Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
core-card.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2005-2007 Kristian Hoegsberg <[email protected]>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  */
18 
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/workqueue.h>
34 
35 #include <linux/atomic.h>
36 #include <asm/byteorder.h>
37 
38 #include "core.h"
39 
40 #define define_fw_printk_level(func, kern_level) \
41 void func(const struct fw_card *card, const char *fmt, ...) \
42 { \
43  struct va_format vaf; \
44  va_list args; \
45  \
46  va_start(args, fmt); \
47  vaf.fmt = fmt; \
48  vaf.va = &args; \
49  printk(kern_level KBUILD_MODNAME " %s: %pV", \
50  dev_name(card->device), &vaf); \
51  va_end(args); \
52 }
55 
57 {
58  int length;
59  u16 crc;
60 
61  length = (be32_to_cpu(block[0]) >> 16) & 0xff;
62  crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
63  *block |= cpu_to_be32(crc);
64 
65  return length;
66 }
67 
68 static DEFINE_MUTEX(card_mutex);
69 static LIST_HEAD(card_list);
70 
71 static LIST_HEAD(descriptor_list);
72 static int descriptor_count;
73 
74 static __be32 tmp_config_rom[256];
75 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
76 static size_t config_rom_length = 1 + 4 + 1 + 1;
77 
78 #define BIB_CRC(v) ((v) << 0)
79 #define BIB_CRC_LENGTH(v) ((v) << 16)
80 #define BIB_INFO_LENGTH(v) ((v) << 24)
81 #define BIB_BUS_NAME 0x31333934 /* "1394" */
82 #define BIB_LINK_SPEED(v) ((v) << 0)
83 #define BIB_GENERATION(v) ((v) << 4)
84 #define BIB_MAX_ROM(v) ((v) << 8)
85 #define BIB_MAX_RECEIVE(v) ((v) << 12)
86 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
87 #define BIB_PMC ((1) << 27)
88 #define BIB_BMC ((1) << 28)
89 #define BIB_ISC ((1) << 29)
90 #define BIB_CMC ((1) << 30)
91 #define BIB_IRMC ((1) << 31)
92 #define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
93 
94 /*
95  * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
96  * but we have to make it longer because there are many devices whose firmware
97  * is just too slow for that.
98  */
99 #define DEFAULT_SPLIT_TIMEOUT (2 * 8000)
100 
101 #define CANON_OUI 0x000085
102 
103 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
104 {
105  struct fw_descriptor *desc;
106  int i, j, k, length;
107 
108  /*
109  * Initialize contents of config rom buffer. On the OHCI
110  * controller, block reads to the config rom accesses the host
111  * memory, but quadlet read access the hardware bus info block
112  * registers. That's just crack, but it means we should make
113  * sure the contents of bus info block in host memory matches
114  * the version stored in the OHCI registers.
115  */
116 
117  config_rom[0] = cpu_to_be32(
118  BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
119  config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
120  config_rom[2] = cpu_to_be32(
121  BIB_LINK_SPEED(card->link_speed) |
122  BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
123  BIB_MAX_ROM(2) |
126  config_rom[3] = cpu_to_be32(card->guid >> 32);
127  config_rom[4] = cpu_to_be32(card->guid);
128 
129  /* Generate root directory. */
130  config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
131  i = 7;
132  j = 7 + descriptor_count;
133 
134  /* Generate root directory entries for descriptors. */
135  list_for_each_entry (desc, &descriptor_list, link) {
136  if (desc->immediate > 0)
137  config_rom[i++] = cpu_to_be32(desc->immediate);
138  config_rom[i] = cpu_to_be32(desc->key | (j - i));
139  i++;
140  j += desc->length;
141  }
142 
143  /* Update root directory length. */
144  config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
145 
146  /* End of root directory, now copy in descriptors. */
147  list_for_each_entry (desc, &descriptor_list, link) {
148  for (k = 0; k < desc->length; k++)
149  config_rom[i + k] = cpu_to_be32(desc->data[k]);
150  i += desc->length;
151  }
152 
153  /* Calculate CRCs for all blocks in the config rom. This
154  * assumes that CRC length and info length are identical for
155  * the bus info block, which is always the case for this
156  * implementation. */
157  for (i = 0; i < j; i += length + 1)
158  length = fw_compute_block_crc(config_rom + i);
159 
160  WARN_ON(j != config_rom_length);
161 }
162 
163 static void update_config_roms(void)
164 {
165  struct fw_card *card;
166 
167  list_for_each_entry (card, &card_list, link) {
168  generate_config_rom(card, tmp_config_rom);
169  card->driver->set_config_rom(card, tmp_config_rom,
170  config_rom_length);
171  }
172 }
173 
174 static size_t required_space(struct fw_descriptor *desc)
175 {
176  /* descriptor + entry into root dir + optional immediate entry */
177  return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
178 }
179 
181 {
182  size_t i;
183  int ret;
184 
185  /*
186  * Check descriptor is valid; the length of all blocks in the
187  * descriptor has to add up to exactly the length of the
188  * block.
