 
2375 static int btrfsic_process_written_superblock(
2376  struct btrfsic_state *state,
2377  struct btrfsic_block *const superblock,
2378  struct btrfs_super_block *const super_hdr)
2379 {
2380  int pass;
2381 
2382  superblock->generation = btrfs_super_generation(super_hdr);
2383  if (!(superblock->generation > state->max_superblock_generation ||
2384  0 == state->max_superblock_generation)) {
2387  "btrfsic: superblock @%llu (%s/%llu/%d)"
2388  " with old gen %llu <= %llu\n",
2389  (unsigned long long)superblock->logical_bytenr,
2390  superblock->dev_state->name,
2391  (unsigned long long)superblock->dev_bytenr,
2392  superblock->mirror_num,
2393  (unsigned long long)
2394  btrfs_super_generation(super_hdr),
2395  (unsigned long long)
2396  state->max_superblock_generation);
2397  } else {
2400  "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2401  " with new gen %llu > %llu\n",
2402  (unsigned long long)superblock->logical_bytenr,
2403  superblock->dev_state->name,
2404  (unsigned long long)superblock->dev_bytenr,
2405  superblock->mirror_num,
2406  (unsigned long long)
2407  btrfs_super_generation(super_hdr),
2408  (unsigned long long)
2409  state->max_superblock_generation);
2410 
2411  state->max_superblock_generation =
2412  btrfs_super_generation(super_hdr);
2413  state->latest_superblock = superblock;
2414  }
2415 
2416  for (pass = 0; pass < 3; pass++) {
2417  int ret;
2418  u64 next_bytenr;
2419  struct btrfsic_block *next_block;
2420  struct btrfsic_block_data_ctx tmp_next_block_ctx;
2421  struct btrfsic_block_link *l;
2422  int num_copies;
2423  int mirror_num;
2424  const char *additional_string = NULL;
2425  struct btrfs_disk_key tmp_disk_key;
2426 
2427  tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
2428  tmp_disk_key.offset = 0;
2429 
2430  switch (pass) {
2431  case 0:
2432  tmp_disk_key.objectid =
2434  additional_string = "root ";
2435  next_bytenr = btrfs_super_root(super_hdr);
2436  if (state->print_mask &
2438  printk(KERN_INFO "root@%llu\n",
2439  (unsigned long long)next_bytenr);
2440  break;
2441  case 1:
2442  tmp_disk_key.objectid =
2444  additional_string = "chunk ";
2445  next_bytenr = btrfs_super_chunk_root(super_hdr);
2446  if (state->print_mask &
2448  printk(KERN_INFO "chunk@%llu\n",
2449  (unsigned long long)next_bytenr);
2450  break;
2451  case 2:
2452  tmp_disk_key.objectid =
2454  additional_string = "log ";
2455  next_bytenr = btrfs_super_log_root(super_hdr);
2456  if (0 == next_bytenr)
2457  continue;
2458  if (state->print_mask &
2460  printk(KERN_INFO "log@%llu\n",
2461  (unsigned long long)next_bytenr);
2462  break;
2463  }
2464 
2465  num_copies =
2466  btrfs_num_copies(&state->root->fs_info->mapping_tree,
2467  next_bytenr, BTRFS_SUPER_INFO_SIZE);
2469  printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2470  (unsigned long long)next_bytenr, num_copies);
2471  for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2472  int was_created;
2473 
2476  "btrfsic_process_written_superblock("
2477  "mirror_num=%d)\n", mirror_num);
2478  ret = btrfsic_map_block(state, next_bytenr,
2480  &tmp_next_block_ctx,
2481  mirror_num);
2482  if (ret) {
2484  "btrfsic: btrfsic_map_block(@%llu,"
2485  " mirror=%d) failed!\n",
2486  (unsigned long long)next_bytenr,
2487  mirror_num);
2488  return -1;
2489  }
2490 
2491  next_block = btrfsic_block_lookup_or_add(
2492  state,
2493  &tmp_next_block_ctx,
2494  additional_string,
2495  1, 0, 1,
2496  mirror_num,
2497  &was_created);
2498  if (NULL == next_block) {
2500  "btrfsic: error, kmalloc failed!\n");
2501  btrfsic_release_block_ctx(&tmp_next_block_ctx);
2502  return -1;
2503  }
2504 
2505  next_block->disk_key = tmp_disk_key;
2506  if (was_created)
2507  next_block->generation =
2509  l = btrfsic_block_link_lookup_or_add(
2510  state,
2511  &tmp_next_block_ctx,
2512  next_block,
2513  superblock,
2515  btrfsic_release_block_ctx(&tmp_next_block_ctx);
2516  if (NULL == l)
2517  return -1;
2518  }
2519  }
2520 
2521  if (-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)) {
2522  WARN_ON(1);
2523  btrfsic_dump_tree(state);
2524  }
2525 
2526  return 0;
2527 }
2528 
2529 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2530  struct btrfsic_block *const block,
2531  int recursion_level)
2532 {
2533  struct list_head *elem_ref_to;
2534  int ret = 0;
2535 
2536  if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2537  /*
2538  * Note that this situation can happen and does not
2539  * indicate an error in regular cases. It happens
2540  * when disk blocks are freed and later reused.
