Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
core.c
Go to the documentation of this file.
1 /*P:400
2  * This contains run_guest() which actually calls into the Host<->Guest
3  * Switcher and analyzes the return, such as determining if the Guest wants the
4  * Host to do something. This file also contains useful helper routines.
5 :*/
6 #include <linux/module.h>
7 #include <linux/stringify.h>
8 #include <linux/stddef.h>
9 #include <linux/io.h>
10 #include <linux/mm.h>
11 #include <linux/vmalloc.h>
12 #include <linux/cpu.h>
13 #include <linux/freezer.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <asm/paravirt.h>
17 #include <asm/pgtable.h>
18 #include <asm/uaccess.h>
19 #include <asm/poll.h>
20 #include <asm/asm-offsets.h>
21 #include "lg.h"
22 
23 
24 static struct vm_struct *switcher_vma;
25 static struct page **switcher_page;
26 
27 /* This One Big lock protects all inter-guest data structures. */
28 DEFINE_MUTEX(lguest_lock);
29 
30 /*H:010
31  * We need to set up the Switcher at a high virtual address. Remember the
32  * Switcher is a few hundred bytes of assembler code which actually changes the
33  * CPU to run the Guest, and then changes back to the Host when a trap or
34  * interrupt happens.
35  *
36  * The Switcher code must be at the same virtual address in the Guest as the
37  * Host since it will be running as the switchover occurs.
38  *
39  * Trying to map memory at a particular address is an unusual thing to do, so
40  * it's not a simple one-liner.
41  */
42 static __init int map_switcher(void)
43 {
44  int i, err;
45  struct page **pagep;
46 
47  /*
48  * Map the Switcher in to high memory.
49  *
50  * It turns out that if we choose the address 0xFFC00000 (4MB under the
51  * top virtual address), it makes setting up the page tables really
52  * easy.
53  */
54 
55  /*
56  * We allocate an array of struct page pointers. map_vm_area() wants
57  * this, rather than just an array of pages.
58  */
59  switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
60  GFP_KERNEL);
61  if (!switcher_page) {
62  err = -ENOMEM;
63  goto out;
64  }
65 
66  /*
67  * Now we actually allocate the pages. The Guest will see these pages,
68  * so we make sure they're zeroed.
69  */
70  for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
71  switcher_page[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
72  if (!switcher_page[i]) {
73  err = -ENOMEM;
74  goto free_some_pages;
75  }
76  }
77 
78  /*
79  * First we check that the Switcher won't overlap the fixmap area at
80  * the top of memory. It's currently nowhere near, but it could have
81  * very strange effects if it ever happened.
82  */
83  if (SWITCHER_ADDR + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){
84  err = -ENOMEM;
85  printk("lguest: mapping switcher would thwack fixmap\n");
86  goto free_pages;
87  }
88 
89  /*
90  * Now we reserve the "virtual memory area" we want: 0xFFC00000
91  * (SWITCHER_ADDR). We might not get it in theory, but in practice
92  * it's worked so far. The end address needs +1 because __get_vm_area
93  * allocates an extra guard page, so we need space for that.
94  */
95  switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
97  + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
98  if (!switcher_vma) {
99  err = -ENOMEM;
100  printk("lguest: could not map switcher pages high\n");
101  goto free_pages;
102  }
103 
104  /*
105  * This code actually sets up the pages we've allocated to appear at
106  * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
107  * kind of pages we're mapping (kernel pages), and a pointer to our
108  * array of struct pages. It increments that pointer, but we don't
109  * care.
110  */
111  pagep = switcher_page;
112  err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
113  if (err) {
114  printk("lguest: map_vm_area failed: %i\n", err);
115  goto free_vma;
116  }
117 
118  /*
119  * Now the Switcher is mapped at the right address, we can't fail!
120  * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
121  */
122  memcpy(switcher_vma->addr, start_switcher_text,
123  end_switcher_text - start_switcher_text);
124 
125  printk(KERN_INFO "lguest: mapped switcher at %p\n",
126  switcher_vma->addr);
127  /* And we succeeded... */
128  return 0;
129 
130 free_vma:
131  vunmap(switcher_vma->addr);
132 free_pages:
134 free_some_pages:
135  for (--i; i >= 0; i--)
136  __free_pages(switcher_page[i], 0);
137  kfree(switcher_page);
138 out:
139  return err;
140 }
141 /*:*/
142 
143 /* Cleaning up the mapping when the module is unloaded is almost... too easy. */
144 static void unmap_switcher(void)
145 {
146  unsigned int i;
147 
148  /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
149  vunmap(switcher_vma->addr);
150  /* Now we just need to free the pages we copied the switcher into */
151  for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
152  __free_pages(switcher_page[i], 0);
153  kfree(switcher_page);
154 }
155 
156 /*H:032
157  * Dealing With Guest Memory.
158  *
159  * Before we go too much further into the Host, we need to grok the routines
160  * we use to deal with Guest memory.
161  *
162  * When the Guest gives us (what it thinks is) a physical address, we can use
163  * the normal copy_from_user() & copy_to_user() on the corresponding place in
164  * the memory region allocated by the Launcher.
165  *
166  * But we can't trust the Guest: it might be trying to access the Launcher
167  * code. We have to check that the range is below the pfn_limit the Launcher
168  * gave us. We have to make sure that addr + len doesn't give us a false
169  * positive by overflowing, too.
