Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
trace.c
Go to the documentation of this file.
1 /*
2  * drivers/base/power/trace.c
3  *
4  * Copyright (C) 2006 Linus Torvalds
5  *
6  * Trace facility for suspend/resume problems, when none of the
7  * devices may be working.
8  */
9 
10 #include <linux/resume-trace.h>
11 #include <linux/export.h>
12 #include <linux/rtc.h>
13 
14 #include <asm/rtc.h>
15 
16 #include "power.h"
17 
18 /*
19  * Horrid, horrid, horrid.
20  *
21  * It turns out that the _only_ piece of hardware that actually
22  * keeps its value across a hard boot (and, more importantly, the
23  * POST init sequence) is literally the realtime clock.
24  *
25  * Never mind that an RTC chip has 114 bytes (and often a whole
26  * other bank of an additional 128 bytes) of nice SRAM that is
27  * _designed_ to keep data - the POST will clear it. So we literally
28  * can just use the few bytes of actual time data, which means that
29  * we're really limited.
30  *
31  * It means, for example, that we can't use the seconds at all
32  * (since the time between the hang and the boot might be more
33  * than a minute), and we'd better not depend on the low bits of
34  * the minutes either.
35  *
36  * There are the wday fields etc, but I wouldn't guarantee those
37  * are dependable either. And if the date isn't valid, either the
38  * hw or POST will do strange things.
39  *
40  * So we're left with:
41  * - year: 0-99
42  * - month: 0-11
43  * - day-of-month: 1-28
44  * - hour: 0-23
45  * - min: (0-30)*2
46  *
47  * Giving us a total range of 0-16128000 (0xf61800), ie less
48  * than 24 bits of actual data we can save across reboots.
49  *
50  * And if your box can't boot in less than three minutes,
51  * you're screwed.
52  *
53  * Now, almost 24 bits of data is pitifully small, so we need
54  * to be pretty dense if we want to use it for anything nice.
55  * What we do is that instead of saving off nice readable info,
56  * we save off _hashes_ of information that we can hopefully
57  * regenerate after the reboot.
58  *
59  * In particular, this means that we might be unlucky, and hit
60  * a case where we have a hash collision, and we end up not
61  * being able to tell for certain exactly which case happened.
62  * But that's hopefully unlikely.
63  *
64  * What we do is to take the bits we can fit, and split them
65  * into three parts (16*997*1009 = 16095568), and use the values
66  * for:
67  * - 0-15: user-settable
68  * - 0-996: file + line number
69  * - 0-1008: device
70  */
71 #define USERHASH (16)
72 #define FILEHASH (997)
73 #define DEVHASH (1009)
74 
75 #define DEVSEED (7919)
76 
77 static unsigned int dev_hash_value;
78 
79 static int set_magic_time(unsigned int user, unsigned int file, unsigned int device)
80 {
81  unsigned int n = user + USERHASH*(file + FILEHASH*device);
82 
83  // June 7th, 2006
84  static struct rtc_time time = {
85  .tm_sec = 0,
86  .tm_min = 0,
87  .tm_hour = 0,
88  .tm_mday = 7,
89  .tm_mon = 5, // June - counting from zero
90  .tm_year = 106,
91  .tm_wday = 3,
92  .tm_yday = 160,
93  .tm_isdst = 1
94  };
95 
96  time.tm_year = (n % 100);
97  n /= 100;
98  time.tm_mon = (n % 12);
99  n /= 12;
100  time.tm_mday = (n % 28) + 1;
101  n /= 28;
102  time.tm_hour = (n % 24);
103  n /= 24;
104  time.tm_min = (n % 20) * 3;
105  n /= 20;
106  set_rtc_time(&time);
107  return n ? -1 : 0;
108 }
109 
110 static unsigned int read_magic_time(void)
111 {
112  struct rtc_time time;
113  unsigned int val;
114 
115  get_rtc_time(&time);
116  pr_info("RTC time: %2d:%02d:%02d, date: %02d/%02d/%02d\n",
117  time.tm_hour, time.tm_min, time.tm_sec,
118  time.tm_mon + 1, time.tm_mday, time.tm_year % 100);
119  val = time.tm_year; /* 100 years */
120  if (val > 100)
121  val -= 100;
122  val += time.tm_mon * 100; /* 12 months */
123  val += (time.tm_mday-1) * 100 * 12; /* 28 month-days */
124  val += time.tm_hour * 100 * 12 * 28; /* 24 hours */
125  val += (time.tm_min / 3) * 100 * 12 * 28 * 24; /* 20 3-minute intervals */
126  return val;
127 }
128 
129 /*
130  * This is just the sdbm hash function with a user-supplied
131  * seed and final size parameter.
