Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dm-raid1.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2005-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-bio-record.h"
9 
10 #include <linux/init.h>
11 #include <linux/mempool.h>
12 #include <linux/module.h>
13 #include <linux/pagemap.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/device-mapper.h>
17 #include <linux/dm-io.h>
18 #include <linux/dm-dirty-log.h>
19 #include <linux/dm-kcopyd.h>
20 #include <linux/dm-region-hash.h>
21 
22 #define DM_MSG_PREFIX "raid1"
23 
24 #define MAX_RECOVERY 1 /* Maximum number of regions recovered in parallel. */
25 
26 #define DM_RAID1_HANDLE_ERRORS 0x01
27 #define errors_handled(p) ((p)->features & DM_RAID1_HANDLE_ERRORS)
28 
29 static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped);
30 
31 /*-----------------------------------------------------------------
32  * Mirror set structures.
33  *---------------------------------------------------------------*/
39 };
40 
41 struct mirror {
42  struct mirror_set *ms;
44  unsigned long error_type;
45  struct dm_dev *dev;
47 };
48 
49 struct mirror_set {
50  struct dm_target *ti;
51  struct list_head list;
52 
54 
55  spinlock_t lock; /* protects the lists */
56  struct bio_list reads;
57  struct bio_list writes;
59  struct bio_list holds; /* bios are waiting until suspend */
60 
61  struct dm_region_hash *rh;
65 
66  /* recovery */
68  int in_sync;
72 
73  atomic_t default_mirror; /* Default mirror */
74 
77  struct timer_list timer;
78  unsigned long timer_pending;
79 
81 
82  unsigned nr_mirrors;
83  struct mirror mirror[0];
84 };
85 
86 static void wakeup_mirrord(void *context)
87 {
88  struct mirror_set *ms = context;
89 
91 }
92 
93 static void delayed_wake_fn(unsigned long data)
94 {
95  struct mirror_set *ms = (struct mirror_set *) data;
96 
97  clear_bit(0, &ms->timer_pending);
98  wakeup_mirrord(ms);
99 }
100 
101 static void delayed_wake(struct mirror_set *ms)
102 {
103  if (test_and_set_bit(0, &ms->timer_pending))
104  return;
105 
106  ms->timer.expires = jiffies + HZ / 5;
107  ms->timer.data = (unsigned long) ms;
108  ms->timer.function = delayed_wake_fn;
109  add_timer(&ms->timer);
110 }
111 
112 static void wakeup_all_recovery_waiters(void *context)
113 {
114  wake_up_all(&_kmirrord_recovery_stopped);
115 }
116 
117 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw)
118 {
119  unsigned long flags;
120  int should_wake = 0;
121  struct bio_list *bl;
122 
123  bl = (rw == WRITE) ? &ms->writes : &ms->reads;
124  spin_lock_irqsave(&ms->lock, flags);
125  should_wake = !(bl->head);
126  bio_list_add(bl, bio);
127  spin_unlock_irqrestore(&ms->lock, flags);
128 
129  if (should_wake)
130  wakeup_mirrord(ms);
131 }
132 
133 static void dispatch_bios(void *context, struct bio_list *bio_list)
134 {
135  struct mirror_set *ms = context;
136  struct bio *bio;
137 
138  while ((bio = bio_list_pop(bio_list)))
139  queue_bio(ms, bio, WRITE);
140 }
141 
142 #define MIN_READ_RECORDS 20
144  struct mirror *m;
146 };
147 
148 static struct kmem_cache *_dm_raid1_read_record_cache;
149 
150 /*
151  * Every mirror should look like this one.
152  */
153 #define DEFAULT_MIRROR 0
154 
155 /*
156  * This is yucky. We squirrel the mirror struct away inside
157  * bi_next for read/write buffers. This is safe since the bh
158  * doesn't get submitted to the lower levels of block layer.
159  */
160 static struct mirror *bio_get_m(struct bio *bio)
161 {
162  return (struct mirror *) bio->bi_next;
163 }
164 
165 static void bio_set_m(struct bio *bio, struct mirror *m)
166 {
167  bio->bi_next = (struct bio *) m;
168 }
169 
170 static struct mirror *get_default_mirror(struct mirror_set *ms)
171 {
172  return &ms->mirror[atomic_read(&ms->default_mirror)];
173 }
174 
175 static void set_default_mirror(struct mirror *m)
176 {
177  struct mirror_set *ms = m->ms;
178  struct mirror *m0 = &(ms->mirror[0]);
179 
180  atomic_set(&ms->default_mirror, m - m0);
181 }
182 
183 static struct mirror *get_valid_mirror(struct mirror_set *ms)
184 {
185  struct mirror *m;
186 
187  for (m = ms->mirror; m < ms->mirror + ms->nr_mirrors; m++)
188  if (!atomic_read(&m->error_count))
189  return m;
190 
191  return NULL;
192 }
193 
194 /* fail_mirror
195  * @m: mirror device to fail
196  * @error_type: one of the enum's, DM_RAID1_*_ERROR
197  *
198  * If errors are being handled, record the type of
199  * error encountered for this device. If this type
200  * of error has already been recorded, we can return;
201  * otherwise, we must signal userspace by triggering
202  * an event. Additionally, if the device is the
203  * primary device, we must choose a new primary, but
204  * only if the mirror is in-sync.
205  *
206  * This function must not block.
207  */
208 static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type)
209 {
210  struct mirror_set *ms = m->ms;
211  struct mirror *new;
212 
213  ms->leg_failure = 1;
214 
215  /*
216  * error_count is used for nothing more than a
217  * simple way to tell if a device has encountered
218  * errors.
