Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
docecc.c
Go to the documentation of this file.
1 /*
2  * ECC algorithm for M-systems disk on chip. We use the excellent Reed
3  * Solmon code of Phil Karn ([email protected]) available under the
4  * GNU GPL License. The rest is simply to convert the disk on chip
5  * syndrome into a standard syndome.
6  *
7  * Author: Fabrice Bellard ([email protected])
8  * Copyright (C) 2000 Netgem S.A.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23  */
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <asm/errno.h>
27 #include <asm/io.h>
28 #include <asm/uaccess.h>
29 #include <linux/delay.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/types.h>
33 
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/doc2000.h>
36 
37 #define DEBUG_ECC 0
38 /* need to undef it (from asm/termbits.h) */
39 #undef B0
40 
41 #define MM 10 /* Symbol size in bits */
42 #define KK (1023-4) /* Number of data symbols per block */
43 #define B0 510 /* First root of generator polynomial, alpha form */
44 #define PRIM 1 /* power of alpha used to generate roots of generator poly */
45 #define NN ((1 << MM) - 1)
46 
47 typedef unsigned short dtype;
48 
49 /* 1+x^3+x^10 */
50 static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
51 
52 /* This defines the type used to store an element of the Galois Field
53  * used by the code. Make sure this is something larger than a char if
54  * if anything larger than GF(256) is used.
55  *
56  * Note: unsigned char will work up to GF(256) but int seems to run
57  * faster on the Pentium.
58  */
59 typedef int gf;
60 
61 /* No legal value in index form represents zero, so
62  * we need a special value for this purpose
63  */
64 #define A0 (NN)
65 
66 /* Compute x % NN, where NN is 2**MM - 1,
67  * without a slow divide
68  */
69 static inline gf
70 modnn(int x)
71 {
72  while (x >= NN) {
73  x -= NN;
74  x = (x >> MM) + (x & NN);
75  }
76  return x;
77 }
78 
79 #define CLEAR(a,n) {\
80 int ci;\
81 for(ci=(n)-1;ci >=0;ci--)\
82 (a)[ci] = 0;\
83 }
84 
85 #define COPY(a,b,n) {\
86 int ci;\
87 for(ci=(n)-1;ci >=0;ci--)\
88 (a)[ci] = (b)[ci];\
89 }
90 
91 #define COPYDOWN(a,b,n) {\
92 int ci;\
93 for(ci=(n)-1;ci >=0;ci--)\
94 (a)[ci] = (b)[ci];\
95 }
96 
97 #define Ldec 1
98 
99 /* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
100  lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
101  polynomial form -> index form index_of[j=alpha**i] = i
102  alpha=2 is the primitive element of GF(2**m)
103  HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
104  Let @ represent the primitive element commonly called "alpha" that
105  is the root of the primitive polynomial p(x). Then in GF(2^m), for any
106  0 <= i <= 2^m-2,
107  @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
108  where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
109  of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
110  example the polynomial representation of @^5 would be given by the binary
111  representation of the integer "alpha_to[5]".
112  Similarly, index_of[] can be used as follows:
113  As above, let @ represent the primitive element of GF(2^m) that is
114  the root of the primitive polynomial p(x). In order to find the power
115  of @ (alpha) that has the polynomial representation
116  a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
117  we consider the integer "i" whose binary representation with a(0) being LSB
118  and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
119  "index_of[i]". Now, @^index_of[i] is that element whose polynomial
120  representation is (a(0),a(1),a(2),...,a(m-1)).
121  NOTE:
122  The element alpha_to[2^m-1] = 0 always signifying that the
123  representation of "@^infinity" = 0 is (0,0,0,...,0).
124  Similarly, the element index_of[0] = A0 always signifying
125  that the power of alpha which has the polynomial representation
126  (0,0,...,0) is "infinity".
