Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ds2490.c
Go to the documentation of this file.
1 /*
2  * dscore.c
3  *
4  * Copyright (c) 2004 Evgeniy Polyakov <[email protected]>
5  *
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/usb.h>
26 #include <linux/slab.h>
27 
28 #include "../w1_int.h"
29 #include "../w1.h"
30 
31 /* COMMAND TYPE CODES */
32 #define CONTROL_CMD 0x00
33 #define COMM_CMD 0x01
34 #define MODE_CMD 0x02
35 
36 /* CONTROL COMMAND CODES */
37 #define CTL_RESET_DEVICE 0x0000
38 #define CTL_START_EXE 0x0001
39 #define CTL_RESUME_EXE 0x0002
40 #define CTL_HALT_EXE_IDLE 0x0003
41 #define CTL_HALT_EXE_DONE 0x0004
42 #define CTL_FLUSH_COMM_CMDS 0x0007
43 #define CTL_FLUSH_RCV_BUFFER 0x0008
44 #define CTL_FLUSH_XMT_BUFFER 0x0009
45 #define CTL_GET_COMM_CMDS 0x000A
46 
47 /* MODE COMMAND CODES */
48 #define MOD_PULSE_EN 0x0000
49 #define MOD_SPEED_CHANGE_EN 0x0001
50 #define MOD_1WIRE_SPEED 0x0002
51 #define MOD_STRONG_PU_DURATION 0x0003
52 #define MOD_PULLDOWN_SLEWRATE 0x0004
53 #define MOD_PROG_PULSE_DURATION 0x0005
54 #define MOD_WRITE1_LOWTIME 0x0006
55 #define MOD_DSOW0_TREC 0x0007
56 
57 /* COMMUNICATION COMMAND CODES */
58 #define COMM_ERROR_ESCAPE 0x0601
59 #define COMM_SET_DURATION 0x0012
60 #define COMM_BIT_IO 0x0020
61 #define COMM_PULSE 0x0030
62 #define COMM_1_WIRE_RESET 0x0042
63 #define COMM_BYTE_IO 0x0052
64 #define COMM_MATCH_ACCESS 0x0064
65 #define COMM_BLOCK_IO 0x0074
66 #define COMM_READ_STRAIGHT 0x0080
67 #define COMM_DO_RELEASE 0x6092
68 #define COMM_SET_PATH 0x00A2
69 #define COMM_WRITE_SRAM_PAGE 0x00B2
70 #define COMM_WRITE_EPROM 0x00C4
71 #define COMM_READ_CRC_PROT_PAGE 0x00D4
72 #define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
73 #define COMM_SEARCH_ACCESS 0x00F4
74 
75 /* Communication command bits */
76 #define COMM_TYPE 0x0008
77 #define COMM_SE 0x0008
78 #define COMM_D 0x0008
79 #define COMM_Z 0x0008
80 #define COMM_CH 0x0008
81 #define COMM_SM 0x0008
82 #define COMM_R 0x0008
83 #define COMM_IM 0x0001
84 
85 #define COMM_PS 0x4000
86 #define COMM_PST 0x4000
87 #define COMM_CIB 0x4000
88 #define COMM_RTS 0x4000
89 #define COMM_DT 0x2000
90 #define COMM_SPU 0x1000
91 #define COMM_F 0x0800
92 #define COMM_NTF 0x0400
93 #define COMM_ICP 0x0200
94 #define COMM_RST 0x0100
95 
96 #define PULSE_PROG 0x01
97 #define PULSE_SPUE 0x02
98 
99 #define BRANCH_MAIN 0xCC
100 #define BRANCH_AUX 0x33
101 
102 /* Status flags */
103 #define ST_SPUA 0x01 /* Strong Pull-up is active */
104 #define ST_PRGA 0x02 /* 12V programming pulse is being generated */
105 #define ST_12VP 0x04 /* external 12V programming voltage is present */
106 #define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
107 #define ST_HALT 0x10 /* DS2490 is currently halted */
108 #define ST_IDLE 0x20 /* DS2490 is currently idle */
109 #define ST_EPOF 0x80
110 
111 /* Result Register flags */
112 #define RR_DETECT 0xA5 /* New device detected */
113 #define RR_NRS 0x01 /* Reset no presence or ... */
114 #define RR_SH 0x02 /* short on reset or set path */
115 #define RR_APP 0x04 /* alarming presence on reset */
116 #define RR_VPP 0x08 /* 12V expected not seen */
117 #define RR_CMP 0x10 /* compare error */
118 #define RR_CRC 0x20 /* CRC error detected */