219  */
220  atomic_inc(&m->error_count);
221 
222  if (test_and_set_bit(error_type, &m->error_type))
223  return;
224 
225  if (!errors_handled(ms))
226  return;
227 
228  if (m != get_default_mirror(ms))
229  goto out;
230 
231  if (!ms->in_sync) {
232  /*
233  * Better to issue requests to same failing device
234  * than to risk returning corrupt data.
235  */
236  DMERR("Primary mirror (%s) failed while out-of-sync: "
237  "Reads may fail.", m->dev->name);
238  goto out;
239  }
240 
241  new = get_valid_mirror(ms);
242  if (new)
243  set_default_mirror(new);
244  else
245  DMWARN("All sides of mirror have failed.");
246 
247 out:
249 }
250 
251 static int mirror_flush(struct dm_target *ti)
252 {
253  struct mirror_set *ms = ti->private;
254  unsigned long error_bits;
255 
256  unsigned int i;
257  struct dm_io_region io[ms->nr_mirrors];
258  struct mirror *m;
259  struct dm_io_request io_req = {
260  .bi_rw = WRITE_FLUSH,
261  .mem.type = DM_IO_KMEM,
262  .mem.ptr.addr = NULL,
263  .client = ms->io_client,
264  };
265 
266  for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++) {
267  io[i].bdev = m->dev->bdev;
268  io[i].sector = 0;
269  io[i].count = 0;
270  }
271 
272  error_bits = -1;
273  dm_io(&io_req, ms->nr_mirrors, io, &error_bits);
274  if (unlikely(error_bits != 0)) {
275  for (i = 0; i < ms->nr_mirrors; i++)
276  if (test_bit(i, &error_bits))
277  fail_mirror(ms->mirror + i,
279  return -EIO;
280  }
281 
282  return 0;
283 }
284 
285 /*-----------------------------------------------------------------
286  * Recovery.
287  *
288  * When a mirror is first activated we may find that some regions
289  * are in the no-sync state. We have to recover these by
290  * recopying from the default mirror to all the others.
291  *---------------------------------------------------------------*/
292 static void recovery_complete(int read_err, unsigned long write_err,
293  void *context)
294 {
295  struct dm_region *reg = context;
296  struct mirror_set *ms = dm_rh_region_context(reg);
297  int m, bit = 0;
298 
299  if (read_err) {
300  /* Read error means the failure of default mirror. */
301  DMERR_LIMIT("Unable to read primary mirror during recovery");
302  fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR);
303  }
304 
305  if (write_err) {
306  DMERR_LIMIT("Write error during recovery (error = 0x%lx)",
307  write_err);
308  /*
309  * Bits correspond to devices (excluding default mirror).
310  * The default mirror cannot change during recovery.
311  */
312  for (m = 0; m < ms->nr_mirrors; m++) {
313  if (&ms->mirror[m] == get_default_mirror(ms))
314  continue;
315  if (test_bit(bit, &write_err))
316  fail_mirror(ms->mirror + m,
318  bit++;
319  }
320  }
321 
322  dm_rh_recovery_end(reg, !(read_err || write_err));
323 }
324 
325 static int recover(struct mirror_set *ms, struct dm_region *reg)
326 {
327  int r;
328  unsigned i;
329  struct dm_io_region from, to[DM_KCOPYD_MAX_REGIONS], *dest;
330  struct mirror *m;
331  unsigned long flags = 0;
333  sector_t region_size = dm_rh_get_region_size(ms->rh);
334 
335  /* fill in the source */
336  m = get_default_mirror(ms);
337  from.bdev = m->dev->bdev;
338  from.sector = m->offset + dm_rh_region_to_sector(ms->rh, key);
339  if (key == (ms->nr_regions - 1)) {
340  /*
341  * The final region may be smaller than
342  * region_size.
343  */
344  from.count = ms->ti->len & (region_size - 1);
345  if (!from.count)
346  from.count = region_size;
347  } else
348  from.count = region_size;
349 
350  /* fill in the destinations */
351  for (i = 0, dest = to; i < ms->nr_mirrors; i++) {
352  if (&ms->mirror[i] == get_default_mirror(ms))
353  continue;
354 
355  m = ms->mirror + i;
356  dest->bdev = m->dev->bdev;
357  dest->sector = m->offset + dm_rh_region_to_sector(ms->rh, key);
358  dest->count = from.count;
359  dest++;
360  }
361 
362  /* hand to kcopyd */
363  if (!errors_handled(ms))
364  set_bit(DM_KCOPYD_IGNORE_ERROR, &flags);
365 
366  r = dm_kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to,
367  flags, recovery_complete, reg);
368 
369  return r;
370 }
371 
372 static void do_recovery(struct mirror_set *ms)
373 {
374  struct dm_region *reg;
375  struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
376  int r;
377 
378  /*
379  * Start quiescing some regions.
380  */
382 
383  /*
384  * Copy any already quiesced regions.
385  */
386  while ((reg = dm_rh_recovery_start(ms->rh))) {
387  r = recover(ms, reg);
388  if (r)
389  dm_rh_recovery_end(reg, 0);
390  }
391 
392  /*
393  * Update the in sync flag.