127 
128 */
129 
130 static void
131 generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1])
132 {
133  register int i, mask;
134 
135  mask = 1;
136  Alpha_to[MM] = 0;
137  for (i = 0; i < MM; i++) {
138  Alpha_to[i] = mask;
139  Index_of[Alpha_to[i]] = i;
140  /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
141  if (Pp[i] != 0)
142  Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */
143  mask <<= 1; /* single left-shift */
144  }
145  Index_of[Alpha_to[MM]] = MM;
146  /*
147  * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
148  * poly-repr of @^i shifted left one-bit and accounting for any @^MM
149  * term that may occur when poly-repr of @^i is shifted.
150  */
151  mask >>= 1;
152  for (i = MM + 1; i < NN; i++) {
153  if (Alpha_to[i - 1] >= mask)
154  Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
155  else
156  Alpha_to[i] = Alpha_to[i - 1] << 1;
157  Index_of[Alpha_to[i]] = i;
158  }
159  Index_of[0] = A0;
160  Alpha_to[NN] = 0;
161 }
162 
163 /*
164  * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content
165  * of the feedback shift register after having processed the data and
166  * the ECC.
167  *
168  * Return number of symbols corrected, or -1 if codeword is illegal
169  * or uncorrectable. If eras_pos is non-null, the detected error locations
170  * are written back. NOTE! This array must be at least NN-KK elements long.
171  * The corrected data are written in eras_val[]. They must be xor with the data
172  * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] .
173  *
174  * First "no_eras" erasures are declared by the calling program. Then, the
175  * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
176  * If the number of channel errors is not greater than "t_after_eras" the
177  * transmitted codeword will be recovered. Details of algorithm can be found
178  * in R. Blahut's "Theory ... of Error-Correcting Codes".
179 
180  * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
181  * will result. The decoder *could* check for this condition, but it would involve
182  * extra time on every decoding operation.
183  * */
184 static int
185 eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
186  gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK],
187  int no_eras)
188 {
189  int deg_lambda, el, deg_omega;
190  int i, j, r,k;
192  gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly
193  * and syndrome poly */
194  gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
195  gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
196  int syn_error, count;
197 
198  syn_error = 0;
199  for(i=0;i<NN-KK;i++)
200  syn_error |= bb[i];
201 
202  if (!syn_error) {
203  /* if remainder is zero, data[] is a codeword and there are no
204  * errors to correct. So return data[] unmodified
205  */
206  count = 0;
207  goto finish;
208  }
209 
210  for(i=1;i<=NN-KK;i++){
211  s[i] = bb[0];
212  }
213  for(j=1;j<NN-KK;j++){
214  if(bb[j] == 0)
215  continue;
216  tmp = Index_of[bb[j]];
217 
218  for(i=1;i<=NN-KK;i++)
219  s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];
220  }
221 
222  /* undo the feedback register implicit multiplication and convert
223  syndromes to index form */
224 
225  for(i=1;i<=NN-KK;i++) {
226  tmp = Index_of[s[i]];
227  if (tmp != A0)
228  tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM);
229  s[i] = tmp;
230  }
231 
232  CLEAR(&lambda[1],NN-KK);
233  lambda[0] = 1;
234 
235  if (no_eras > 0) {
236  /* Init lambda to be the erasure locator polynomial */
237  lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])];
238  for (i = 1; i < no_eras; i++) {
