Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ring_buffer.c
Go to the documentation of this file.
1 /*
2  *
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  * Haiyang Zhang <[email protected]>
20  * Hank Janssen <[email protected]>
21  * K. Y. Srinivasan <[email protected]>
22  *
23  */
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/hyperv.h>
29 
30 #include "hyperv_vmbus.h"
31 
32 
33 /*
34  * hv_get_next_write_location()
35  *
36  * Get the next write location for the specified ring buffer
37  *
38  */
39 static inline u32
40 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
41 {
42  u32 next = ring_info->ring_buffer->write_index;
43 
44  return next;
45 }
46 
47 /*
48  * hv_set_next_write_location()
49  *
50  * Set the next write location for the specified ring buffer
51  *
52  */
53 static inline void
54 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
55  u32 next_write_location)
56 {
57  ring_info->ring_buffer->write_index = next_write_location;
58 }
59 
60 /*
61  * hv_get_next_read_location()
62  *
63  * Get the next read location for the specified ring buffer
64  */
65 static inline u32
66 hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
67 {
68  u32 next = ring_info->ring_buffer->read_index;
69 
70  return next;
71 }
72 
73 /*
74  * hv_get_next_readlocation_withoffset()
75  *
76  * Get the next read location + offset for the specified ring buffer.
77  * This allows the caller to skip
78  */
79 static inline u32
80 hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
81  u32 offset)
82 {
83  u32 next = ring_info->ring_buffer->read_index;
84 
85  next += offset;
86  next %= ring_info->ring_datasize;
87 
88  return next;
89 }
90 
91 /*
92  *
93  * hv_set_next_read_location()
94  *
95  * Set the next read location for the specified ring buffer
96  *
97  */
98 static inline void
99 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
100  u32 next_read_location)
101 {
102  ring_info->ring_buffer->read_index = next_read_location;
103 }
104 
105 
106 /*
107  *
108  * hv_get_ring_buffer()
109  *
110  * Get the start of the ring buffer
111  */
112 static inline void *
113 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
114 {
115  return (void *)ring_info->ring_buffer->buffer;
116 }
117 
118 
119 /*
120  *
121  * hv_get_ring_buffersize()
122  *
123  * Get the size of the ring buffer
124  */
125 static inline u32
126 hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
127 {
128  return ring_info->ring_datasize;
129 }
130 
131 /*
132  *
133  * hv_get_ring_bufferindices()
134  *
135  * Get the read and write indices as u64 of the specified ring buffer
136  *
137  */
138 static inline u64
139 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
140 {
141  return (u64)ring_info->ring_buffer->write_index << 32;
142 }
143 
144 /*
145  *
146  * hv_copyfrom_ringbuffer()
147  *
148  * Helper routine to copy to source from ring buffer.
149  * Assume there is enough room. Handles wrap-around in src case only!!
150  *
151  */
152 static u32 hv_copyfrom_ringbuffer(
153  struct hv_ring_buffer_info *ring_info,
154  void *dest,
155  u32 destlen,
156  u32 start_read_offset)
157 {
158  void *ring_buffer = hv_get_ring_buffer(ring_info);
159  u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
160 
161  u32 frag_len;
162 
163  /* wrap-around detected at the src */
164  if (destlen > ring_buffer_size - start_read_offset) {
165  frag_len = ring_buffer_size - start_read_offset;
166 
167  memcpy(dest, ring_buffer + start_read_offset, frag_len);
168  memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
169  } else
170 
171  memcpy(dest, ring_buffer + start_read_offset, destlen);
172 
173 
174  start_read_offset += destlen;
175  start_read_offset %= ring_buffer_size;
176 
177  return start_read_offset;
178 }
179 
180 
181 /*
182  *
183  * hv_copyto_ringbuffer()
184  *
185  * Helper routine to copy from source to ring buffer.
186  * Assume there is enough room. Handles wrap-around in dest case only!!