2541  * The check-integrity module is not aware of any
2542  * block free operations, it just recognizes block
2543  * write operations. Therefore it keeps the linkage
2544  * information for a block until a block is
2545  * rewritten. This can temporarily cause incorrect
2546  * and even circular linkage informations. This
2547  * causes no harm unless such blocks are referenced
2548  * by the most recent super block.
2549  */
2552  "btrfsic: abort cyclic linkage (case 1).\n");
2553 
2554  return ret;
2555  }
2556 
2557  /*
2558  * This algorithm is recursive because the amount of used stack
2559  * space is very small and the max recursion depth is limited.
2560  */
2561  list_for_each(elem_ref_to, &block->ref_to_list) {
2562  const struct btrfsic_block_link *const l =
2563  list_entry(elem_ref_to, struct btrfsic_block_link,
2564  node_ref_to);
2565 
2568  "rl=%d, %c @%llu (%s/%llu/%d)"
2569  " %u* refers to %c @%llu (%s/%llu/%d)\n",
2570  recursion_level,
2571  btrfsic_get_block_type(state, block),
2572  (unsigned long long)block->logical_bytenr,
2573  block->dev_state->name,
2574  (unsigned long long)block->dev_bytenr,
2575  block->mirror_num,
2576  l->ref_cnt,
2577  btrfsic_get_block_type(state, l->block_ref_to),
2578  (unsigned long long)
2579  l->block_ref_to->logical_bytenr,
2580  l->block_ref_to->dev_state->name,
2581  (unsigned long long)l->block_ref_to->dev_bytenr,
2582  l->block_ref_to->mirror_num);
2583  if (l->block_ref_to->never_written) {
2584  printk(KERN_INFO "btrfs: attempt to write superblock"
2585  " which references block %c @%llu (%s/%llu/%d)"
2586  " which is never written!\n",
2587  btrfsic_get_block_type(state, l->block_ref_to),
2588  (unsigned long long)
2589  l->block_ref_to->logical_bytenr,
2590  l->block_ref_to->dev_state->name,
2591  (unsigned long long)l->block_ref_to->dev_bytenr,
2592  l->block_ref_to->mirror_num);
2593  ret = -1;
2594  } else if (!l->block_ref_to->is_iodone) {
2595  printk(KERN_INFO "btrfs: attempt to write superblock"
2596  " which references block %c @%llu (%s/%llu/%d)"
2597  " which is not yet iodone!\n",
2598  btrfsic_get_block_type(state, l->block_ref_to),
2599  (unsigned long long)
2600  l->block_ref_to->logical_bytenr,
2601  l->block_ref_to->dev_state->name,
2602  (unsigned long long)l->block_ref_to->dev_bytenr,
2603  l->block_ref_to->mirror_num);
2604  ret = -1;
2605  } else if (l->block_ref_to->iodone_w_error) {
2606  printk(KERN_INFO "btrfs: attempt to write superblock"
2607  " which references block %c @%llu (%s/%llu/%d)"
2608  " which has write error!\n",
2609  btrfsic_get_block_type(state, l->block_ref_to),
2610  (unsigned long long)
2611  l->block_ref_to->logical_bytenr,
2612  l->block_ref_to->dev_state->name,
2613  (unsigned long long)l->block_ref_to->dev_bytenr,
2614  l->block_ref_to->mirror_num);
2615  ret = -1;
2616  } else if (l->parent_generation !=
2617  l->block_ref_to->generation &&
2619  l->parent_generation &&
2621  l->block_ref_to->generation) {
2622  printk(KERN_INFO "btrfs: attempt to write superblock"
2623  " which references block %c @%llu (%s/%llu/%d)"
2624  " with generation %llu !="
2625  " parent generation %llu!\n",
2626  btrfsic_get_block_type(state, l->block_ref_to),
2627  (unsigned long long)
2628  l->block_ref_to->logical_bytenr,
2629  l->block_ref_to->dev_state->name,
2630  (unsigned long long)l->block_ref_to->dev_bytenr,
2631  l->block_ref_to->mirror_num,
2632  (unsigned long long)l->block_ref_to->generation,
2633  (unsigned long long)l->parent_generation);
2634  ret = -1;
2635  } else if (l->block_ref_to->flush_gen >