394  */
395  if (!ms->in_sync &&
396  (log->type->get_sync_count(log) == ms->nr_regions)) {
397  /* the sync is complete */
398  dm_table_event(ms->ti->table);
399  ms->in_sync = 1;
400  }
401 }
402 
403 /*-----------------------------------------------------------------
404  * Reads
405  *---------------------------------------------------------------*/
406 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector)
407 {
408  struct mirror *m = get_default_mirror(ms);
409 
410  do {
411  if (likely(!atomic_read(&m->error_count)))
412  return m;
413 
414  if (m-- == ms->mirror)
415  m += ms->nr_mirrors;
416  } while (m != get_default_mirror(ms));
417 
418  return NULL;
419 }
420 
421 static int default_ok(struct mirror *m)
422 {
423  struct mirror *default_mirror = get_default_mirror(m->ms);
424 
425  return !atomic_read(&default_mirror->error_count);
426 }
427 
428 static int mirror_available(struct mirror_set *ms, struct bio *bio)
429 {
430  struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
432 
433  if (log->type->in_sync(log, region, 0))
434  return choose_mirror(ms, bio->bi_sector) ? 1 : 0;
435 
436  return 0;
437 }
438 
439 /*
440  * remap a buffer to a particular mirror.
441  */
442 static sector_t map_sector(struct mirror *m, struct bio *bio)
443 {
444  if (unlikely(!bio->bi_size))
445  return 0;
446  return m->offset + dm_target_offset(m->ms->ti, bio->bi_sector);
447 }
448 
449 static void map_bio(struct mirror *m, struct bio *bio)
450 {
451  bio->bi_bdev = m->dev->bdev;
452  bio->bi_sector = map_sector(m, bio);
453 }
454 
455 static void map_region(struct dm_io_region *io, struct mirror *m,
456  struct bio *bio)
457 {
458  io->bdev = m->dev->bdev;
459  io->sector = map_sector(m, bio);
460  io->count = bio->bi_size >> 9;
461 }
462 
463 static void hold_bio(struct mirror_set *ms, struct bio *bio)
464 {
465  /*
466  * Lock is required to avoid race condition during suspend
467  * process.
468  */
469  spin_lock_irq(&ms->lock);
470 
471  if (atomic_read(&ms->suspend)) {
472  spin_unlock_irq(&ms->lock);
473 
474  /*
475  * If device is suspended, complete the bio.
476  */
477  if (dm_noflush_suspending(ms->ti))
479  else
480  bio_endio(bio, -EIO);
481  return;
482  }
483 
484  /*
485  * Hold bio until the suspend is complete.
486  */
487  bio_list_add(&ms->holds, bio);
488  spin_unlock_irq(&ms->lock);
489 }
490 
491 /*-----------------------------------------------------------------
492  * Reads
493  *---------------------------------------------------------------*/
494 static void read_callback(unsigned long error, void *context)
495 {
496  struct bio *bio = context;
497  struct mirror *m;
498 
499  m = bio_get_m(bio);
500  bio_set_m(bio, NULL);
501 
502  if (likely(!error)) {
503  bio_endio(bio, 0);
504  return;
505  }
506 
507  fail_mirror(m, DM_RAID1_READ_ERROR);
508 
509  if (likely(default_ok(m)) || mirror_available(m->ms, bio)) {
510  DMWARN_LIMIT("Read failure on mirror device %s. "
511  "Trying alternative device.",
512  m->dev->name);
513  queue_bio(m->ms, bio, bio_rw(bio));
514  return;
515  }
516 
517  DMERR_LIMIT("Read failure on mirror device %s. Failing I/O.",
518  m->dev->name);
519  bio_endio(bio, -EIO);
520 }
521 
522 /* Asynchronous read. */
523 static void read_async_bio(struct mirror *m, struct bio *bio)
524 {
525  struct dm_io_region io;
526  struct dm_io_request io_req = {
527  .bi_rw = READ,
528  .mem.type = DM_IO_BVEC,
529  .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
530  .notify.fn = read_callback,
531  .notify.context = bio,
532  .client = m->ms->io_client,
533  };
534 
535  map_region(&io, m, bio);
536  bio_set_m(bio, m);
537  BUG_ON(dm_io(&io_req, 1, &io, NULL));
538 }
539 
540 static inline int region_in_sync(struct mirror_set *ms, region_t region,
541  int may_block)
542 {
543  int state = dm_rh_get_state(ms->rh, region, may_block);
544  return state == DM_RH_CLEAN || state == DM_RH_DIRTY;
545 }
546 
547 static void do_reads(struct mirror_set *ms, struct bio_list *reads)
548 {
549  region_t region;
550  struct bio *bio;
551  struct mirror *m;
552 
553  while ((bio = bio_list_pop(reads))) {
554  region = dm_rh_bio_to_region(ms->rh, bio);
555  m = get_default_mirror(ms);
556 
557  /*
558  * We can only read balance if the region is in sync.
559  */
560  if (likely(region_in_sync(ms, region, 1)))
561  m = choose_mirror(ms, bio->bi_sector);
562  else if (m && atomic_read(&m->error_count))
563  m = NULL;
564 
565  if (likely(m))
566  read_async_bio(m, bio);
567  else
568  bio_endio(bio, -EIO);
569  }
570 }
571 
572 /*-----------------------------------------------------------------
573  * Writes.
574  *
575  * We do different things with the write io depending on the
576  * state of the region that it's in:
577  *
578  * SYNC: increment pending, use kcopyd to write to *all* mirrors
579  * RECOVERING: delay the io until recovery completes
580  * NOSYNC: increment pending, just write to the default mirror
581  *---------------------------------------------------------------*/
582 
583 
584 static void write_callback(unsigned long error, void *context)
585 {
586  unsigned i, ret = 0;
587  struct bio *bio = (struct bio *) context;
588  struct mirror_set *ms;
589  int should_wake = 0;
590  unsigned long flags;
591 
592  ms = bio_get_m(bio)->ms;
593  bio_set_m(bio, NULL);
594 
595  /*
596  * NOTE: We don't decrement the pending count here,
597  * instead it is done by the targets endio function.
598  * This way we handle both writes to SYNC and NOSYNC
599  * regions with the same code.
600  */
601  if (likely(!error)) {
602  bio_endio(bio, ret);
603  return;
604  }
605 
606  for (i = 0; i < ms->nr_mirrors; i++)
607  if (test_bit(i, &error))
608  fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR);
609 
610  /*
611  * Need to raise event. Since raising
612  * events can block, we need to do it in
613  * the main thread.
614  */
615  spin_lock_irqsave(&ms->lock, flags);
616  if (!ms->failures.head)
617  should_wake = 1;
618  bio_list_add(&ms->failures, bio);
619  spin_unlock_irqrestore(&ms->lock, flags);
620  if (should_wake)
621  wakeup_mirrord(ms);
622 }
623 
624 static void do_write(struct mirror_set *ms, struct bio *bio)
625 {
626  unsigned int i;
627  struct dm_io_region io[ms->nr_mirrors], *dest = io;
628  struct mirror *m;
629  struct dm_io_request io_req = {
630  .bi_rw = WRITE | (bio->bi_rw & WRITE_FLUSH_FUA),
631  .mem.type = DM_IO_BVEC,
632  .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
633  .notify.fn = write_callback,
634  .notify.context = bio,
635  .client = ms->io_client,
636  };
637 
638  if (bio->bi_rw & REQ_DISCARD) {
639  io_req.bi_rw |= REQ_DISCARD;
640  io_req.mem.type = DM_IO_KMEM;
641  io_req.mem.ptr.addr = NULL;
642  }
643 
644  for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++)
645  map_region(dest++, m, bio);
646 
647  /*
648  * Use default mirror because we only need it to retrieve the reference
649  * to the mirror set in write_callback().
650  */
651  bio_set_m(bio, get_default_mirror(ms));
652 
653  BUG_ON(dm_io(&io_req, ms->nr_mirrors, io, NULL));
654 }
655 
656 static void do_writes(struct mirror_set *ms, struct bio_list *writes)
657 {
658  int state;
659  struct bio *bio;
660  struct bio_list sync, nosync, recover, *this_list = NULL;
661  struct bio_list requeue;
662  struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
663  region_t region;
664 
665  if (!writes->head)
666  return;
667 
668  /*
669  * Classify each write.
670  */
671  bio_list_init(&sync);
672  bio_list_init(&nosync);
673  bio_list_init(&recover);
674  bio_list_init(&requeue);
675 
676  while ((bio = bio_list_pop(writes))) {
677  if ((bio->bi_rw & REQ_FLUSH) ||
678  (bio->bi_rw & REQ_DISCARD)) {
679  bio_list_add(&sync, bio);
680  continue;
681  }
682 
683  region = dm_rh_bio_to_region(ms->rh, bio);
684 
685  if (log->type->is_remote_recovering &&
686  log->type->is_remote_recovering(log, region)) {
687  bio_list_add(&requeue, bio);
688  continue;
689  }
690 
691  state = dm_rh_get_state(ms->rh, region, 1);
692  switch (state) {
693  case DM_RH_CLEAN:
694  case DM_RH_DIRTY:
695  this_list = &sync;
696  break;
697 
698  case DM_RH_NOSYNC:
699  this_list = &nosync;
700  break;
701 
702  case DM_RH_RECOVERING:
703  this_list = &recover;
704  break;
705  }
706 
707  bio_list_add(this_list, bio);
708  }
709 
710  /*
711  * Add bios that are delayed due to remote recovery
712  * back on to the write queue
713  */
714  if (unlikely(requeue.head)) {
715  spin_lock_irq(&ms->lock);
716  bio_list_merge(&ms->writes, &requeue);
717  spin_unlock_irq(&ms->lock);
718  delayed_wake(ms);
719  }
720 
721  /*
722  * Increment the pending counts for any regions that will
723  * be written to (writes to recover regions are going to
724  * be delayed).
725  */
726  dm_rh_inc_pending(ms->rh, &sync);
727  dm_rh_inc_pending(ms->rh, &nosync);
728 
729  /*
730  * If the flush fails on a previous call and succeeds here,
731  * we must not reset the log_failure variable. We need
732  * userspace interaction to do that.
733  */
734  ms->log_failure = dm_rh_flush(ms->rh) ? 1 : ms->log_failure;
735 
736  /*
737  * Dispatch io.
738  */
739  if (unlikely(ms->log_failure) && errors_handled(ms)) {
740  spin_lock_irq(&ms->lock);
741  bio_list_merge(&ms->failures, &sync);
742  spin_unlock_irq(&ms->lock);
743  wakeup_mirrord(ms);
744  } else
745  while ((bio = bio_list_pop(&sync)))
746  do_write(ms, bio);
747 
748  while ((bio = bio_list_pop(&recover)))
749  dm_rh_delay(ms->rh, bio);
750 
751  while ((bio = bio_list_pop(&nosync))) {
752  if (unlikely(ms->leg_failure) && errors_handled(ms)) {
753  spin_lock_irq(&ms->lock);
754  bio_list_add(&ms->failures, bio);
755  spin_unlock_irq(&ms->lock);
756  wakeup_mirrord(ms);
757  } else {
758  map_bio(get_default_mirror(ms), bio);
760  }
761  }
762 }
763 
764 static void do_failures(struct mirror_set *ms, struct bio_list *failures)
765 {
766  struct bio *bio;
767 
768  if (likely(!failures->head))
769  return;
770 
771  /*
772  * If the log has failed, unattempted writes are being
773  * put on the holds list. We can't issue those writes
774  * until a log has been marked, so we must store them.