132  */
133 static unsigned int hash_string(unsigned int seed, const char *data, unsigned int mod)
134 {
135  unsigned char c;
136  while ((c = *data++) != 0) {
137  seed = (seed << 16) + (seed << 6) - seed + c;
138  }
139  return seed % mod;
140 }
141 
143 {
144  dev_hash_value = hash_string(DEVSEED, dev_name(dev), DEVHASH);
145 }
147 
148 /*
149  * We could just take the "tracedata" index into the .tracedata
150  * section instead. Generating a hash of the data gives us a
151  * chance to work across kernel versions, and perhaps more
152  * importantly it also gives us valid/invalid check (ie we will
153  * likely not give totally bogus reports - if the hash matches,
154  * it's not any guarantee, but it's a high _likelihood_ that
155  * the match is valid).
156  */
157 void generate_resume_trace(const void *tracedata, unsigned int user)
158 {
159  unsigned short lineno = *(unsigned short *)tracedata;
160  const char *file = *(const char **)(tracedata + 2);
161  unsigned int user_hash_value, file_hash_value;
162 
163  user_hash_value = user % USERHASH;
164  file_hash_value = hash_string(lineno, file, FILEHASH);
165  set_magic_time(user_hash_value, file_hash_value, dev_hash_value);
166 }
168 
170 static int show_file_hash(unsigned int value)
171 {
172  int match;
173  char *tracedata;
174 
175  match = 0;
176  for (tracedata = &__tracedata_start ; tracedata < &__tracedata_end ;
177  tracedata += 2 + sizeof(unsigned long)) {
178  unsigned short lineno = *(unsigned short *)tracedata;
179  const char *file = *(const char **)(tracedata + 2);
180  unsigned int hash = hash_string(lineno, file, FILEHASH);
181  if (hash != value)
182  continue;
183  pr_info(" hash matches %s:%u\n", file, lineno);
184  match++;
185  }
186  return match;
187 }
188 
189 static int show_dev_hash(unsigned int value)
190 {
191  int match = 0;
192  struct list_head *entry;
193 
194  device_pm_lock();
195  entry = dpm_list.prev;
196  while (entry != &dpm_list) {
197  struct device * dev = to_device(entry);
198  unsigned int hash = hash_string(DEVSEED, dev_name(dev), DEVHASH);
199  if (hash == value) {
200  dev_info(dev, "hash matches\n");
201  match++;
202  }
203  entry = entry->prev;
204  }
206  return match;
207 }
208 
209 static unsigned int hash_value_early_read;
210 
211 int show_trace_dev_match(char *buf, size_t size)
212 {
213  unsigned int value = hash_value_early_read / (USERHASH * FILEHASH);
214  int ret = 0;
215  struct list_head *entry;
216 
217  /*
218  * It's possible that multiple devices will match the hash and we can't
219  * tell which is the culprit, so it's best to output them all.
220  */
221  device_pm_lock();
222  entry = dpm_list.prev;
223  while (size && entry != &dpm_list) {
224  struct device *dev = to_device(entry);
225  unsigned int hash = hash_string(DEVSEED, dev_name(dev),
226  DEVHASH);
227  if (hash == value) {
228  int len = snprintf(buf, size, "%s\n",
229  dev_driver_string(dev));
230  if (len > size)
231  len = size;
232  buf += len;
233  ret += len;
234  size -= len;
235  }
236  entry = entry->prev;
237  }
239  return ret;
240 }
241 
242 static int early_resume_init(void)
243 {
244  hash_value_early_read = read_magic_time();
245  return 0;
246 }
247 
248 static int late_resume_init(void)
249 {
250  unsigned int val = hash_value_early_read;
251  unsigned int user, file, dev;
252 
253  user = val % USERHASH;
254  val = val / USERHASH;
255  file = val % FILEHASH;
256  val = val / FILEHASH;
257  dev = val /* % DEVHASH */;
258 
259  pr_info(" Magic number: %d:%d:%d\n", user, file, dev);
260  show_file_hash(file);
261  show_dev_hash(dev);
262  return 0;
263 }
264 
265 core_initcall(early_resume_init);
266 late_initcall(late_resume_init);