2636  l->block_ref_to->dev_state->last_flush_gen) {
2637  printk(KERN_INFO "btrfs: attempt to write superblock"
2638  " which references block %c @%llu (%s/%llu/%d)"
2639  " which is not flushed out of disk's write cache"
2640  " (block flush_gen=%llu,"
2641  " dev->flush_gen=%llu)!\n",
2642  btrfsic_get_block_type(state, l->block_ref_to),
2643  (unsigned long long)
2644  l->block_ref_to->logical_bytenr,
2645  l->block_ref_to->dev_state->name,
2646  (unsigned long long)l->block_ref_to->dev_bytenr,
2647  l->block_ref_to->mirror_num,
2648  (unsigned long long)block->flush_gen,
2649  (unsigned long long)
2650  l->block_ref_to->dev_state->last_flush_gen);
2651  ret = -1;
2652  } else if (-1 == btrfsic_check_all_ref_blocks(state,
2653  l->block_ref_to,
2654  recursion_level +
2655  1)) {
2656  ret = -1;
2657  }
2658  }
2659 
2660  return ret;
2661 }
2662 
2663 static int btrfsic_is_block_ref_by_superblock(
2664  const struct btrfsic_state *state,
2665  const struct btrfsic_block *block,
2666  int recursion_level)
2667 {
2668  struct list_head *elem_ref_from;
2669 
2670  if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2671  /* refer to comment at "abort cyclic linkage (case 1)" */
2674  "btrfsic: abort cyclic linkage (case 2).\n");
2675 
2676  return 0;
2677  }
2678 
2679  /*
2680  * This algorithm is recursive because the amount of used stack space
2681  * is very small and the max recursion depth is limited.
2682  */
2683  list_for_each(elem_ref_from, &block->ref_from_list) {
2684  const struct btrfsic_block_link *const l =
2685  list_entry(elem_ref_from, struct btrfsic_block_link,
2686  node_ref_from);
2687 
2690  "rl=%d, %c @%llu (%s/%llu/%d)"
2691  " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2692  recursion_level,
2693  btrfsic_get_block_type(state, block),
2694  (unsigned long long)block->logical_bytenr,
2695  block->dev_state->name,
2696  (unsigned long long)block->dev_bytenr,
2697  block->mirror_num,
2698  l->ref_cnt,
2699  btrfsic_get_block_type(state, l->block_ref_from),
2700  (unsigned long long)
2701  l->block_ref_from->logical_bytenr,
2702  l->block_ref_from->dev_state->name,
2703  (unsigned long long)
2704  l->block_ref_from->dev_bytenr,
2705  l->block_ref_from->mirror_num);
2706  if (l->block_ref_from->is_superblock &&
2707  state->latest_superblock->dev_bytenr ==
2708  l->block_ref_from->dev_bytenr &&
2709  state->latest_superblock->dev_state->bdev ==
2710  l->block_ref_from->dev_state->bdev)
2711  return 1;
2712  else if (btrfsic_is_block_ref_by_superblock(state,
2713  l->block_ref_from,
2714  recursion_level +
2715  1))
2716  return 1;
2717  }
2718 
2719  return 0;
2720 }
2721 
2722 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2723  const struct btrfsic_block_link *l)
2724 {
2726  "Add %u* link from %c @%llu (%s/%llu/%d)"
2727  " to %c @%llu (%s/%llu/%d).\n",
2728  l->ref_cnt,
2729  btrfsic_get_block_type(state, l->block_ref_from),
2730  (unsigned long long)l->block_ref_from->logical_bytenr,
2731  l->block_ref_from->dev_state->name,
2732  (unsigned long long)l->block_ref_from->dev_bytenr,
2733  l->block_ref_from->mirror_num,
2734  btrfsic_get_block_type(state, l->block_ref_to),
2735  (unsigned long long)l->block_ref_to->logical_bytenr,
2736  l->block_ref_to->dev_state->name,
2737  (unsigned long long)l->block_ref_to->dev_bytenr,
2738  l->block_ref_to->mirror_num);
2739 }
2740 
2741 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2742  const struct btrfsic_block_link *l)
2743 {
2745  "Rem %u* link from %c @%llu (%s/%llu/%d)"
2746  " to %c @%llu (%s/%llu/%d).\n",
2747  l->ref_cnt,