189  */
190  i = 0;
191  while (i < desc->length)
192  i += (desc->data[i] >> 16) + 1;
193 
194  if (i != desc->length)
195  return -EINVAL;
196 
197  mutex_lock(&card_mutex);
198 
199  if (config_rom_length + required_space(desc) > 256) {
200  ret = -EBUSY;
201  } else {
202  list_add_tail(&desc->link, &descriptor_list);
203  config_rom_length += required_space(desc);
204  descriptor_count++;
205  if (desc->immediate > 0)
206  descriptor_count++;
207  update_config_roms();
208  ret = 0;
209  }
210 
211  mutex_unlock(&card_mutex);
212 
213  return ret;
214 }
216 
218 {
219  mutex_lock(&card_mutex);
220 
221  list_del(&desc->link);
222  config_rom_length -= required_space(desc);
223  descriptor_count--;
224  if (desc->immediate > 0)
225  descriptor_count--;
226  update_config_roms();
227 
228  mutex_unlock(&card_mutex);
229 }
231 
232 static int reset_bus(struct fw_card *card, bool short_reset)
233 {
234  int reg = short_reset ? 5 : 1;
235  int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
236 
237  return card->driver->update_phy_reg(card, reg, 0, bit);
238 }
239 
240 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
241 {
242  /* We don't try hard to sort out requests of long vs. short resets. */
243  card->br_short = short_reset;
244 
245  /* Use an arbitrary short delay to combine multiple reset requests. */
246  fw_card_get(card);
248  delayed ? DIV_ROUND_UP(HZ, 100) : 0))
249  fw_card_put(card);
250 }
252 
253 static void br_work(struct work_struct *work)
254 {
255  struct fw_card *card = container_of(work, struct fw_card, br_work.work);
256 
257  /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
258  if (card->reset_jiffies != 0 &&
259  time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
260  if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
261  fw_card_put(card);
262  return;
263  }
264 
267  reset_bus(card, card->br_short);
268  fw_card_put(card);
269 }
270 
271 static void allocate_broadcast_channel(struct fw_card *card, int generation)
272 {
273  int channel, bandwidth = 0;
274 
275  if (!card->broadcast_channel_allocated) {
276  fw_iso_resource_manage(card, generation, 1ULL << 31,
277  &channel, &bandwidth, true);
278  if (channel != 31) {
279  fw_notice(card, "failed to allocate broadcast channel\n");
280  return;
281  }
282  card->broadcast_channel_allocated = true;
283  }
284 
285  device_for_each_child(card->device, (void *)(long)generation,
287 }
288 
289 static const char gap_count_table[] = {
290  63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
291 };
292 
293 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
294 {
295  fw_card_get(card);
296  if (!schedule_delayed_work(&card->bm_work, delay))
297  fw_card_put(card);
298 }
299 
300 static void bm_work(struct work_struct *work)
301 {
302  struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
303  struct fw_device *root_device, *irm_device;
304  struct fw_node *root_node;
305  int root_id, new_root_id, irm_id, bm_id, local_id;
306  int gap_count, generation, grace, rcode;
307  bool do_reset = false;
308  bool root_device_is_running;
309  bool root_device_is_cmc;
310  bool irm_is_1394_1995_only;
311  bool keep_this_irm;
312  __be32 transaction_data[2];
313 
314  spin_lock_irq(&card->lock);
315 
316  if (card->local_node == NULL) {
317  spin_unlock_irq(&card->lock);