170  */
171 bool lguest_address_ok(const struct lguest *lg,
172  unsigned long addr, unsigned long len)
173 {
174  return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
175 }
176 
177 /*
178  * This routine copies memory from the Guest. Here we can see how useful the
179  * kill_lguest() routine we met in the Launcher can be: we return a random
180  * value (all zeroes) instead of needing to return an error.
181  */
182 void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
183 {
184  if (!lguest_address_ok(cpu->lg, addr, bytes)
185  || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
186  /* copy_from_user should do this, but as we rely on it... */
187  memset(b, 0, bytes);
188  kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
189  }
190 }
191 
192 /* This is the write (copy into Guest) version. */
193 void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
194  unsigned bytes)
195 {
196  if (!lguest_address_ok(cpu->lg, addr, bytes)
197  || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
198  kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
199 }
200 /*:*/
201 
202 /*H:030
203  * Let's jump straight to the the main loop which runs the Guest.
204  * Remember, this is called by the Launcher reading /dev/lguest, and we keep
205  * going around and around until something interesting happens.
206  */
207 int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
208 {
209  /* We stop running once the Guest is dead. */
210  while (!cpu->lg->dead) {
211  unsigned int irq;
212  bool more;
213 
214  /* First we run any hypercalls the Guest wants done. */
215  if (cpu->hcall)
216  do_hypercalls(cpu);
217 
218  /*
219  * It's possible the Guest did a NOTIFY hypercall to the
220  * Launcher.
221  */
222  if (cpu->pending_notify) {
223  /*
224  * Does it just needs to write to a registered
225  * eventfd (ie. the appropriate virtqueue thread)?
226  */
227  if (!send_notify_to_eventfd(cpu)) {
228  /* OK, we tell the main Laucher. */
229  if (put_user(cpu->pending_notify, user))
230  return -EFAULT;
231  return sizeof(cpu->pending_notify);
232  }
233  }
234 
235  /*
236  * All long-lived kernel loops need to check with this horrible
237  * thing called the freezer. If the Host is trying to suspend,
238  * it stops us.
239  */
240  try_to_freeze();
241 
242  /* Check for signals */
243  if (signal_pending(current))
244  return -ERESTARTSYS;
245 
246  /*
247  * Check if there are any interrupts which can be delivered now:
248  * if so, this sets up the hander to be executed when we next
249  * run the Guest.
250  */
251  irq = interrupt_pending(cpu, &more);
252  if (irq < LGUEST_IRQS)
253  try_deliver_interrupt(cpu, irq, more);
254 
255  /*
256  * Just make absolutely sure the Guest is still alive. One of
257  * those hypercalls could have been fatal, for example.
258  */
259  if (cpu->lg->dead)
260  break;
261 
262  /*
263  * If the Guest asked to be stopped, we sleep. The Guest's
264  * clock timer will wake us.
265  */
266  if (cpu->halted) {
268  /*
269  * Just before we sleep, make sure no interrupt snuck in
270  * which we should be doing.
271  */
272  if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
274  else
275  schedule();
276  continue;
277  }
278 
279  /*
280  * OK, now we're ready to jump into the Guest. First we put up
281  * the "Do Not Disturb" sign:
282  */
284 
285  /* Actually run the Guest until something happens. */
287 
288  /* Now we're ready to be interrupted or moved to other CPUs */
290 
291  /* Now we deal with whatever happened to the Guest. */
293  }
294 
295  /* Special case: Guest is 'dead' but wants a reboot. */
296  if (cpu->lg->dead == ERR_PTR(-ERESTART))
297  return -ERESTART;
298 
299  /* The Guest is dead => "No such file or directory" */
300  return -ENOENT;
301 }
302 
303 /*H:000
304  * Welcome to the Host!
305  *
306  * By this point your brain has been tickled by the Guest code and numbed by
307  * the Launcher code; prepare for it to be stretched by the Host code. This is
308  * the heart. Let's begin at the initialization routine for the Host's lg
309  * module.
310  */
311 static int __init init(void)
312 {
313  int err;
314 
315  /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
316  if (get_kernel_rpl() != 0) {
317  printk("lguest is afraid of being a guest\n");
318  return -EPERM;
319  }
320 
321  /* First we put the Switcher up in very high virtual memory. */
322  err = map_switcher();
323  if (err)
324  goto out;
325 
326  /* Now we set up the pagetable implementation for the Guests. */
327  err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
328  if (err)
329  goto unmap;
330 
331  /* We might need to reserve an interrupt vector. */
332  err = init_interrupts();
333  if (err)
334  goto free_pgtables;
335 
336  /* /dev/lguest needs to be registered. */
337  err = lguest_device_init();
338  if (err)
339  goto free_interrupts;
340 
341  /* Finally we do some architecture-specific setup. */
343 
344  /* All good! */
345  return 0;
346 
348  free_interrupts();
350  free_pagetables();
351 unmap:
352  unmap_switcher();
353 out:
354  return err;
355 }
356 
357 /* Cleaning up is just the same code, backwards. With a little French. */
358 static void __exit fini(void)
359 {
361  free_interrupts();
362  free_pagetables();
363  unmap_switcher();
364 
366 }
367 /*:*/
368 
369 /*
370  * The Host side of lguest can be a module. This is a nice way for people to
371  * play with it.
372  */
374 module_exit(fini);
375 MODULE_LICENSE("GPL");
376 MODULE_AUTHOR("Rusty Russell <[email protected]>");