119 #define RR_RDP 0x40 /* redirected page */
120 #define RR_EOS 0x80 /* end of search error */
121 
122 #define SPEED_NORMAL 0x00
123 #define SPEED_FLEXIBLE 0x01
124 #define SPEED_OVERDRIVE 0x02
125 
126 #define NUM_EP 4
127 #define EP_CONTROL 0
128 #define EP_STATUS 1
129 #define EP_DATA_OUT 2
130 #define EP_DATA_IN 3
131 
132 struct ds_device
133 {
135 
136  struct usb_device *udev;
138 
139  int ep[NUM_EP];
140 
141  /* Strong PullUp
142  * 0: pullup not active, else duration in milliseconds
143  */
145  /* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
146  * should be active or not for writes.
147  */
149 
150  struct w1_bus_master master;
151 };
152 
153 struct ds_status
154 {
171 
172 };
173 
174 static struct usb_device_id ds_id_table [] = {
175  { USB_DEVICE(0x04fa, 0x2490) },
176  { },
177 };
178 MODULE_DEVICE_TABLE(usb, ds_id_table);
179 
180 static int ds_probe(struct usb_interface *, const struct usb_device_id *);
181 static void ds_disconnect(struct usb_interface *);
182 
183 static int ds_send_control(struct ds_device *, u16, u16);
184 static int ds_send_control_cmd(struct ds_device *, u16, u16);
185 
186 static LIST_HEAD(ds_devices);
187 static DEFINE_MUTEX(ds_mutex);
188 
189 static struct usb_driver ds_driver = {
190  .name = "DS9490R",
191  .probe = ds_probe,
192  .disconnect = ds_disconnect,
193  .id_table = ds_id_table,
194 };
195 
196 static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
197 {
198  int err;
199 
200  err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
201  CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
202  if (err < 0) {
203  printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
204  value, index, err);
205  return err;
206  }
207 
208  return err;
209 }
210 
211 static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
212 {
213  int err;
214 
215  err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
216  MODE_CMD, 0x40, value, index, NULL, 0, 1000);
217  if (err < 0) {
218  printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
219  value, index, err);
220  return err;
221  }
222 
223  return err;
224 }
225 
226 static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
227 {
228  int err;
229 
230  err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
231  COMM_CMD, 0x40, value, index, NULL, 0, 1000);
232  if (err < 0) {
233  printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
234  value, index, err);
235  return err;
236  }
237 
238  return err;
239 }
240 
241 static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
242  unsigned char *buf, int size)
243 {
244  int count, err;
245 
246  memset(st, 0, sizeof(*st));
247 
248  count = 0;
249  err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
250  if (err < 0) {
251  printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
252  return err;
253  }
254 
255  if (count >= sizeof(*st))
256  memcpy(st, buf, sizeof(*st));
257 
258  return count;
259 }
260 
261 static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
262 {
263  printk(KERN_INFO "%45s: %8x\n", str, buf[off]);
264 }
265 
266 static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
267 {
268  int i;
269 