318  goto out_put_card;
319  }
320 
321  generation = card->generation;
322 
323  root_node = card->root_node;
324  fw_node_get(root_node);
325  root_device = root_node->data;
326  root_device_is_running = root_device &&
327  atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
328  root_device_is_cmc = root_device && root_device->cmc;
329 
330  irm_device = card->irm_node->data;
331  irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
332  (irm_device->config_rom[2] & 0x000000f0) == 0;
333 
334  /* Canon MV5i works unreliably if it is not root node. */
335  keep_this_irm = irm_device && irm_device->config_rom &&
336  irm_device->config_rom[3] >> 8 == CANON_OUI;
337 
338  root_id = root_node->node_id;
339  irm_id = card->irm_node->node_id;
340  local_id = card->local_node->node_id;
341 
342  grace = time_after64(get_jiffies_64(),
343  card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
344 
345  if ((is_next_generation(generation, card->bm_generation) &&
346  !card->bm_abdicate) ||
347  (card->bm_generation != generation && grace)) {
348  /*
349  * This first step is to figure out who is IRM and
350  * then try to become bus manager. If the IRM is not
351  * well defined (e.g. does not have an active link
352  * layer or does not responds to our lock request, we
353  * will have to do a little vigilante bus management.
354  * In that case, we do a goto into the gap count logic
355  * so that when we do the reset, we still optimize the
356  * gap count. That could well save a reset in the
357  * next generation.
358  */
359 
360  if (!card->irm_node->link_on) {
361  new_root_id = local_id;
362  fw_notice(card, "%s, making local node (%02x) root\n",
363  "IRM has link off", new_root_id);
364  goto pick_me;
365  }
366 
367  if (irm_is_1394_1995_only && !keep_this_irm) {
368  new_root_id = local_id;
369  fw_notice(card, "%s, making local node (%02x) root\n",
370  "IRM is not 1394a compliant", new_root_id);
371  goto pick_me;
372  }
373 
374  transaction_data[0] = cpu_to_be32(0x3f);
375  transaction_data[1] = cpu_to_be32(local_id);
376 
377  spin_unlock_irq(&card->lock);
378 
380  irm_id, generation, SCODE_100,
382  transaction_data, 8);
383 
384  if (rcode == RCODE_GENERATION)
385  /* Another bus reset, BM work has been rescheduled. */
386  goto out;
387 
388  bm_id = be32_to_cpu(transaction_data[0]);
389 
390  spin_lock_irq(&card->lock);
391  if (rcode == RCODE_COMPLETE && generation == card->generation)
392  card->bm_node_id =
393  bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
394  spin_unlock_irq(&card->lock);
395 
396  if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
397  /* Somebody else is BM. Only act as IRM. */
398  if (local_id == irm_id)
399  allocate_broadcast_channel(card, generation);
400 
401  goto out;
402  }
403 
404  if (rcode == RCODE_SEND_ERROR) {
405  /*
406  * We have been unable to send the lock request due to
407  * some local problem. Let's try again later and hope
408  * that the problem has gone away by then.
409  */
411  goto out;
412  }
413 
414  spin_lock_irq(&card->lock);
415 
416  if (rcode != RCODE_COMPLETE && !keep_this_irm) {
417  /*
418  * The lock request failed, maybe the IRM
419  * isn't really IRM capable after all. Let's
420  * do a bus reset and pick the local node as
421  * root, and thus, IRM.