239  u = modnn(PRIM*eras_pos[i]);
240  for (j = i+1; j > 0; j--) {
241  tmp = Index_of[lambda[j - 1]];
242  if(tmp != A0)
243  lambda[j] ^= Alpha_to[modnn(u + tmp)];
244  }
245  }
246 #if DEBUG_ECC >= 1
247  /* Test code that verifies the erasure locator polynomial just constructed
248  Needed only for decoder debugging. */
249 
250  /* find roots of the erasure location polynomial */
251  for(i=1;i<=no_eras;i++)
252  reg[i] = Index_of[lambda[i]];
253  count = 0;
254  for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
255  q = 1;
256  for (j = 1; j <= no_eras; j++)
257  if (reg[j] != A0) {
258  reg[j] = modnn(reg[j] + j);
259  q ^= Alpha_to[reg[j]];
260  }
261  if (q != 0)
262  continue;
263  /* store root and error location number indices */
264  root[count] = i;
265  loc[count] = k;
266  count++;
267  }
268  if (count != no_eras) {
269  printf("\n lambda(x) is WRONG\n");
270  count = -1;
271  goto finish;
272  }
273 #if DEBUG_ECC >= 2
274  printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
275  for (i = 0; i < count; i++)
276  printf("%d ", loc[i]);
277  printf("\n");
278 #endif
279 #endif
280  }
281  for(i=0;i<NN-KK+1;i++)
282  b[i] = Index_of[lambda[i]];
283 
284  /*
285  * Begin Berlekamp-Massey algorithm to determine error+erasure
286  * locator polynomial
287  */
288  r = no_eras;
289  el = no_eras;
290  while (++r <= NN-KK) { /* r is the step number */
291  /* Compute discrepancy at the r-th step in poly-form */
292  discr_r = 0;
293  for (i = 0; i < r; i++){
294  if ((lambda[i] != 0) && (s[r - i] != A0)) {
295  discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
296  }
297  }
298  discr_r = Index_of[discr_r]; /* Index form */
299  if (discr_r == A0) {
300  /* 2 lines below: B(x) <-- x*B(x) */
301  COPYDOWN(&b[1],b,NN-KK);
302  b[0] = A0;
303  } else {
304  /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
305  t[0] = lambda[0];
306  for (i = 0 ; i < NN-KK; i++) {
307  if(b[i] != A0)
308  t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
309  else
310  t[i+1] = lambda[i+1];
311  }
312  if (2 * el <= r + no_eras - 1) {
313  el = r + no_eras - el;
314  /*
315  * 2 lines below: B(x) <-- inv(discr_r) *
316  * lambda(x)
317  */
318  for (i = 0; i <= NN-KK; i++)
319  b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
320  } else {
321  /* 2 lines below: B(x) <-- x*B(x) */
322  COPYDOWN(&b[1],b,NN-KK);
323  b[0] = A0;
324  }
325  COPY(lambda,t,NN-KK+1);
326  }
327  }
328 
329  /* Convert lambda to index form and compute deg(lambda(x)) */
330  deg_lambda = 0;
331  for(i=0;i<NN-KK+1;i++){
332  lambda[i] = Index_of[lambda[i]];
333  if(lambda[i] != A0)
334  deg_lambda = i;
335  }
336  /*
337  * Find roots of the error+erasure locator polynomial by Chien
338  * Search
339  */
340  COPY(&reg[1],&lambda[1],NN-KK);
341  count = 0; /* Number of roots of lambda(x) */
342  for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
343  q = 1;
344  for (j = deg_lambda; j > 0; j--){
345  if (reg[j] != A0) {
346  reg[j] = modnn(reg[j] + j);
347  q ^= Alpha_to[reg[j]];
348  }
349  }
350  if (q != 0)
351  continue;
352  /* store root (index-form) and error location number */
353  root[count] = i;
354  loc[count] = k;
355  /* If we've already found max possible roots,
356  * abort the search to save time
357  */
358  if(++count == deg_lambda)
359  break;
360  }
361  if (deg_lambda != count) {
362  /*
363  * deg(lambda) unequal to number of roots => uncorrectable
364  * error detected
365  */
366  count = -1;
367  goto finish;
368  }
369  /*
370  * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
371  * x**(NN-KK)). in index form. Also find deg(omega).