2748  btrfsic_get_block_type(state, l->block_ref_from),
2749  (unsigned long long)l->block_ref_from->logical_bytenr,
2750  l->block_ref_from->dev_state->name,
2751  (unsigned long long)l->block_ref_from->dev_bytenr,
2752  l->block_ref_from->mirror_num,
2753  btrfsic_get_block_type(state, l->block_ref_to),
2754  (unsigned long long)l->block_ref_to->logical_bytenr,
2755  l->block_ref_to->dev_state->name,
2756  (unsigned long long)l->block_ref_to->dev_bytenr,
2757  l->block_ref_to->mirror_num);
2758 }
2759 
2760 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2761  const struct btrfsic_block *block)
2762 {
2763  if (block->is_superblock &&
2764  state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2765  state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2766  return 'S';
2767  else if (block->is_superblock)
2768  return 's';
2769  else if (block->is_metadata)
2770  return 'M';
2771  else
2772  return 'D';
2773 }
2774 
2775 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2776 {
2777  btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2778 }
2779 
2780 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2781  const struct btrfsic_block *block,
2782  int indent_level)
2783 {
2784  struct list_head *elem_ref_to;
2785  int indent_add;
2786  static char buf[80];
2787  int cursor_position;
2788 
2789  /*
2790  * Should better fill an on-stack buffer with a complete line and
2791  * dump it at once when it is time to print a newline character.
2792  */
2793 
2794  /*
2795  * This algorithm is recursive because the amount of used stack space
2796  * is very small and the max recursion depth is limited.
2797  */
2798  indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2799  btrfsic_get_block_type(state, block),
2800  (unsigned long long)block->logical_bytenr,
2801  block->dev_state->name,
2802  (unsigned long long)block->dev_bytenr,
2803  block->mirror_num);
2804  if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2805  printk("[...]\n");
2806  return;
2807  }
2808  printk(buf);
2809  indent_level += indent_add;
2810  if (list_empty(&block->ref_to_list)) {
2811  printk("\n");
2812  return;
2813  }
2814  if (block->mirror_num > 1 &&
2816  printk(" [...]\n");
2817  return;
2818  }
2819 
2820  cursor_position = indent_level;
2821  list_for_each(elem_ref_to, &block->ref_to_list) {
2822  const struct btrfsic_block_link *const l =
2823  list_entry(elem_ref_to, struct btrfsic_block_link,
2824  node_ref_to);
2825 
2826  while (cursor_position < indent_level) {
2827  printk(" ");
2828  cursor_position++;
2829  }
2830  if (l->ref_cnt > 1)
2831  indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2832  else
2833  indent_add = sprintf(buf, " --> ");
2834  if (indent_level + indent_add >
2836  printk("[...]\n");
2837  cursor_position = 0;
2838  continue;
2839  }
2840 
2841  printk(buf);
2842 
2843  btrfsic_dump_tree_sub(state, l->block_ref_to,
2844  indent_level + indent_add);
2845  cursor_position = 0;
2846  }
2847 }
2848 
2849 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2850  struct btrfsic_state *state,
2851  struct btrfsic_block_data_ctx *next_block_ctx,
2852  struct btrfsic_block *next_block,
2853  struct btrfsic_block *from_block,
2854  u64 parent_generation)
2855 {
2856  struct btrfsic_block_link *l;
2857 
2858  l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2859  next_block_ctx->dev_bytenr,
2860  from_block->dev_state->bdev,
2861  from_block->dev_bytenr,
2862  &state->block_link_hashtable);
2863  if (NULL == l) {
2864  l = btrfsic_block_link_alloc();
2865  if (NULL == l) {
2867  "btrfsic: error, kmalloc" " failed!\n");