422  */
423  new_root_id = local_id;
424  fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
425  fw_rcode_string(rcode), new_root_id);
426  goto pick_me;
427  }
428  } else if (card->bm_generation != generation) {
429  /*
430  * We weren't BM in the last generation, and the last
431  * bus reset is less than 125ms ago. Reschedule this job.
432  */
433  spin_unlock_irq(&card->lock);
435  goto out;
436  }
437 
438  /*
439  * We're bus manager for this generation, so next step is to
440  * make sure we have an active cycle master and do gap count
441  * optimization.
442  */
443  card->bm_generation = generation;
444 
445  if (root_device == NULL) {
446  /*
447  * Either link_on is false, or we failed to read the
448  * config rom. In either case, pick another root.
449  */
450  new_root_id = local_id;
451  } else if (!root_device_is_running) {
452  /*
453  * If we haven't probed this device yet, bail out now
454  * and let's try again once that's done.
455  */
456  spin_unlock_irq(&card->lock);
457  goto out;
458  } else if (root_device_is_cmc) {
459  /*
460  * We will send out a force root packet for this
461  * node as part of the gap count optimization.
462  */
463  new_root_id = root_id;
464  } else {
465  /*
466  * Current root has an active link layer and we
467  * successfully read the config rom, but it's not
468  * cycle master capable.
469  */
470  new_root_id = local_id;
471  }
472 
473  pick_me:
474  /*
475  * Pick a gap count from 1394a table E-1. The table doesn't cover
476  * the typically much larger 1394b beta repeater delays though.
477  */
478  if (!card->beta_repeaters_present &&
479  root_node->max_hops < ARRAY_SIZE(gap_count_table))
480  gap_count = gap_count_table[root_node->max_hops];
481  else
482  gap_count = 63;
483 
484  /*
485  * Finally, figure out if we should do a reset or not. If we have
486  * done less than 5 resets with the same physical topology and we
487  * have either a new root or a new gap count setting, let's do it.
488  */
489 
490  if (card->bm_retries++ < 5 &&
491  (card->gap_count != gap_count || new_root_id != root_id))
492  do_reset = true;
493 
494  spin_unlock_irq(&card->lock);
495 
496  if (do_reset) {
497  fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
498  new_root_id, gap_count);
499  fw_send_phy_config(card, new_root_id, generation, gap_count);
500  reset_bus(card, true);
501  /* Will allocate broadcast channel after the reset. */
502  goto out;
503  }
504 
505  if (root_device_is_cmc) {
506  /*
507  * Make sure that the cycle master sends cycle start packets.
508  */
509  transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
511  root_id, generation, SCODE_100,
513  transaction_data, 4);
514  if (rcode == RCODE_GENERATION)
515  goto out;
516  }
517 
518  if (local_id == irm_id)
519  allocate_broadcast_channel(card, generation);
520 
521  out:
522  fw_node_put(root_node);
523  out_put_card:
524  fw_card_put(card);
525 }
526 
527 void fw_card_initialize(struct fw_card *card,
528  const struct fw_card_driver *driver,
529  struct device *device)
530 {
531  static atomic_t index = ATOMIC_INIT(-1);
532 
533  card->index = atomic_inc_return(&index);
534  card->driver = driver;
535  card->device = device;
536  card->current_tlabel = 0;
537  card->tlabel_mask = 0;
539  card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
541  card->split_timeout_jiffies =
543  card->color = 0;
545 
546  kref_init(&card->kref);
547  init_completion(&card->done);
548  INIT_LIST_HEAD(&card->transaction_list);
549  INIT_LIST_HEAD(&card->phy_receiver_list);
550  spin_lock_init(&card->lock);
551 
552  card->local_node = NULL;
553 
554  INIT_DELAYED_WORK(&card->br_work, br_work);
555  INIT_DELAYED_WORK(&card->bm_work, bm_work);
556 }
558 
559 int fw_card_add(struct fw_card *card,
560  u32 max_receive, u32 link_speed, u64 guid)
561 {
562  int ret;
563 
564  card->max_receive = max_receive;
565  card->link_speed = link_speed;
566  card->guid = guid;
567 
568  mutex_lock(&card_mutex);
569 
570  generate_config_rom(card, tmp_config_rom);
571  ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
572  if (ret == 0)
573  list_add_tail(&card->link, &card_list);
574 
575  mutex_unlock(&card_mutex);
576 
577  return ret;
578 }
580 
581 /*
582  * The next few functions implement a dummy driver that is used once a card
583  * driver shuts down an fw_card. This allows the driver to cleanly unload,
584  * as all IO to the card will be handled (and failed) by the dummy driver
585  * instead of calling into the module. Only functions for iso context
586  * shutdown still need to be provided by the card driver.