372  */
373  deg_omega = 0;
374  for (i = 0; i < NN-KK;i++){
375  tmp = 0;
376  j = (deg_lambda < i) ? deg_lambda : i;
377  for(;j >= 0; j--){
378  if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
379  tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
380  }
381  if(tmp != 0)
382  deg_omega = i;
383  omega[i] = Index_of[tmp];
384  }
385  omega[NN-KK] = A0;
386 
387  /*
388  * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
389  * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
390  */
391  for (j = count-1; j >=0; j--) {
392  num1 = 0;
393  for (i = deg_omega; i >= 0; i--) {
394  if (omega[i] != A0)
395  num1 ^= Alpha_to[modnn(omega[i] + i * root[j])];
396  }
397  num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
398  den = 0;
399 
400  /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
401  for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
402  if(lambda[i+1] != A0)
403  den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
404  }
405  if (den == 0) {
406 #if DEBUG_ECC >= 1
407  printf("\n ERROR: denominator = 0\n");
408 #endif
409  /* Convert to dual- basis */
410  count = -1;
411  goto finish;
412  }
413  /* Apply error to data */
414  if (num1 != 0) {
415  eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
416  } else {
417  eras_val[j] = 0;
418  }
419  }
420  finish:
421  for(i=0;i<count;i++)
422  eras_pos[i] = loc[i];
423  return count;
424 }
425 
426 /***************************************************************************/
427 /* The DOC specific code begins here */
428 
429 #define SECTOR_SIZE 512
430 /* The sector bytes are packed into NB_DATA MM bits words */
431 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)
432 
433 /*
434  * Correct the errors in 'sector[]' by using 'ecc1[]' which is the
435  * content of the feedback shift register applyied to the sector and
436  * the ECC. Return the number of errors corrected (and correct them in
437  * sector), or -1 if error
438  */
439 int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6])
440 {
441  int parity, i, nb_errors;
442  gf bb[NN - KK + 1];
443  gf error_val[NN-KK];
444  int error_pos[NN-KK], pos, bitpos, index, val;
445  dtype *Alpha_to, *Index_of;
446 
447  /* init log and exp tables here to save memory. However, it is slower */
448  Alpha_to = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
449  if (!Alpha_to)
450  return -1;
451 
452  Index_of = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
453  if (!Index_of) {
454  kfree(Alpha_to);
455  return -1;
456  }
457 
458  generate_gf(Alpha_to, Index_of);
459 
460  parity = ecc1[1];
461 
462  bb[0] = (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8);
463  bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6);
464  bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4);
465  bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2);
466 
467  nb_errors = eras_dec_rs(Alpha_to, Index_of, bb,
468  error_val, error_pos, 0);
469  if (nb_errors <= 0)
470  goto the_end;
471 
472  /* correct the errors */
473  for(i=0;i<nb_errors;i++) {
474  pos = error_pos[i];
475  if (pos >= NB_DATA && pos < KK) {
476  nb_errors = -1;
477  goto the_end;
478  }
479  if (pos < NB_DATA) {
480  /* extract bit position (MSB first) */
481  pos = 10 * (NB_DATA - 1 - pos) - 6;
482  /* now correct the following 10 bits. At most two bytes
483  can be modified since pos is even */
484  index = (pos >> 3) ^ 1;
485  bitpos = pos & 7;
486  if ((index >= 0 && index < SECTOR_SIZE) ||
487  index == (SECTOR_SIZE + 1)) {
488  val = error_val[i] >> (2 + bitpos);
489  parity ^= val;
490  if (index < SECTOR_SIZE)
491  sector[index] ^= val;
492  }
493  index = ((pos >> 3) + 1) ^ 1;
494  bitpos = (bitpos + 10) & 7;
495  if (bitpos == 0)
496  bitpos = 8;
497  if ((index >= 0 && index < SECTOR_SIZE) ||
498  index == (SECTOR_SIZE + 1)) {
499  val = error_val[i] << (8 - bitpos);
500  parity ^= val;
501  if (index < SECTOR_SIZE)
502  sector[index] ^= val;
503  }
504  }
505  }
506 
507  /* use parity to test extra errors */
508  if ((parity & 0xff) != 0)
509  nb_errors = -1;
510 
511  the_end:
512  kfree(Alpha_to);
513  kfree(Index_of);
514  return nb_errors;
515 }
516 
518 
519 MODULE_LICENSE("GPL");
520 MODULE_AUTHOR("Fabrice Bellard <[email protected]>");
521 MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware");