Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dm-service-time.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2007-2009 NEC Corporation. All Rights Reserved.
3  *
4  * Module Author: Kiyoshi Ueda
5  *
6  * This file is released under the GPL.
7  *
8  * Throughput oriented path selector.
9  */
10 
11 #include "dm.h"
12 #include "dm-path-selector.h"
13 
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 
17 #define DM_MSG_PREFIX "multipath service-time"
18 #define ST_MIN_IO 1
19 #define ST_MAX_RELATIVE_THROUGHPUT 100
20 #define ST_MAX_RELATIVE_THROUGHPUT_SHIFT 7
21 #define ST_MAX_INFLIGHT_SIZE ((size_t)-1 >> ST_MAX_RELATIVE_THROUGHPUT_SHIFT)
22 #define ST_VERSION "0.2.0"
23 
24 struct selector {
25  struct list_head valid_paths;
26  struct list_head failed_paths;
27 };
28 
29 struct path_info {
30  struct list_head list;
31  struct dm_path *path;
32  unsigned repeat_count;
34  atomic_t in_flight_size; /* Total size of in-flight I/Os */
35 };
36 
37 static struct selector *alloc_selector(void)
38 {
39  struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
40 
41  if (s) {
42  INIT_LIST_HEAD(&s->valid_paths);
43  INIT_LIST_HEAD(&s->failed_paths);
44  }
45 
46  return s;
47 }
48 
49 static int st_create(struct path_selector *ps, unsigned argc, char **argv)
50 {
51  struct selector *s = alloc_selector();
52 
53  if (!s)
54  return -ENOMEM;
55 
56  ps->context = s;
57  return 0;
58 }
59 
60 static void free_paths(struct list_head *paths)
61 {
62  struct path_info *pi, *next;
63 
64  list_for_each_entry_safe(pi, next, paths, list) {
65  list_del(&pi->list);
66  kfree(pi);
67  }
68 }
69 
70 static void st_destroy(struct path_selector *ps)
71 {
72  struct selector *s = ps->context;
73 
74  free_paths(&s->valid_paths);
75  free_paths(&s->failed_paths);
76  kfree(s);
77  ps->context = NULL;
78 }
79 
80 static int st_status(struct path_selector *ps, struct dm_path *path,
81  status_type_t type, char *result, unsigned maxlen)
82 {
83  unsigned sz = 0;
84  struct path_info *pi;
85 
86  if (!path)
87  DMEMIT("0 ");
88  else {
89  pi = path->pscontext;
90 
91  switch (type) {
92  case STATUSTYPE_INFO:
93  DMEMIT("%d %u ", atomic_read(&pi->in_flight_size),
95  break;
96  case STATUSTYPE_TABLE:
97  DMEMIT("%u %u ", pi->repeat_count,
99  break;
100  }
101  }
102 
103  return sz;
104 }
105 
106 static int st_add_path(struct path_selector *ps, struct dm_path *path,
107  int argc, char **argv, char **error)
108 {
109  struct selector *s = ps->context;
110  struct path_info *pi;
111  unsigned repeat_count = ST_MIN_IO;
112  unsigned relative_throughput = 1;
113  char dummy;
114 
115  /*
116  * Arguments: [<repeat_count> [<relative_throughput>]]
117  * <repeat_count>: The number of I/Os before switching path.
118  * If not given, default (ST_MIN_IO) is used.
119  * <relative_throughput>: The relative throughput value of
120  * the path among all paths in the path-group.
121  * The valid range: 0-<ST_MAX_RELATIVE_THROUGHPUT>
122  * If not given, minimum value '1' is used.
123  * If '0' is given, the path isn't selected while
124  * other paths having a positive value are
125  * available.
126  */
127  if (argc > 2) {
128  *error = "service-time ps: incorrect number of arguments";
129  return -EINVAL;
130  }
131 
132  if (argc && (sscanf(argv[0], "%u%c", &repeat_count, &dummy) != 1)) {
133  *error = "service-time ps: invalid repeat count";
134  return -EINVAL;
135  }
136 
137  if ((argc == 2) &&
138  (sscanf(argv[1], "%u%c", &relative_throughput, &dummy) != 1 ||
139  relative_throughput > ST_MAX_RELATIVE_THROUGHPUT)) {
140  *error = "service-time ps: invalid relative_throughput value";
141  return -EINVAL;
142  }
143 
144  /* allocate the path */
145  pi = kmalloc(sizeof(*pi), GFP_KERNEL);
146  if (!pi) {
147  *error = "service-time ps: Error allocating path context";
148  return -ENOMEM;
149  }
150 
151  pi->path = path;
154  atomic_set(&pi->in_flight_size, 0);
155 
156  path->pscontext = pi;
157 
158  list_add_tail(&pi->list, &s->valid_paths);
159 
160  return 0;
161 }
162 
163 static void st_fail_path(struct path_selector *ps, struct dm_path *path)
164 {
165  struct selector *s = ps->context;
166  struct path_info *pi = path->pscontext;
167 
168  list_move(&pi->list, &s->failed_paths);
169 }
170 
171 static int st_reinstate_path(struct path_selector *ps, struct dm_path *path)
172 {
173  struct selector *s = ps->context;
174  struct path_info *pi = path->pscontext;
175 
176  list_move_tail(&pi->list, &s->valid_paths);
177 
178  return 0;
179 }
180 
181 /*
182  * Compare the estimated service time of 2 paths, pi1 and pi2,
183  * for the incoming I/O.
184  *
185  * Returns:
186  * < 0 : pi1 is better
187  * 0 : no difference between pi1 and pi2
188  * > 0 : pi2 is better
189  *
190  * Description:
191  * Basically, the service time is estimated by:
192  * ('pi->in-flight-size' + 'incoming') / 'pi->relative_throughput'
193  * To reduce the calculation, some optimizations are made.
194  * (See comments inline)
195  */
196 static int st_compare_load(struct path_info *pi1, struct path_info *pi2,
197  size_t incoming)
198 {
199  size_t sz1, sz2, st1, st2;
200 
201  sz1 = atomic_read(&pi1->in_flight_size);
202  sz2 = atomic_read(&pi2->in_flight_size);
203 
204  /*
205  * Case 1: Both have same throughput value. Choose less loaded path.
206  */
207  if (pi1->relative_throughput == pi2->relative_throughput)
208  return sz1 - sz2;
209 
210  /*
211  * Case 2a: Both have same load. Choose higher throughput path.
212  * Case 2b: One path has no throughput value. Choose the other one.
213  */
214  if (sz1 == sz2 ||
216  return pi2->relative_throughput - pi1->relative_throughput;
217 
218  /*
219  * Case 3: Calculate service time. Choose faster path.
220  * Service time using pi1:
221  * st1 = (sz1 + incoming) / pi1->relative_throughput
222  * Service time using pi2:
223  * st2 = (sz2 + incoming) / pi2->relative_throughput
224  *
225  * To avoid the division, transform the expression to use
226  * multiplication.
227  * Because ->relative_throughput > 0 here, if st1 < st2,
228  * the expressions below are the same meaning:
229  * (sz1 + incoming) / pi1->relative_throughput <
230  * (sz2 + incoming) / pi2->relative_throughput
231  * (sz1 + incoming) * pi2->relative_throughput <
232  * (sz2 + incoming) * pi1->relative_throughput
233  * So use the later one.
234  */
235  sz1 += incoming;
236  sz2 += incoming;
237  if (unlikely(sz1 >= ST_MAX_INFLIGHT_SIZE ||
238  sz2 >= ST_MAX_INFLIGHT_SIZE)) {
239  /*
240  * Size may be too big for multiplying pi->relative_throughput
241  * and overflow.
242  * To avoid the overflow and mis-selection, shift down both.
243  */
246  }
247  st1 = sz1 * pi2->relative_throughput;
248  st2 = sz2 * pi1->relative_throughput;
249  if (st1 != st2)
250  return st1 - st2;
251 
252  /*
253  * Case 4: Service time is equal. Choose higher throughput path.
254  */
255  return pi2->relative_throughput - pi1->relative_throughput;
256 }
257 
258 static struct dm_path *st_select_path(struct path_selector *ps,
259  unsigned *repeat_count, size_t nr_bytes)
260 {
261  struct selector *s = ps->context;
262  struct path_info *pi = NULL, *best = NULL;
263 
264  if (list_empty(&s->valid_paths))
265  return NULL;
266 
267  /* Change preferred (first in list) path to evenly balance. */
268  list_move_tail(s->valid_paths.next, &s->valid_paths);
269 
271  if (!best || (st_compare_load(pi, best, nr_bytes) < 0))
272  best = pi;
273 
274  if (!best)
275  return NULL;
276 
277  *repeat_count = best->repeat_count;
278 
279  return best->path;
280 }
281 
282 static int st_start_io(struct path_selector *ps, struct dm_path *path,
283  size_t nr_bytes)
284 {
285  struct path_info *pi = path->pscontext;
286 
287  atomic_add(nr_bytes, &pi->in_flight_size);
288 
289  return 0;
290 }
291 
292 static int st_end_io(struct path_selector *ps, struct dm_path *path,
293  size_t nr_bytes)
294 {
295  struct path_info *pi = path->pscontext;
296 
297  atomic_sub(nr_bytes, &pi->in_flight_size);
298 
299  return 0;
300 }
301 
302 static struct path_selector_type st_ps = {
303  .name = "service-time",
304  .module = THIS_MODULE,
305  .table_args = 2,
306  .info_args = 2,
307  .create = st_create,
308  .destroy = st_destroy,
309  .status = st_status,
310  .add_path = st_add_path,
311  .fail_path = st_fail_path,
312  .reinstate_path = st_reinstate_path,
313  .select_path = st_select_path,
314  .start_io = st_start_io,
315  .end_io = st_end_io,
316 };
317 
318 static int __init dm_st_init(void)
319 {
320  int r = dm_register_path_selector(&st_ps);
321 
322  if (r < 0)
323  DMERR("register failed %d", r);
324 
325  DMINFO("version " ST_VERSION " loaded");
326 
327  return r;
328 }
329 
330 static void __exit dm_st_exit(void)
331 {
332  int r = dm_unregister_path_selector(&st_ps);
333 
334  if (r < 0)
335  DMERR("unregister failed %d", r);
336 }
337 
338 module_init(dm_st_init);
339 module_exit(dm_st_exit);
340 
341 MODULE_DESCRIPTION(DM_NAME " throughput oriented path selector");
342 MODULE_AUTHOR("Kiyoshi Ueda <[email protected]>");
343 MODULE_LICENSE("GPL");