587  *
588  * .read/write_csr() should never be called anymore after the dummy driver
589  * was bound since they are only used within request handler context.
590  * .set_config_rom() is never called since the card is taken out of card_list
591  * before switching to the dummy driver.
592  */
593 
594 static int dummy_read_phy_reg(struct fw_card *card, int address)
595 {
596  return -ENODEV;
597 }
598 
599 static int dummy_update_phy_reg(struct fw_card *card, int address,
600  int clear_bits, int set_bits)
601 {
602  return -ENODEV;
603 }
604 
605 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
606 {
607  packet->callback(packet, card, RCODE_CANCELLED);
608 }
609 
610 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
611 {
612  packet->callback(packet, card, RCODE_CANCELLED);
613 }
614 
615 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
616 {
617  return -ENOENT;
618 }
619 
620 static int dummy_enable_phys_dma(struct fw_card *card,
621  int node_id, int generation)
622 {
623  return -ENODEV;
624 }
625 
626 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
627  int type, int channel, size_t header_size)
628 {
629  return ERR_PTR(-ENODEV);
630 }
631 
632 static int dummy_start_iso(struct fw_iso_context *ctx,
633  s32 cycle, u32 sync, u32 tags)
634 {
635  return -ENODEV;
636 }
637 
638 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
639 {
640  return -ENODEV;
641 }
642 
643 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
644  struct fw_iso_buffer *buffer, unsigned long payload)
645 {
646  return -ENODEV;
647 }
648 
649 static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
650 {
651 }
652 
653 static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
654 {
655  return -ENODEV;
656 }
657 
658 static const struct fw_card_driver dummy_driver_template = {
659  .read_phy_reg = dummy_read_phy_reg,
660  .update_phy_reg = dummy_update_phy_reg,
661  .send_request = dummy_send_request,
662  .send_response = dummy_send_response,
663  .cancel_packet = dummy_cancel_packet,
664  .enable_phys_dma = dummy_enable_phys_dma,
665  .allocate_iso_context = dummy_allocate_iso_context,
666  .start_iso = dummy_start_iso,
667  .set_iso_channels = dummy_set_iso_channels,
668  .queue_iso = dummy_queue_iso,
669  .flush_queue_iso = dummy_flush_queue_iso,
670  .flush_iso_completions = dummy_flush_iso_completions,
671 };
672 
673 void fw_card_release(struct kref *kref)
674 {
675  struct fw_card *card = container_of(kref, struct fw_card, kref);
676 
677  complete(&card->done);
678 }
680 
681 void fw_core_remove_card(struct fw_card *card)
682 {
683  struct fw_card_driver dummy_driver = dummy_driver_template;
684 
685  card->driver->update_phy_reg(card, 4,
687  fw_schedule_bus_reset(card, false, true);
688 
689  mutex_lock(&card_mutex);
690  list_del_init(&card->link);
691  mutex_unlock(&card_mutex);
692 
693  /* Switch off most of the card driver interface. */
694  dummy_driver.free_iso_context = card->driver->free_iso_context;
695  dummy_driver.stop_iso = card->driver->stop_iso;
696  card->driver = &dummy_driver;
697 
698  fw_destroy_nodes(card);
699 
700  /* Wait for all users, especially device workqueue jobs, to finish. */
701  fw_card_put(card);
702  wait_for_completion(&card->done);
703 
704  WARN_ON(!list_empty(&card->transaction_list));
705 }