775  *
776  * If a 'noflush' suspend is in progress, we can requeue
777  * the I/O's to the core. This give userspace a chance
778  * to reconfigure the mirror, at which point the core
779  * will reissue the writes. If the 'noflush' flag is
780  * not set, we have no choice but to return errors.
781  *
782  * Some writes on the failures list may have been
783  * submitted before the log failure and represent a
784  * failure to write to one of the devices. It is ok
785  * for us to treat them the same and requeue them
786  * as well.
787  */
788  while ((bio = bio_list_pop(failures))) {
789  if (!ms->log_failure) {
790  ms->in_sync = 0;
791  dm_rh_mark_nosync(ms->rh, bio);
792  }
793 
794  /*
795  * If all the legs are dead, fail the I/O.
796  * If we have been told to handle errors, hold the bio
797  * and wait for userspace to deal with the problem.
798  * Otherwise pretend that the I/O succeeded. (This would
799  * be wrong if the failed leg returned after reboot and
800  * got replicated back to the good legs.)
801  */
802  if (!get_valid_mirror(ms))
803  bio_endio(bio, -EIO);
804  else if (errors_handled(ms))
805  hold_bio(ms, bio);
806  else
807  bio_endio(bio, 0);
808  }
809 }
810 
811 static void trigger_event(struct work_struct *work)
812 {
813  struct mirror_set *ms =
814  container_of(work, struct mirror_set, trigger_event);
815 
816  dm_table_event(ms->ti->table);
817 }
818 
819 /*-----------------------------------------------------------------
820  * kmirrord
821  *---------------------------------------------------------------*/
822 static void do_mirror(struct work_struct *work)
823 {
824  struct mirror_set *ms = container_of(work, struct mirror_set,
825  kmirrord_work);
826  struct bio_list reads, writes, failures;
827  unsigned long flags;
828 
829  spin_lock_irqsave(&ms->lock, flags);
830  reads = ms->reads;
831  writes = ms->writes;
832  failures = ms->failures;
833  bio_list_init(&ms->reads);
834  bio_list_init(&ms->writes);
835  bio_list_init(&ms->failures);
836  spin_unlock_irqrestore(&ms->lock, flags);
837 
839  do_recovery(ms);
840  do_reads(ms, &reads);
841  do_writes(ms, &writes);
842  do_failures(ms, &failures);
843 }
844 
845 /*-----------------------------------------------------------------
846  * Target functions
847  *---------------------------------------------------------------*/
848 static struct mirror_set *alloc_context(unsigned int nr_mirrors,
849  uint32_t region_size,
850  struct dm_target *ti,
851  struct dm_dirty_log *dl)
852 {
853  size_t len;
854  struct mirror_set *ms = NULL;
855 
856  len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors);
857 
858  ms = kzalloc(len, GFP_KERNEL);
859  if (!ms) {
860  ti->error = "Cannot allocate mirror context";
861  return NULL;
862  }
863 
864  spin_lock_init(&ms->lock);
865  bio_list_init(&ms->reads);
866  bio_list_init(&ms->writes);
867  bio_list_init(&ms->failures);
868  bio_list_init(&ms->holds);
869 
870  ms->ti = ti;
871  ms->nr_mirrors = nr_mirrors;
872  ms->nr_regions = dm_sector_div_up(ti->len, region_size);
873  ms->in_sync = 0;
874  ms->log_failure = 0;
875  ms->leg_failure = 0;
876  atomic_set(&ms->suspend, 0);
878 
879  ms->read_record_pool = mempool_create_slab_pool(MIN_READ_RECORDS,
880  _dm_raid1_read_record_cache);
881 
882  if (!ms->read_record_pool) {
883  ti->error = "Error creating mirror read_record_pool";
884  kfree(ms);
885  return NULL;
886  }
887 
889  if (IS_ERR(ms->io_client)) {
890  ti->error = "Error creating dm_io client";
892  kfree(ms);
893  return NULL;
894  }
895 
896  ms->rh = dm_region_hash_create(ms, dispatch_bios, wakeup_mirrord,
897  wakeup_all_recovery_waiters,
898  ms->ti->begin, MAX_RECOVERY,
899  dl, region_size, ms->nr_regions);
900  if (IS_ERR(ms->rh)) {
901  ti->error = "Error creating dirty region hash";
904  kfree(ms);
905  return NULL;
906  }
907 
908  return ms;
909 }
910 
911 static void free_context(struct mirror_set *ms, struct dm_target *ti,
912  unsigned int m)
913 {
914  while (m--)
915  dm_put_device(ti, ms->mirror[m].dev);
916 
920  kfree(ms);
921 }
922 
923 static int get_mirror(struct mirror_set *ms, struct dm_target *ti,
924  unsigned int mirror, char **argv)
925 {
926  unsigned long long offset;
927  char dummy;
928 
929  if (sscanf(argv[1], "%llu%c", &offset, &dummy) != 1) {
930  ti->error = "Invalid offset";
931  return -EINVAL;
932  }
933 
934  if (dm_get_device(ti, argv[0], dm_table_get_mode(ti->table),
935  &ms->mirror[mirror].dev)) {
936  ti->error = "Device lookup failure";
937  return -ENXIO;
938  }
939 
940  ms->mirror[mirror].ms = ms;
941  atomic_set(&(ms->mirror[mirror].error_count), 0);
942  ms->mirror[mirror].error_type = 0;
943  ms->mirror[mirror].offset = offset;
944 
945  return 0;
946 }
947 
948 /*
949  * Create dirty log: log_type #log_params <log_params>
950  */
951 static struct dm_dirty_log *create_dirty_log(struct dm_target *ti,
952  unsigned argc, char **argv,
953  unsigned *args_used)
954 {
955  unsigned param_count;
956  struct dm_dirty_log *dl;
957  char dummy;
958 
959  if (argc < 2) {
960  ti->error = "Insufficient mirror log arguments";
961  return NULL;
962  }
963 
964  if (sscanf(argv[1], "%u%c", &param_count, &dummy) != 1) {
965  ti->error = "Invalid mirror log argument count";
966  return NULL;
967  }
968 
969  *args_used = 2 + param_count;
970 
971  if (argc < *args_used) {
972  ti->error = "Insufficient mirror log arguments";
973  return NULL;
974  }
975 
976  dl = dm_dirty_log_create(argv[0], ti, mirror_flush, param_count,
977  argv + 2);
978  if (!dl) {
979  ti->error = "Error creating mirror dirty log";
980  return NULL;
981  }
982 
983  return dl;
984 }
985 
986 static int parse_features(struct mirror_set *ms, unsigned argc, char **argv,
987  unsigned *args_used)
988 {
989  unsigned num_features;
990  struct dm_target *ti = ms->ti;
991  char dummy;
992 
993  *args_used = 0;
994 
995  if (!argc)
996  return 0;
997 
998  if (sscanf(argv[0], "%u%c", &num_features, &dummy) != 1) {
999  ti->error = "Invalid number of features";
1000  return -EINVAL;
1001  }
1002 
1003  argc--;
1004  argv++;
1005  (*args_used)++;
1006 
1007  if (num_features > argc) {
1008  ti->error = "Not enough arguments to support feature count";
1009  return -EINVAL;
1010  }
1011 
1012  if (!strcmp("handle_errors", argv[0]))
1014  else {
1015  ti->error = "Unrecognised feature requested";
1016  return -EINVAL;
1017  }
1018 
1019  (*args_used)++;
1020 
1021  return 0;
1022 }
1023 
1024 /*
1025  * Construct a mirror mapping:
1026  *
1027  * log_type #log_params <log_params>
1028  * #mirrors [mirror_path offset]{2,}
1029  * [#features <features>]
1030  *
1031  * log_type is "core" or "disk"
1032  * #log_params is between 1 and 3
1033  *
1034  * If present, features must be "handle_errors".
1035  */
1036 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1037 {
1038  int r;
1039  unsigned int nr_mirrors, m, args_used;
1040  struct mirror_set *ms;
1041  struct dm_dirty_log *dl;
1042  char dummy;
1043 
1044  dl = create_dirty_log(ti, argc, argv, &args_used);
1045  if (!dl)
1046  return -EINVAL;
1047 
1048  argv += args_used;
1049  argc -= args_used;
1050 
1051  if (!argc || sscanf(argv[0], "%u%c", &nr_mirrors, &dummy) != 1 ||
1052  nr_mirrors < 2 || nr_mirrors > DM_KCOPYD_MAX_REGIONS + 1) {
1053  ti->error = "Invalid number of mirrors";
1055  return -EINVAL;
1056  }
1057 
1058  argv++, argc--;
1059 
1060  if (argc < nr_mirrors * 2) {
1061  ti->error = "Too few mirror arguments";
1063  return -EINVAL;
1064  }
1065 
1066  ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl);
1067  if (!ms) {
1069  return -ENOMEM;
1070  }
1071 
1072  /* Get the mirror parameter sets */
1073  for (m = 0; m < nr_mirrors; m++) {
1074  r = get_mirror(ms, ti, m, argv);
1075  if (r) {
1076  free_context(ms, ti, m);
1077  return r;
1078  }
1079  argv += 2;
1080  argc -= 2;
1081  }
1082 
1083  ti->private = ms;
1084 
1086  if (r)
1087  goto err_free_context;
1088 
1089  ti->num_flush_requests = 1;
1090  ti->num_discard_requests = 1;
1092 
1093  ms->kmirrord_wq = alloc_workqueue("kmirrord",
1095  if (!ms->kmirrord_wq) {
1096  DMERR("couldn't start kmirrord");
1097  r = -ENOMEM;
1098  goto err_free_context;
1099  }
1100  INIT_WORK(&ms->kmirrord_work, do_mirror);
1101  init_timer(&ms->timer);
1102  ms->timer_pending = 0;
1103  INIT_WORK(&ms->trigger_event, trigger_event);
1104 
1105  r = parse_features(ms, argc, argv, &args_used);
1106  if (r)
1107  goto err_destroy_wq;
1108 
1109  argv += args_used;
1110  argc -= args_used;
1111 
1112  /*
1113  * Any read-balancing addition depends on the
1114  * DM_RAID1_HANDLE_ERRORS flag being present.
1115  * This is because the decision to balance depends
1116  * on the sync state of a region. If the above
1117  * flag is not present, we ignore errors; and
1118  * the sync state may be inaccurate.
