Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dscr.c
Go to the documentation of this file.
1 /*
2  * Device State Control Registers driver
3  *
4  * Copyright (C) 2011 Texas Instruments Incorporated
5  * Author: Mark Salter <[email protected]>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 /*
13  * The Device State Control Registers (DSCR) provide SoC level control over
14  * a number of peripherals. Details vary considerably among the various SoC
15  * parts. In general, the DSCR block will provide one or more configuration
16  * registers often protected by a lock register. One or more key values must
17  * be written to a lock register in order to unlock the configuration register.
18  * The configuration register may be used to enable (and disable in some
19  * cases) SoC pin drivers, peripheral clock sources (internal or pin), etc.
20  * In some cases, a configuration register is write once or the individual
21  * bits are write once. That is, you may be able to enable a device, but
22  * will not be able to disable it.
23  *
24  * In addition to device configuration, the DSCR block may provide registers
25  * which are used to reset SoC peripherals, provide device ID information,
26  * provide MAC addresses, and other miscellaneous functions.
27  */
28 
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_platform.h>
32 #include <linux/module.h>
33 #include <linux/io.h>
34 #include <linux/delay.h>
35 #include <asm/soc.h>
36 #include <asm/dscr.h>
37 
38 #define MAX_DEVSTATE_IDS 32
39 #define MAX_DEVCTL_REGS 8
40 #define MAX_DEVSTAT_REGS 8
41 #define MAX_LOCKED_REGS 4
42 #define MAX_SOC_EMACS 2
43 
47 };
48 
49 /*
50  * Some registerd may be locked. In order to write to these
51  * registers, the key value must first be written to the lockreg.
52  */
53 struct locked_reg {
54  u32 reg; /* offset from base */
55  u32 lockreg; /* offset from base */
56  u32 key; /* unlock key */
57 };
58 
59 /*
60  * This describes a contiguous area of like control bits used to enable/disable
61  * SoC devices. Each controllable device is given an ID which is used by the
62  * individual device drivers to control the device state. These IDs start at
63  * zero and are assigned sequentially to the control bitfield ranges described
64  * by this structure.
65  */
67  u32 reg; /* register holding the control bits */
68  u8 start_id; /* start id of this range */
69  u8 num_ids; /* number of devices in this range */
70  u8 enable_only; /* bits are write-once to enable only */
71  u8 enable; /* value used to enable device */
72  u8 disable; /* value used to disable device */
73  u8 shift; /* starting (rightmost) bit in range */
74  u8 nbits; /* number of bits per device */
75 };
76 
77 
78 /*
79  * This describes a region of status bits indicating the state of
80  * various devices. This is used internally to wait for status
81  * change completion when enabling/disabling a device. Status is
82  * optional and not all device controls will have a corresponding
83  * status.
84  */
86  u32 reg; /* register holding the status bits */
87  u8 start_id; /* start id of this range */
88  u8 num_ids; /* number of devices in this range */
89  u8 enable; /* value indicating enabled state */
90  u8 disable; /* value indicating disabled state */
91  u8 shift; /* starting (rightmost) bit in range */
92  u8 nbits; /* number of bits per device */
93 };
94 
95 struct devstate_info {
98 };
99 
100 /* These are callbacks to SOC-specific code. */
101 struct dscr_ops {
102  void (*init)(struct device_node *node);
103 };
104 
105 struct dscr_regs {
107  void __iomem *base;
115 };
116 
117 static struct dscr_regs dscr;
118 
119 static struct locked_reg *find_locked_reg(u32 reg)
120 {
121  int i;
122 
123  for (i = 0; i < MAX_LOCKED_REGS; i++)
124  if (dscr.locked[i].key && reg == dscr.locked[i].reg)
125  return &dscr.locked[i];
126  return NULL;
127 }
128 
129 /*
130  * Write to a register with one lock
131  */
132 static void dscr_write_locked1(u32 reg, u32 val,
133  u32 lock, u32 key)
134 {
135  void __iomem *reg_addr = dscr.base + reg;
136  void __iomem *lock_addr = dscr.base + lock;
137 
138  /*
139  * For some registers, the lock is relocked after a short number
140  * of cycles. We have to put the lock write and register write in
141  * the same fetch packet to meet this timing. The .align ensures
142  * the two stw instructions are in the same fetch packet.