270  printk(KERN_INFO "0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
271  for (i=0; i<count; ++i)
272  printk("%02x ", buf[i]);
273  printk(KERN_INFO "\n");
274 
275  if (count >= 16) {
276  ds_print_msg(buf, "enable flag", 0);
277  ds_print_msg(buf, "1-wire speed", 1);
278  ds_print_msg(buf, "strong pullup duration", 2);
279  ds_print_msg(buf, "programming pulse duration", 3);
280  ds_print_msg(buf, "pulldown slew rate control", 4);
281  ds_print_msg(buf, "write-1 low time", 5);
282  ds_print_msg(buf, "data sample offset/write-0 recovery time",
283  6);
284  ds_print_msg(buf, "reserved (test register)", 7);
285  ds_print_msg(buf, "device status flags", 8);
286  ds_print_msg(buf, "communication command byte 1", 9);
287  ds_print_msg(buf, "communication command byte 2", 10);
288  ds_print_msg(buf, "communication command buffer status", 11);
289  ds_print_msg(buf, "1-wire data output buffer status", 12);
290  ds_print_msg(buf, "1-wire data input buffer status", 13);
291  ds_print_msg(buf, "reserved", 14);
292  ds_print_msg(buf, "reserved", 15);
293  }
294  for (i = 16; i < count; ++i) {
295  if (buf[i] == RR_DETECT) {
296  ds_print_msg(buf, "new device detect", i);
297  continue;
298  }
299  ds_print_msg(buf, "Result Register Value: ", i);
300  if (buf[i] & RR_NRS)
301  printk(KERN_INFO "NRS: Reset no presence or ...\n");
302  if (buf[i] & RR_SH)
303  printk(KERN_INFO "SH: short on reset or set path\n");
304  if (buf[i] & RR_APP)
305  printk(KERN_INFO "APP: alarming presence on reset\n");
306  if (buf[i] & RR_VPP)
307  printk(KERN_INFO "VPP: 12V expected not seen\n");
308  if (buf[i] & RR_CMP)
309  printk(KERN_INFO "CMP: compare error\n");
310  if (buf[i] & RR_CRC)
311  printk(KERN_INFO "CRC: CRC error detected\n");
312  if (buf[i] & RR_RDP)
313  printk(KERN_INFO "RDP: redirected page\n");
314  if (buf[i] & RR_EOS)
315  printk(KERN_INFO "EOS: end of search error\n");
316  }
317 }
318 
319 static void ds_reset_device(struct ds_device *dev)
320 {
321  ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
322  /* Always allow strong pullup which allow individual writes to use
323  * the strong pullup.
324  */
325  if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
326  printk(KERN_ERR "ds_reset_device: "
327  "Error allowing strong pullup\n");
328  /* Chip strong pullup time was cleared. */
329  if (dev->spu_sleep) {
330  /* lower 4 bits are 0, see ds_set_pullup */
331  u8 del = dev->spu_sleep>>4;
332  if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
333  printk(KERN_ERR "ds_reset_device: "
334  "Error setting duration\n");
335  }
336 }
337 
338 static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
339 {
340  int count, err;
341  struct ds_status st;
342 
343  /* Careful on size. If size is less than what is available in
344  * the input buffer, the device fails the bulk transfer and
345  * clears the input buffer. It could read the maximum size of
346  * the data buffer, but then do you return the first, last, or
347  * some set of the middle size bytes? As long as the rest of
348  * the code is correct there will be size bytes waiting. A
349  * call to ds_wait_status will wait until the device is idle
350  * and any data to be received would have been available.