2868  return NULL;
2869  }
2870 
2871  l->block_ref_to = next_block;
2872  l->block_ref_from = from_block;
2873  l->ref_cnt = 1;
2875 
2877  btrfsic_print_add_link(state, l);
2878 
2879  list_add(&l->node_ref_to, &from_block->ref_to_list);
2880  list_add(&l->node_ref_from, &next_block->ref_from_list);
2881 
2882  btrfsic_block_link_hashtable_add(l,
2883  &state->block_link_hashtable);
2884  } else {
2885  l->ref_cnt++;
2888  btrfsic_print_add_link(state, l);
2889  }
2890 
2891  return l;
2892 }
2893 
2894 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2895  struct btrfsic_state *state,
2896  struct btrfsic_block_data_ctx *block_ctx,
2897  const char *additional_string,
2898  int is_metadata,
2899  int is_iodone,
2900  int never_written,
2901  int mirror_num,
2902  int *was_created)
2903 {
2904  struct btrfsic_block *block;
2905 
2906  block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2907  block_ctx->dev_bytenr,
2908  &state->block_hashtable);
2909  if (NULL == block) {
2910  struct btrfsic_dev_state *dev_state;
2911 
2912  block = btrfsic_block_alloc();
2913  if (NULL == block) {
2914  printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2915  return NULL;
2916  }
2917  dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2918  if (NULL == dev_state) {
2920  "btrfsic: error, lookup dev_state failed!\n");
2921  btrfsic_block_free(block);
2922  return NULL;
2923  }
2924  block->dev_state = dev_state;
2925  block->dev_bytenr = block_ctx->dev_bytenr;
2926  block->logical_bytenr = block_ctx->start;
2927  block->is_metadata = is_metadata;
2928  block->is_iodone = is_iodone;
2929  block->never_written = never_written;
2930  block->mirror_num = mirror_num;
2933  "New %s%c-block @%llu (%s/%llu/%d)\n",
2934  additional_string,
2935  btrfsic_get_block_type(state, block),
2936  (unsigned long long)block->logical_bytenr,
2937  dev_state->name,
2938  (unsigned long long)block->dev_bytenr,
2939  mirror_num);
2940  list_add(&block->all_blocks_node, &state->all_blocks_list);
2941  btrfsic_block_hashtable_add(block, &state->block_hashtable);
2942  if (NULL != was_created)
2943  *was_created = 1;
2944  } else {
2945  if (NULL != was_created)
2946  *was_created = 0;
2947  }
2948 
2949  return block;
2950 }
2951 
2952 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2953  u64 bytenr,
2954  struct btrfsic_dev_state *dev_state,
2955  u64 dev_bytenr)
2956 {
2957  int num_copies;
2958  int mirror_num;
2959  int ret;
2960  struct btrfsic_block_data_ctx block_ctx;
2961  int match = 0;
2962 
2963  num_copies = btrfs_num_copies(&state->root->fs_info->mapping_tree,
2964  bytenr, state->metablock_size);
2965 
2966  for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2967  ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2968  &block_ctx, mirror_num);
2969  if (ret) {
2970  printk(KERN_INFO "btrfsic:"
2971  " btrfsic_map_block(logical @%llu,"
2972  " mirror %d) failed!\n",
2973  (unsigned long long)bytenr, mirror_num);
2974  continue;
2975  }
2976 
2977  if (dev_state->bdev == block_ctx.dev->bdev &&
2978  dev_bytenr == block_ctx.dev_bytenr) {
2979  match++;
2980  btrfsic_release_block_ctx(&block_ctx);
2981  break;
2982  }
2983  btrfsic_release_block_ctx(&block_ctx);
2984  }
2985 
2986  if (!match) {
2987  printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2988  " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2989  " phys_bytenr=%llu)!\n",
2990  (unsigned long long)bytenr, dev_state->name,
2991  (unsigned long long)dev_bytenr);
2992  for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2993  ret = btrfsic_map_block(state, bytenr,