187  *
188  */
189 static u32 hv_copyto_ringbuffer(
190  struct hv_ring_buffer_info *ring_info,
191  u32 start_write_offset,
192  void *src,
193  u32 srclen)
194 {
195  void *ring_buffer = hv_get_ring_buffer(ring_info);
196  u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
197  u32 frag_len;
198 
199  /* wrap-around detected! */
200  if (srclen > ring_buffer_size - start_write_offset) {
201  frag_len = ring_buffer_size - start_write_offset;
202  memcpy(ring_buffer + start_write_offset, src, frag_len);
203  memcpy(ring_buffer, src + frag_len, srclen - frag_len);
204  } else
205  memcpy(ring_buffer + start_write_offset, src, srclen);
206 
207  start_write_offset += srclen;
208  start_write_offset %= ring_buffer_size;
209 
210  return start_write_offset;
211 }
212 
213 /*
214  *
215  * hv_ringbuffer_get_debuginfo()
216  *
217  * Get various debug metrics for the specified ring buffer
218  *
219  */
220 void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
221  struct hv_ring_buffer_debug_info *debug_info)
222 {
223  u32 bytes_avail_towrite;
224  u32 bytes_avail_toread;
225 
226  if (ring_info->ring_buffer) {
227  hv_get_ringbuffer_availbytes(ring_info,
228  &bytes_avail_toread,
229  &bytes_avail_towrite);
230 
231  debug_info->bytes_avail_toread = bytes_avail_toread;
232  debug_info->bytes_avail_towrite = bytes_avail_towrite;
233  debug_info->current_read_index =
234  ring_info->ring_buffer->read_index;
235  debug_info->current_write_index =
236  ring_info->ring_buffer->write_index;
237  debug_info->current_interrupt_mask =
238  ring_info->ring_buffer->interrupt_mask;
239  }
240 }
241 
242 
243 /*
244  *
245  * hv_get_ringbuffer_interrupt_mask()
246  *
247  * Get the interrupt mask for the specified ring buffer
248  *
249  */
250 u32 hv_get_ringbuffer_interrupt_mask(struct hv_ring_buffer_info *rbi)
251 {
252  return rbi->ring_buffer->interrupt_mask;
253 }
254 
255 /*
256  *
257  * hv_ringbuffer_init()
258  *
259  *Initialize the ring buffer
260  *
261  */
262 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
263  void *buffer, u32 buflen)
264 {
265  if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
266  return -EINVAL;
267 
268  memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
269 
270  ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
271  ring_info->ring_buffer->read_index =
272  ring_info->ring_buffer->write_index = 0;
273 
274  ring_info->ring_size = buflen;
275  ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
276 
277  spin_lock_init(&ring_info->ring_lock);
278 
279  return 0;
280 }
281 
282 /*
283  *
284  * hv_ringbuffer_cleanup()
285  *
286  * Cleanup the ring buffer
287  *
288  */
289 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
290 {
291 }
292 
293 /*
294  *
295  * hv_ringbuffer_write()
296  *
297  * Write to the ring buffer
298  *
299  */
300 int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
301  struct scatterlist *sglist, u32 sgcount)
302 {
303  int i = 0;
304  u32 bytes_avail_towrite;
305  u32 bytes_avail_toread;
306  u32 totalbytes_towrite = 0;
307 
308  struct scatterlist *sg;
309  u32 next_write_location;
310  u64 prev_indices = 0;
311  unsigned long flags;
312 
313  for_each_sg(sglist, sg, sgcount, i)
314  {
315  totalbytes_towrite += sg->length;
316  }
317 
318  totalbytes_towrite += sizeof(u64);
319 
320  spin_lock_irqsave(&outring_info->ring_lock, flags);
321 
322  hv_get_ringbuffer_availbytes(outring_info,
323  &bytes_avail_toread,
324  &bytes_avail_towrite);
325 
326 
327  /* If there is only room for the packet, assume it is full. */