1119  */
1120 
1121  if (argc) {
1122  ti->error = "Too many mirror arguments";
1123  r = -EINVAL;
1124  goto err_destroy_wq;
1125  }
1126 
1128  if (IS_ERR(ms->kcopyd_client)) {
1129  r = PTR_ERR(ms->kcopyd_client);
1130  goto err_destroy_wq;
1131  }
1132 
1133  wakeup_mirrord(ms);
1134  return 0;
1135 
1136 err_destroy_wq:
1138 err_free_context:
1139  free_context(ms, ti, ms->nr_mirrors);
1140  return r;
1141 }
1142 
1143 static void mirror_dtr(struct dm_target *ti)
1144 {
1145  struct mirror_set *ms = (struct mirror_set *) ti->private;
1146 
1147  del_timer_sync(&ms->timer);
1149  flush_work(&ms->trigger_event);
1152  free_context(ms, ti, ms->nr_mirrors);
1153 }
1154 
1155 /*
1156  * Mirror mapping function
1157  */
1158 static int mirror_map(struct dm_target *ti, struct bio *bio,
1159  union map_info *map_context)
1160 {
1161  int r, rw = bio_rw(bio);
1162  struct mirror *m;
1163  struct mirror_set *ms = ti->private;
1164  struct dm_raid1_read_record *read_record = NULL;
1165  struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1166 
1167  if (rw == WRITE) {
1168  /* Save region for mirror_end_io() handler */
1169  map_context->ll = dm_rh_bio_to_region(ms->rh, bio);
1170  queue_bio(ms, bio, rw);
1171  return DM_MAPIO_SUBMITTED;
1172  }
1173 
1174  r = log->type->in_sync(log, dm_rh_bio_to_region(ms->rh, bio), 0);
1175  if (r < 0 && r != -EWOULDBLOCK)
1176  return r;
1177 
1178  /*
1179  * If region is not in-sync queue the bio.
1180  */
1181  if (!r || (r == -EWOULDBLOCK)) {
1182  if (rw == READA)
1183  return -EWOULDBLOCK;
1184 
1185  queue_bio(ms, bio, rw);
1186  return DM_MAPIO_SUBMITTED;
1187  }
1188 
1189  /*
1190  * The region is in-sync and we can perform reads directly.
1191  * Store enough information so we can retry if it fails.
1192  */
1193  m = choose_mirror(ms, bio->bi_sector);
1194  if (unlikely(!m))
1195  return -EIO;
1196 
1197  read_record = mempool_alloc(ms->read_record_pool, GFP_NOIO);
1198  if (likely(read_record)) {
1199  dm_bio_record(&read_record->details, bio);
1200  map_context->ptr = read_record;
1201  read_record->m = m;
1202  }
1203 
1204  map_bio(m, bio);
1205 
1206  return DM_MAPIO_REMAPPED;
1207 }
1208 
1209 static int mirror_end_io(struct dm_target *ti, struct bio *bio,
1210  int error, union map_info *map_context)
1211 {
1212  int rw = bio_rw(bio);
1213  struct mirror_set *ms = (struct mirror_set *) ti->private;
1214  struct mirror *m = NULL;
1215  struct dm_bio_details *bd = NULL;
1216  struct dm_raid1_read_record *read_record = map_context->ptr;
1217 
1218  /*
1219  * We need to dec pending if this was a write.
1220  */
1221  if (rw == WRITE) {
1222  if (!(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD)))
1223  dm_rh_dec(ms->rh, map_context->ll);
1224  return error;
1225  }
1226 
1227  if (error == -EOPNOTSUPP)
1228  goto out;
1229 
1230  if ((error == -EWOULDBLOCK) && (bio->bi_rw & REQ_RAHEAD))
1231  goto out;
1232 
1233  if (unlikely(error)) {
1234  if (!read_record) {
1235  /*
1236  * There wasn't enough memory to record necessary
1237  * information for a retry or there was no other
1238  * mirror in-sync.
1239  */
1240  DMERR_LIMIT("Mirror read failed.");
1241  return -EIO;
1242  }
1243 
1244  m = read_record->m;
1245 
1246  DMERR("Mirror read failed from %s. Trying alternative device.",
1247  m->dev->name);
1248 
1249  fail_mirror(m, DM_RAID1_READ_ERROR);
1250 
1251  /*
1252  * A failed read is requeued for another attempt using an intact
1253  * mirror.
1254  */
1255  if (default_ok(m) || mirror_available(ms, bio)) {
1256  bd = &read_record->details;
1257 
1258  dm_bio_restore(bd, bio);
1259  mempool_free(read_record, ms->read_record_pool);
1260  map_context->ptr = NULL;
1261  queue_bio(ms, bio, rw);
1262  return 1;
1263  }
1264  DMERR("All replicated volumes dead, failing I/O");
1265  }
1266 
1267 out:
1268  if (read_record) {
1269  mempool_free(read_record, ms->read_record_pool);
1270  map_context->ptr = NULL;
1271  }
1272 
1273  return error;
1274 }
1275 
1276 static void mirror_presuspend(struct dm_target *ti)
1277 {
1278  struct mirror_set *ms = (struct mirror_set *) ti->private;
1279  struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1280 
1281  struct bio_list holds;
1282  struct bio *bio;
1283 
1284  atomic_set(&ms->suspend, 1);
1285 
1286  /*
1287  * Process bios in the hold list to start recovery waiting
1288  * for bios in the hold list. After the process, no bio has
1289  * a chance to be added in the hold list because ms->suspend
1290  * is set.
1291  */
1292  spin_lock_irq(&ms->lock);
1293  holds = ms->holds;
1294  bio_list_init(&ms->holds);
1295  spin_unlock_irq(&ms->lock);
1296 
1297  while ((bio = bio_list_pop(&holds)))
1298  hold_bio(ms, bio);
1299 
1300  /*
1301  * We must finish up all the work that we've
1302  * generated (i.e. recovery work).
1303  */
1304  dm_rh_stop_recovery(ms->rh);
1305 
1306  wait_event(_kmirrord_recovery_stopped,
1308 
1309  if (log->type->presuspend && log->type->presuspend(log))
1310  /* FIXME: need better error handling */
1311  DMWARN("log presuspend failed");
1312 
1313  /*
1314  * Now that recovery is complete/stopped and the
1315  * delayed bios are queued, we need to wait for
1316  * the worker thread to complete. This way,
1317  * we know that all of our I/O has been pushed.