2994  state->metablock_size,
2995  &block_ctx, mirror_num);
2996  if (ret)
2997  continue;
2998 
2999  printk(KERN_INFO "Read logical bytenr @%llu maps to"
3000  " (%s/%llu/%d)\n",
3001  (unsigned long long)bytenr,
3002  block_ctx.dev->name,
3003  (unsigned long long)block_ctx.dev_bytenr,
3004  mirror_num);
3005  }
3006  WARN_ON(1);
3007  }
3008 }
3009 
3010 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
3011  struct block_device *bdev)
3012 {
3013  struct btrfsic_dev_state *ds;
3014 
3015  ds = btrfsic_dev_state_hashtable_lookup(bdev,
3017  return ds;
3018 }
3020 int btrfsic_submit_bh(int rw, struct buffer_head *bh)
3021 {
3022  struct btrfsic_dev_state *dev_state;
3023 
3024  if (!btrfsic_is_initialized)
3025  return submit_bh(rw, bh);
3026 
3027  mutex_lock(&btrfsic_mutex);
3028  /* since btrfsic_submit_bh() might also be called before
3029  * btrfsic_mount(), this might return NULL */
3030  dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
3031 
3032  /* Only called to write the superblock (incl. FLUSH/FUA) */
3033  if (NULL != dev_state &&
3034  (rw & WRITE) && bh->b_size > 0) {
3035  u64 dev_bytenr;
3036 
3037  dev_bytenr = 4096 * bh->b_blocknr;
3038  if (dev_state->state->print_mask &
3041  "submit_bh(rw=0x%x, blocknr=%lu (bytenr %llu),"
3042  " size=%lu, data=%p, bdev=%p)\n",
3043  rw, (unsigned long)bh->b_blocknr,
3044  (unsigned long long)dev_bytenr,
3045  (unsigned long)bh->b_size, bh->b_data,
3046  bh->b_bdev);
3047  btrfsic_process_written_block(dev_state, dev_bytenr,
3048  &bh->b_data, 1, NULL,
3049  NULL, bh, rw);
3050  } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3051  if (dev_state->state->print_mask &
3054  "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
3055  rw, bh->b_bdev);
3056  if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3057  if ((dev_state->state->print_mask &
3061  "btrfsic_submit_bh(%s) with FLUSH"
3062  " but dummy block already in use"
3063  " (ignored)!\n",
3064  dev_state->name);
3065  } else {
3066  struct btrfsic_block *const block =
3067  &dev_state->dummy_block_for_bio_bh_flush;
3068 
3069  block->is_iodone = 0;
3070  block->never_written = 0;
3071  block->iodone_w_error = 0;
3072  block->flush_gen = dev_state->last_flush_gen + 1;
3073  block->submit_bio_bh_rw = rw;
3074  block->orig_bio_bh_private = bh->b_private;
3075  block->orig_bio_bh_end_io.bh = bh->b_end_io;
3076  block->next_in_same_bio = NULL;
3077  bh->b_private = block;
3078  bh->b_end_io = btrfsic_bh_end_io;
3079  }
3080  }
3081  mutex_unlock(&btrfsic_mutex);
3082  return submit_bh(rw, bh);
3083 }
3085 void btrfsic_submit_bio(int rw, struct bio *bio)
3086 {
3087  struct btrfsic_dev_state *dev_state;
3088 
3089  if (!btrfsic_is_initialized) {
3090  submit_bio(rw, bio);
3091  return;
3092  }
3093 
3094  mutex_lock(&btrfsic_mutex);
3095  /* since btrfsic_submit_bio() is also called before
3096  * btrfsic_mount(), this might return NULL */
3097  dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
3098  if (NULL != dev_state &&
3099  (rw & WRITE) && NULL != bio->bi_io_vec) {
3100  unsigned int i;
3101  u64 dev_bytenr;
3102  int bio_is_patched;
3103  char **mapped_datav;
3104 
3105  dev_bytenr = 512 * bio->bi_sector;
3106  bio_is_patched = 0;
3107  if (dev_state->state->print_mask &
3110  "submit_bio(rw=0x%x, bi_vcnt=%u,"
3111  " bi_sector=%lu (bytenr %llu), bi_bdev=%p)\n",
3112  rw, bio->bi_vcnt, (unsigned long)bio->bi_sector,
3113  (unsigned long long)dev_bytenr,
3114  bio->bi_bdev);
3115 
3116  mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt,