351  */
352  count = 0;
353  err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
354  buf, size, &count, 1000);
355  if (err < 0) {
356  u8 buf[0x20];
357  int count;
358 
359  printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
360  usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
361 
362  count = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
363  ds_dump_status(dev, buf, count);
364  return err;
365  }
366 
367 #if 0
368  {
369  int i;
370 
371  printk("%s: count=%d: ", __func__, count);
372  for (i=0; i<count; ++i)
373  printk("%02x ", buf[i]);
374  printk("\n");
375  }
376 #endif
377  return count;
378 }
379 
380 static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
381 {
382  int count, err;
383 
384  count = 0;
385  err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
386  if (err < 0) {
387  printk(KERN_ERR "Failed to write 1-wire data to ep0x%x: "
388  "err=%d.\n", dev->ep[EP_DATA_OUT], err);
389  return err;
390  }
391 
392  return err;
393 }
394 
395 #if 0
396 
397 int ds_stop_pulse(struct ds_device *dev, int limit)
398 {
399  struct ds_status st;
400  int count = 0, err = 0;
401  u8 buf[0x20];
402 
403  do {
404  err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
405  if (err)
406  break;
407  err = ds_send_control(dev, CTL_RESUME_EXE, 0);
408  if (err)
409  break;
410  err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
411  if (err)
412  break;
413 
414  if ((st.status & ST_SPUA) == 0) {
415  err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
416  if (err)
417  break;
418  }
419  } while(++count < limit);
420 
421  return err;
422 }
423 
424 int ds_detect(struct ds_device *dev, struct ds_status *st)
425 {
426  int err;
427 
428  err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
429  if (err)
430  return err;
431 
432  err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
433  if (err)
434  return err;
435 
436  err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
437  if (err)
438  return err;
439 
440  err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
441  if (err)
442  return err;
443 
444  err = ds_dump_status(dev, st);
445 
446  return err;
447 }
448 
449 #endif /* 0 */
450 
451 static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
452 {
453  u8 buf[0x20];
454  int err, count = 0;
455 
456  do {
457  err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
458 #if 0
459  if (err >= 0) {
460  int i;
461  printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
462  for (i=0; i<err; ++i)
463  printk("%02x ", buf[i]);
464  printk("\n");
465  }
466 #endif
467  } while (!(buf[0x08] & ST_IDLE) && !(err < 0) && ++count < 100);
468 
469  if (err >= 16 && st->status & ST_EPOF) {
470  printk(KERN_INFO "Resetting device after ST_EPOF.\n");
471  ds_reset_device(dev);
472  /* Always dump the device status. */
473  count = 101;
474  }
475 
476  /* Dump the status for errors or if there is extended return data.
477  * The extended status includes new device detection (maybe someone
478  * can do something with it).
479  */
480  if (err > 16 || count >= 100 || err < 0)
481  ds_dump_status(dev, buf, err);
482 
483  /* Extended data isn't an error. Well, a short is, but the dump
484  * would have already told the user that and we can't do anything
485  * about it in software anyway.
486  */
487  if (count >= 100 || err < 0)
488  return -1;
489  else
490  return 0;
491 }
492 
493 static int ds_reset(struct ds_device *dev)
494 {
495  int err;
496 
497  /* Other potentionally interesting flags for reset.
498  *
499  * COMM_NTF: Return result register feedback. This could be used to
500  * detect some conditions such as short, alarming presence, or
501  * detect if a new device was detected.
502  *
503  * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
504  * Select the data transfer rate.
505  */
506  err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
507  if (err)
508  return err;
509 
510  return 0;
511 }
512 
513 #if 0
514 static int ds_set_speed(struct ds_device *dev, int speed)
515 {
516  int err;
517 
518  if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
519  return -EINVAL;
520 
521  if (speed != SPEED_OVERDRIVE)
522  speed = SPEED_FLEXIBLE;
523 
524  speed &= 0xff;
525 
526  err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
527  if (err)
528  return err;
529 
530  return err;
531 }
532 #endif /* 0 */
533 
534 static int ds_set_pullup(struct ds_device *dev, int delay)
535 {
536  int err = 0;
537  u8 del = 1 + (u8)(delay >> 4);
538  /* Just storing delay would not get the trunication and roundup. */
539  int ms = del<<4;
540 
541  /* Enable spu_bit if a delay is set. */
542  dev->spu_bit = delay ? COMM_SPU : 0;
543  /* If delay is zero, it has already been disabled, if the time is
544  * the same as the hardware was last programmed to, there is also
545  * nothing more to do. Compare with the recalculated value ms
546  * rather than del or delay which can have a different value.
547  */
548  if (delay == 0 || ms == dev->spu_sleep)
549  return err;
550 
551  err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
552  if (err)
553  return err;
554 
555  dev->spu_sleep = ms;
556 
557  return err;
558 }
559 
560 static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
561 {
562  int err;
563  struct ds_status st;
564 
565  err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
566  0);
567  if (err)
568  return err;
569 
570  ds_wait_status(dev, &st);
571 
572  err = ds_recv_data(dev, tbit, sizeof(*tbit));
573  if (err < 0)
574  return err;
575 
576  return 0;
577 }
578 
579 #if 0
580 static int ds_write_bit(struct ds_device *dev, u8 bit)
581 {
582  int err;
583  struct ds_status st;
584 
585  /* Set COMM_ICP to write without a readback. Note, this will
586  * produce one time slot, a down followed by an up with COMM_D
587  * only determing the timing.
588  */
589  err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
590  (bit ? COMM_D : 0), 0);
591  if (err)
592  return err;
593 
594  ds_wait_status(dev, &st);
595 
596  return 0;
597 }
598 #endif
599 
600 static int ds_write_byte(struct ds_device *dev, u8 byte)
601 {
602  int err;
603  struct ds_status st;
604  u8 rbyte;
605 
606  err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
607  if (err)
608  return err;
609 
610  if (dev->spu_bit)
611  msleep(dev->spu_sleep);
612 
613  err = ds_wait_status(dev, &st);
614  if (err)
615  return err;
616 
617  err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
618  if (err < 0)
619  return err;
620 
621  return !(byte == rbyte);
622 }
623 
624 static int ds_read_byte(struct ds_device *dev, u8 *byte)
625 {
626  int err;
627  struct ds_status st;
628 
629  err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
630  if (err)
631  return err;
632 
633  ds_wait_status(dev, &st);
634 
635  err = ds_recv_data(dev, byte, sizeof(*byte));
636  if (err < 0)
637  return err;
638 
639  return 0;
640 }
641 
642 static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
643 {
644  struct ds_status st;
645  int err;
646 
647  if (len > 64*1024)
648  return -E2BIG;
649 
650  memset(buf, 0xFF, len);
651 
652  err = ds_send_data(dev, buf, len);
653  if (err < 0)
654  return err;
655 
656  err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
657  if (err)
658  return err;
659 
660  ds_wait_status(dev, &st);
661 
662  memset(buf, 0x00, len);
663  err = ds_recv_data(dev, buf, len);
664 
665  return err;
666 }
667 
668 static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
669 {
670  int err;
671  struct ds_status st;
672 
673  err = ds_send_data(dev, buf, len);
674  if (err < 0)
675  return err;
676 
677  err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
678  if (err)
679  return err;
680 
681  if (dev->spu_bit)
682  msleep(dev->spu_sleep);
683 
684  ds_wait_status(dev, &st);
685 
686  err = ds_recv_data(dev, buf, len);
687  if (err < 0)
688  return err;
689 
690  return !(err == len);
691 }
692 
693 #if 0
694 
695 static int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
696 {
697  int err;
698  u16 value, index;
699  struct ds_status st;
700 
701  memset(buf, 0, sizeof(buf));
702 
703  err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
704  if (err)
705  return err;
706 
707  ds_wait_status(ds_dev, &st);
708 
710  index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
711  err = ds_send_control(ds_dev, value, index);
712  if (err)
713  return err;
714 
715  ds_wait_status(ds_dev, &st);
716 
717  err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
718  if (err < 0)
719  return err;
720 
721  return err/8;
722 }
723 
724 static int ds_match_access(struct ds_device *dev, u64 init)
725 {
726  int err;
727  struct ds_status st;
728 
729  err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
730  if (err)
731  return err;
732 
733  ds_wait_status(dev, &st);
734 
735  err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
736  if (err)
737  return err;
738 
739  ds_wait_status(dev, &st);
740 
741  return 0;
742 }
743 
744 static int ds_set_path(struct ds_device *dev, u64 init)
745 {
746  int err;
747  struct ds_status st;
748  u8 buf[9];
749 
750  memcpy(buf, &init, 8);
751  buf[8] = BRANCH_MAIN;
752 
753  err = ds_send_data(dev, buf, sizeof(buf));
754  if (err)
755  return err;
756 
757  ds_wait_status(dev, &st);
758 
759  err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
760  if (err)
761  return err;
762 
763  ds_wait_status(dev, &st);
764 
765  return 0;
766 }
767 
768 #endif /* 0 */
769 
770 static u8 ds9490r_touch_bit(void *data, u8 bit)
771 {
772  u8 ret;
773  struct ds_device *dev = data;
774 
775  if (ds_touch_bit(dev, bit, &ret))
776  return 0;
777 
778  return ret;
779 }
780 
781 #if 0
782 static void ds9490r_write_bit(void *data, u8 bit)
783 {
784  struct ds_device *dev = data;
785 
786  ds_write_bit(dev, bit);
787 }
788 
789 static u8 ds9490r_read_bit(void *data)
790 {
791  struct ds_device *dev = data;
792  int err;
793  u8 bit = 0;
794 
795  err = ds_touch_bit(dev, 1, &bit);
796  if (err)
797  return 0;
798 
799  return bit & 1;
800 }
801 #endif
802 
803 static void ds9490r_write_byte(void *data, u8 byte)
804 {
805  struct ds_device *dev = data;
806 
807  ds_write_byte(dev, byte);
808 }
809 
810 static u8 ds9490r_read_byte(void *data)
811 {
812  struct ds_device *dev = data;
813  int err;
814  u8 byte = 0;
815 
816  err = ds_read_byte(dev, &byte);
817  if (err)
818  return 0;
819 
820  return byte;
821 }
822 
823 static void ds9490r_write_block(void *data, const u8 *buf, int len)
824 {
825  struct ds_device *dev = data;
826 
827  ds_write_block(dev, (u8 *)buf, len);
828 }
829 
830 static u8 ds9490r_read_block(void *data, u8 *buf, int len)
831 {
832  struct ds_device *dev = data;
833  int err;
834 
835  err = ds_read_block(dev, buf, len);
836  if (err < 0)
837  return 0;
838 
839  return len;
840 }
841 
842 static u8 ds9490r_reset(void *data)
843 {
844  struct ds_device *dev = data;
845  int err;
846 
847  err = ds_reset(dev);
848  if (err)
849  return 1;
850 
851  return 0;
852 }
853 
854 static u8 ds9490r_set_pullup(void *data, int delay)
855 {
856  struct ds_device *dev = data;
857 
858  if (ds_set_pullup(dev, delay))
859  return 1;
860 
861  return 0;
862 }
863 
864 static int ds_w1_init(struct ds_device *dev)
865 {
866  memset(&dev->master, 0, sizeof(struct w1_bus_master));
867 
868  /* Reset the device as it can be in a bad state.
869  * This is necessary because a block write will wait for data
870  * to be placed in the output buffer and block any later
871  * commands which will keep accumulating and the device will
872  * not be idle. Another case is removing the ds2490 module
873  * while a bus search is in progress, somehow a few commands
874  * get through, but the input transfers fail leaving data in
875  * the input buffer. This will cause the next read to fail
876  * see the note in ds_recv_data.
877  */
878  ds_reset_device(dev);
879 
880  dev->master.data = dev;
881  dev->master.touch_bit = &ds9490r_touch_bit;
882  /* read_bit and write_bit in w1_bus_master are expected to set and
883  * sample the line level. For write_bit that means it is expected to
884  * set it to that value and leave it there. ds2490 only supports an
885  * individual time slot at the lowest level. The requirement from
886  * pulling the bus state down to reading the state is 15us, something
887  * that isn't realistic on the USB bus anyway.
888  dev->master.read_bit = &ds9490r_read_bit;
889  dev->master.write_bit = &ds9490r_write_bit;
890  */
891  dev->master.read_byte = &ds9490r_read_byte;
892  dev->master.write_byte = &ds9490r_write_byte;
893  dev->master.read_block = &ds9490r_read_block;
894  dev->master.write_block = &ds9490r_write_block;
895  dev->master.reset_bus = &ds9490r_reset;
896  dev->master.set_pullup = &ds9490r_set_pullup;
897 
898  return w1_add_master_device(&dev->master);
899 }
900 
901 static void ds_w1_fini(struct ds_device *dev)
902 {
904 }
905 
906 static int ds_probe(struct usb_interface *intf,
907  const struct usb_device_id *udev_id)
908 {
909  struct usb_device *udev = interface_to_usbdev(intf);
911  struct usb_host_interface *iface_desc;
912  struct ds_device *dev;
913  int i, err;
914 
915  dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
916  if (!dev) {
917  printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
918  return -ENOMEM;
919  }
920  dev->spu_sleep = 0;
921  dev->spu_bit = 0;
922  dev->udev = usb_get_dev(udev);
923  if (!dev->udev) {
924  err = -ENOMEM;
925  goto err_out_free;
926  }
927  memset(dev->ep, 0, sizeof(dev->ep));
928 
929  usb_set_intfdata(intf, dev);
930 
931  err = usb_set_interface(dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
932  if (err) {
933  printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
934  intf->altsetting[0].desc.bInterfaceNumber, err);
935  goto err_out_clear;
936  }
937 
938  err = usb_reset_configuration(dev->udev);
939  if (err) {
940  printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
941  goto err_out_clear;
942  }
943 
944  iface_desc = &intf->altsetting[0];
945  if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
946  printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
947  err = -EINVAL;
948  goto err_out_clear;
949  }
950 
951  /*
952  * This loop doesn'd show control 0 endpoint,
953  * so we will fill only 1-3 endpoints entry.
954  */
955  for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
956  endpoint = &iface_desc->endpoint[i].desc;
957 
958  dev->ep[i+1] = endpoint->bEndpointAddress;
959 #if 0
960  printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
961  i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
962  (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
964 #endif
965  }
966 
967  err = ds_w1_init(dev);
968  if (err)
969  goto err_out_clear;
970 
971  mutex_lock(&ds_mutex);
972  list_add_tail(&dev->ds_entry, &ds_devices);
973  mutex_unlock(&ds_mutex);
974 
975  return 0;
976 
977 err_out_clear:
978  usb_set_intfdata(intf, NULL);
979  usb_put_dev(dev->udev);
980 err_out_free:
981  kfree(dev);
982  return err;
983 }
984 
985 static void ds_disconnect(struct usb_interface *intf)
986 {
987  struct ds_device *dev;
988 
989  dev = usb_get_intfdata(intf);
990  if (!dev)
991  return;
992 
993  mutex_lock(&ds_mutex);
994  list_del(&dev->ds_entry);
995  mutex_unlock(&ds_mutex);
996 
997  ds_w1_fini(dev);
998 
999  usb_set_intfdata(intf, NULL);
1000 
1001  usb_put_dev(dev->udev);
1002  kfree(dev);
1003 }
1004 
1005 module_usb_driver(ds_driver);
1006 
1007 MODULE_LICENSE("GPL");
1008 MODULE_AUTHOR("Evgeniy Polyakov <[email protected]>");
1009 MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");