1318  */
1320 }
1321 
1322 static void mirror_postsuspend(struct dm_target *ti)
1323 {
1324  struct mirror_set *ms = ti->private;
1325  struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1326 
1327  if (log->type->postsuspend && log->type->postsuspend(log))
1328  /* FIXME: need better error handling */
1329  DMWARN("log postsuspend failed");
1330 }
1331 
1332 static void mirror_resume(struct dm_target *ti)
1333 {
1334  struct mirror_set *ms = ti->private;
1335  struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1336 
1337  atomic_set(&ms->suspend, 0);
1338  if (log->type->resume && log->type->resume(log))
1339  /* FIXME: need better error handling */
1340  DMWARN("log resume failed");
1341  dm_rh_start_recovery(ms->rh);
1342 }
1343 
1344 /*
1345  * device_status_char
1346  * @m: mirror device/leg we want the status of
1347  *
1348  * We return one character representing the most severe error
1349  * we have encountered.
1350  * A => Alive - No failures
1351  * D => Dead - A write failure occurred leaving mirror out-of-sync
1352  * S => Sync - A sychronization failure occurred, mirror out-of-sync
1353  * R => Read - A read failure occurred, mirror data unaffected
1354  *
1355  * Returns: <char>
1356  */
1357 static char device_status_char(struct mirror *m)
1358 {
1359  if (!atomic_read(&(m->error_count)))
1360  return 'A';
1361 
1362  return (test_bit(DM_RAID1_FLUSH_ERROR, &(m->error_type))) ? 'F' :
1363  (test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' :
1364  (test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' :
1365  (test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U';
1366 }
1367 
1368 
1369 static int mirror_status(struct dm_target *ti, status_type_t type,
1370  unsigned status_flags, char *result, unsigned maxlen)
1371 {
1372  unsigned int m, sz = 0;
1373  struct mirror_set *ms = (struct mirror_set *) ti->private;
1374  struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1375  char buffer[ms->nr_mirrors + 1];
1376 
1377  switch (type) {
1378  case STATUSTYPE_INFO:
1379  DMEMIT("%d ", ms->nr_mirrors);
1380  for (m = 0; m < ms->nr_mirrors; m++) {
1381  DMEMIT("%s ", ms->mirror[m].dev->name);
1382  buffer[m] = device_status_char(&(ms->mirror[m]));
1383  }
1384  buffer[m] = '\0';
1385 
1386  DMEMIT("%llu/%llu 1 %s ",
1387  (unsigned long long)log->type->get_sync_count(log),
1388  (unsigned long long)ms->nr_regions, buffer);
1389 
1390  sz += log->type->status(log, type, result+sz, maxlen-sz);
1391 
1392  break;
1393 
1394  case STATUSTYPE_TABLE:
1395  sz = log->type->status(log, type, result, maxlen);
1396 
1397  DMEMIT("%d", ms->nr_mirrors);
1398  for (m = 0; m < ms->nr_mirrors; m++)
1399  DMEMIT(" %s %llu", ms->mirror[m].dev->name,
1400  (unsigned long long)ms->mirror[m].offset);
1401 
1402  if (ms->features & DM_RAID1_HANDLE_ERRORS)
1403  DMEMIT(" 1 handle_errors");
1404  }
1405 
1406  return 0;
1407 }
1408 
1409 static int mirror_iterate_devices(struct dm_target *ti,
1411 {
1412  struct mirror_set *ms = ti->private;
1413  int ret = 0;
1414  unsigned i;
1415 
1416  for (i = 0; !ret && i < ms->nr_mirrors; i++)
1417  ret = fn(ti, ms->mirror[i].dev,
1418  ms->mirror[i].offset, ti->len, data);
1419 
1420  return ret;
1421 }
1422 
1423 static struct target_type mirror_target = {
1424  .name = "mirror",
1425  .version = {1, 12, 1},
1426  .module = THIS_MODULE,
1427  .ctr = mirror_ctr,
1428  .dtr = mirror_dtr,
1429  .map = mirror_map,
1430  .end_io = mirror_end_io,
1431  .presuspend = mirror_presuspend,
1432  .postsuspend = mirror_postsuspend,
1433  .resume = mirror_resume,
1434  .status = mirror_status,
1435  .iterate_devices = mirror_iterate_devices,
1436 };
1437 
1438 static int __init dm_mirror_init(void)
1439 {
1440  int r;
1441 
1442  _dm_raid1_read_record_cache = KMEM_CACHE(dm_raid1_read_record, 0);
1443  if (!_dm_raid1_read_record_cache) {
1444  DMERR("Can't allocate dm_raid1_read_record cache");
1445  r = -ENOMEM;
1446  goto bad_cache;
1447  }
1448 
1449  r = dm_register_target(&mirror_target);
1450  if (r < 0) {
1451  DMERR("Failed to register mirror target");
1452  goto bad_target;
1453  }
1454 
1455  return 0;
1456 
1457 bad_target:
1458  kmem_cache_destroy(_dm_raid1_read_record_cache);
1459 bad_cache:
1460  return r;
1461 }
1462 
1463 static void __exit dm_mirror_exit(void)
1464 {
1465  dm_unregister_target(&mirror_target);
1466  kmem_cache_destroy(_dm_raid1_read_record_cache);
1467 }
1468 
1469 /* Module hooks */
1470 module_init(dm_mirror_init);
1471 module_exit(dm_mirror_exit);
1472 
1473 MODULE_DESCRIPTION(DM_NAME " mirror target");
1474 MODULE_AUTHOR("Joe Thornber");
1475 MODULE_LICENSE("GPL");