3117  GFP_NOFS);
3118  if (!mapped_datav)
3119  goto leave;
3120  for (i = 0; i < bio->bi_vcnt; i++) {
3121  BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3122  mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3123  if (!mapped_datav[i]) {
3124  while (i > 0) {
3125  i--;
3126  kunmap(bio->bi_io_vec[i].bv_page);
3127  }
3128  kfree(mapped_datav);
3129  goto leave;
3130  }
3133  (dev_state->state->print_mask &
3137  "#%u: page=%p, len=%u, offset=%u\n",
3138  i, bio->bi_io_vec[i].bv_page,
3139  bio->bi_io_vec[i].bv_len,
3140  bio->bi_io_vec[i].bv_offset);
3141  }
3142  btrfsic_process_written_block(dev_state, dev_bytenr,
3143  mapped_datav, bio->bi_vcnt,
3144  bio, &bio_is_patched,
3145  NULL, rw);
3146  while (i > 0) {
3147  i--;
3148  kunmap(bio->bi_io_vec[i].bv_page);
3149  }
3150  kfree(mapped_datav);
3151  } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3152  if (dev_state->state->print_mask &
3155  "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
3156  rw, bio->bi_bdev);
3157  if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3158  if ((dev_state->state->print_mask &
3162  "btrfsic_submit_bio(%s) with FLUSH"
3163  " but dummy block already in use"
3164  " (ignored)!\n",
3165  dev_state->name);
3166  } else {
3167  struct btrfsic_block *const block =
3168  &dev_state->dummy_block_for_bio_bh_flush;
3169 
3170  block->is_iodone = 0;
3171  block->never_written = 0;
3172  block->iodone_w_error = 0;
3173  block->flush_gen = dev_state->last_flush_gen + 1;
3174  block->submit_bio_bh_rw = rw;
3175  block->orig_bio_bh_private = bio->bi_private;
3176  block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3177  block->next_in_same_bio = NULL;
3178  bio->bi_private = block;
3179  bio->bi_end_io = btrfsic_bio_end_io;
3180  }
3181  }
3182 leave:
3183  mutex_unlock(&btrfsic_mutex);
3184 
3185  submit_bio(rw, bio);
3186 }
3188 int btrfsic_mount(struct btrfs_root *root,
3189  struct btrfs_fs_devices *fs_devices,
3190  int including_extent_data, u32 print_mask)
3191 {
3192  int ret;
3193  struct btrfsic_state *state;
3194  struct list_head *dev_head = &fs_devices->devices;
3195  struct btrfs_device *device;
3196 
3197  if (root->nodesize != root->leafsize) {
3199  "btrfsic: cannot handle nodesize %d != leafsize %d!\n",
3200  root->nodesize, root->leafsize);
3201  return -1;
3202  }
3203  if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3205  "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3206  root->nodesize, (unsigned long)PAGE_CACHE_SIZE);
3207  return -1;
3208  }
3209  if (root->leafsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3211  "btrfsic: cannot handle leafsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3212  root->leafsize, (unsigned long)PAGE_CACHE_SIZE);
3213  return -1;
3214  }
3215  if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3217  "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3218  root->sectorsize, (unsigned long)PAGE_CACHE_SIZE);
3219  return -1;
3220  }
3221  state = kzalloc(sizeof(*state), GFP_NOFS);
3222  if (NULL == state) {
3223  printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
3224  return -1;
3225  }
3226 
3227  if (!btrfsic_is_initialized) {
3228  mutex_init(&btrfsic_mutex);
3229  btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3230  btrfsic_is_initialized = 1;
3231  }
3232  mutex_lock(&btrfsic_mutex);
3233  state->root = root;
3234  state->print_mask = print_mask;
3235  state->include_extent_data = including_extent_data;
3236  state->csum_size = 0;
3237  state->metablock_size = root->nodesize;
3238  state->datablock_size = root->sectorsize;
3239  INIT_LIST_HEAD(&state->all_blocks_list);
3240  btrfsic_block_hashtable_init(&state->block_hashtable);
3241  btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3242  state->max_superblock_generation = 0;
3243  state->latest_superblock = NULL;
3244 
3245  list_for_each_entry(device, dev_head, dev_list) {
3246  struct btrfsic_dev_state *ds;
3247  char *p;
3248 
3249  if (!device->bdev || !device->name)
3250  continue;
3251 
3252  ds = btrfsic_dev_state_alloc();
3253  if (NULL == ds) {
3255  "btrfs check-integrity: kmalloc() failed!\n");
3256  mutex_unlock(&btrfsic_mutex);
3257  return -1;
3258  }
3259  ds->bdev = device->bdev;
3260  ds->state = state;
3261  bdevname(ds->bdev, ds->name);
3262  ds->name[BDEVNAME_SIZE - 1] = '\0';
3263  for (p = ds->name; *p != '\0'; p++);
3264  while (p > ds->name && *p != '/')
3265  p--;
3266  if (*p == '/')
3267  p++;
3268  strlcpy(ds->name, p, sizeof(ds->name));
3269  btrfsic_dev_state_hashtable_add(ds,
3271  }
3272 
3273  ret = btrfsic_process_superblock(state, fs_devices);
3274  if (0 != ret) {
3275  mutex_unlock(&btrfsic_mutex);
3276  btrfsic_unmount(root, fs_devices);
3277  return ret;
3278  }
3279 
3281  btrfsic_dump_database(state);
3283  btrfsic_dump_tree(state);
3284 
3285  mutex_unlock(&btrfsic_mutex);
3286  return 0;
3287 }
3289 void btrfsic_unmount(struct btrfs_root *root,
3290  struct btrfs_fs_devices *fs_devices)
3291 {
3292  struct list_head *elem_all;
3293  struct list_head *tmp_all;
3294  struct btrfsic_state *state;
3295  struct list_head *dev_head = &fs_devices->devices;
3296  struct btrfs_device *device;
3297 
3298  if (!btrfsic_is_initialized)
3299  return;
3300 
3301  mutex_lock(&btrfsic_mutex);
3302 
3303  state = NULL;
3304  list_for_each_entry(device, dev_head, dev_list) {
3305  struct btrfsic_dev_state *ds;
3306 
3307  if (!device->bdev || !device->name)
3308  continue;
3309 
3310  ds = btrfsic_dev_state_hashtable_lookup(
3311  device->bdev,
3313  if (NULL != ds) {
3314  state = ds->state;
3315  btrfsic_dev_state_hashtable_remove(ds);
3316  btrfsic_dev_state_free(ds);
3317  }
3318  }
3319 
3320  if (NULL == state) {
3322  "btrfsic: error, cannot find state information"
3323  " on umount!\n");
3324  mutex_unlock(&btrfsic_mutex);
3325  return;
3326  }
3327 
3328  /*
3329  * Don't care about keeping the lists' state up to date,
3330  * just free all memory that was allocated dynamically.
3331  * Free the blocks and the block_links.
3332  */
3333  list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3334  struct btrfsic_block *const b_all =
3335  list_entry(elem_all, struct btrfsic_block,
3336  all_blocks_node);
3337  struct list_head *elem_ref_to;
3338  struct list_head *tmp_ref_to;
3339 
3340  list_for_each_safe(elem_ref_to, tmp_ref_to,
3341  &b_all->ref_to_list) {
3342  struct btrfsic_block_link *const l =
3343  list_entry(elem_ref_to,
3344  struct btrfsic_block_link,
3345  node_ref_to);
3346 
3348  btrfsic_print_rem_link(state, l);
3349 
3350  l->ref_cnt--;
3351  if (0 == l->ref_cnt)
3352  btrfsic_block_link_free(l);
3353  }
3354 
3355  if (b_all->is_iodone || b_all->never_written)
3356  btrfsic_block_free(b_all);
3357  else
3358  printk(KERN_INFO "btrfs: attempt to free %c-block"
3359  " @%llu (%s/%llu/%d) on umount which is"
3360  " not yet iodone!\n",
3361  btrfsic_get_block_type(state, b_all),
3362  (unsigned long long)b_all->logical_bytenr,
3363  b_all->dev_state->name,
3364  (unsigned long long)b_all->dev_bytenr,
3365  b_all->mirror_num);
3366  }
3367 
3368  mutex_unlock(&btrfsic_mutex);
3369 
3370  kfree(state);
3371 }