328  /* Otherwise, the next time around, we think the ring buffer */
329  /* is empty since the read index == write index */
330  if (bytes_avail_towrite <= totalbytes_towrite) {
331  spin_unlock_irqrestore(&outring_info->ring_lock, flags);
332  return -EAGAIN;
333  }
334 
335  /* Write to the ring buffer */
336  next_write_location = hv_get_next_write_location(outring_info);
337 
338  for_each_sg(sglist, sg, sgcount, i)
339  {
340  next_write_location = hv_copyto_ringbuffer(outring_info,
341  next_write_location,
342  sg_virt(sg),
343  sg->length);
344  }
345 
346  /* Set previous packet start */
347  prev_indices = hv_get_ring_bufferindices(outring_info);
348 
349  next_write_location = hv_copyto_ringbuffer(outring_info,
350  next_write_location,
351  &prev_indices,
352  sizeof(u64));
353 
354  /* Make sure we flush all writes before updating the writeIndex */
355  smp_wmb();
356 
357  /* Now, update the write location */
358  hv_set_next_write_location(outring_info, next_write_location);
359 
360 
361  spin_unlock_irqrestore(&outring_info->ring_lock, flags);
362  return 0;
363 }
364 
365 
366 /*
367  *
368  * hv_ringbuffer_peek()
369  *
370  * Read without advancing the read index
371  *
372  */
373 int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info,
374  void *Buffer, u32 buflen)
375 {
376  u32 bytes_avail_towrite;
377  u32 bytes_avail_toread;
378  u32 next_read_location = 0;
379  unsigned long flags;
380 
381  spin_lock_irqsave(&Inring_info->ring_lock, flags);
382 
383  hv_get_ringbuffer_availbytes(Inring_info,
384  &bytes_avail_toread,
385  &bytes_avail_towrite);
386 
387  /* Make sure there is something to read */
388  if (bytes_avail_toread < buflen) {
389 
390  spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
391 
392  return -EAGAIN;
393  }
394 
395  /* Convert to byte offset */
396  next_read_location = hv_get_next_read_location(Inring_info);
397 
398  next_read_location = hv_copyfrom_ringbuffer(Inring_info,
399  Buffer,
400  buflen,
401  next_read_location);
402 
403  spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
404 
405  return 0;
406 }
407 
408 
409 /*
410  *
411  * hv_ringbuffer_read()
412  *
413  * Read and advance the read index
414  *
415  */
416 int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer,
417  u32 buflen, u32 offset)
418 {
419  u32 bytes_avail_towrite;
420  u32 bytes_avail_toread;
421  u32 next_read_location = 0;
422  u64 prev_indices = 0;
423  unsigned long flags;
424 
425  if (buflen <= 0)
426  return -EINVAL;
427 
428  spin_lock_irqsave(&inring_info->ring_lock, flags);
429 
430  hv_get_ringbuffer_availbytes(inring_info,
431  &bytes_avail_toread,
432  &bytes_avail_towrite);
433 
434  /* Make sure there is something to read */
435  if (bytes_avail_toread < buflen) {
436  spin_unlock_irqrestore(&inring_info->ring_lock, flags);
437 
438  return -EAGAIN;
439  }
440 
441  next_read_location =
442  hv_get_next_readlocation_withoffset(inring_info, offset);
443 
444  next_read_location = hv_copyfrom_ringbuffer(inring_info,
445  buffer,
446  buflen,
447  next_read_location);
448 
449  next_read_location = hv_copyfrom_ringbuffer(inring_info,
450  &prev_indices,
451  sizeof(u64),
452  next_read_location);
453 
454  /* Make sure all reads are done before we update the read index since */
455  /* the writer may start writing to the read area once the read index */
456  /*is updated */
457  smp_mb();
458 
459  /* Update the read index */
460  hv_set_next_read_location(inring_info, next_read_location);
461 
462  spin_unlock_irqrestore(&inring_info->ring_lock, flags);
463 
464  return 0;
465 }