143  */
144  asm volatile ("b .s2 0f\n"
145  "nop 5\n"
146  " .align 5\n"
147  "0:\n"
148  "stw .D1T2 %3,*%2\n"
149  "stw .D1T2 %1,*%0\n"
150  :
151  : "a"(reg_addr), "b"(val), "a"(lock_addr), "b"(key)
152  );
153 
154  /* in case the hw doesn't reset the lock */
155  soc_writel(0, lock_addr);
156 }
157 
158 /*
159  * Write to a register protected by two lock registers
160  */
161 static void dscr_write_locked2(u32 reg, u32 val,
162  u32 lock0, u32 key0,
163  u32 lock1, u32 key1)
164 {
165  soc_writel(key0, dscr.base + lock0);
166  soc_writel(key1, dscr.base + lock1);
167  soc_writel(val, dscr.base + reg);
168  soc_writel(0, dscr.base + lock0);
169  soc_writel(0, dscr.base + lock1);
170 }
171 
172 static void dscr_write(u32 reg, u32 val)
173 {
174  struct locked_reg *lock;
175 
176  lock = find_locked_reg(reg);
177  if (lock)
178  dscr_write_locked1(reg, val, lock->lockreg, lock->key);
179  else if (dscr.kick_key[0])
180  dscr_write_locked2(reg, val, dscr.kick_reg[0], dscr.kick_key[0],
181  dscr.kick_reg[1], dscr.kick_key[1]);
182  else
183  soc_writel(val, dscr.base + reg);
184 }
185 
186 
187 /*
188  * Drivers can use this interface to enable/disable SoC IP blocks.
189  */
191 {
192  struct devstate_ctl_reg *ctl;
193  struct devstate_stat_reg *stat;
194  struct devstate_info *info;
195  u32 ctl_val, val;
196  int ctl_shift, ctl_mask;
197  unsigned long flags;
198 
199  if (!dscr.base)
200  return;
201 
203  return;
204 
205  info = &dscr.devstate_info[id];
206  ctl = info->ctl;
207  stat = info->stat;
208 
209  if (ctl == NULL)
210  return;
211 
212  ctl_shift = ctl->shift + ctl->nbits * (id - ctl->start_id);
213  ctl_mask = ((1 << ctl->nbits) - 1) << ctl_shift;
214 
215  switch (state) {
217  ctl_val = ctl->enable << ctl_shift;
218  break;
220  if (ctl->enable_only)
221  return;
222  ctl_val = ctl->disable << ctl_shift;
223  break;
224  default:
225  return;
226  }
227 
228  spin_lock_irqsave(&dscr.lock, flags);
229 
230  val = soc_readl(dscr.base + ctl->reg);
231  val &= ~ctl_mask;
232  val |= ctl_val;
233 
234  dscr_write(ctl->reg, val);
235 
236  spin_unlock_irqrestore(&dscr.lock, flags);
237 
238  if (!stat)
239  return;
240 
241  ctl_shift = stat->shift + stat->nbits * (id - stat->start_id);
242 
243  if (state == DSCR_DEVSTATE_ENABLED)
244  ctl_val = stat->enable;
245  else
246  ctl_val = stat->disable;
247 
248  do {
249  val = soc_readl(dscr.base + stat->reg);
250  val >>= ctl_shift;
251  val &= ((1 << stat->nbits) - 1);
252  } while (val != ctl_val);
253 }
255 
256 /*
257  * Drivers can use this to reset RMII module.
258  */
259 void dscr_rmii_reset(int id, int assert)
260 {
261  struct rmii_reset_reg *r;
262  unsigned long flags;
263  u32 val;
264 
266  return;
267 
268  r = &dscr.rmii_resets[id];
269  if (r->mask == 0)
270  return;
271 
272  spin_lock_irqsave(&dscr.lock, flags);
273 
274  val = soc_readl(dscr.base + r->reg);
275  if (assert)
276  dscr_write(r->reg, val | r->mask);
277  else
278  dscr_write(r->reg, val & ~(r->mask));
279 
280  spin_unlock_irqrestore(&dscr.lock, flags);
281 }
283 
284 static void __init dscr_parse_devstat(struct device_node *node,
285  void __iomem *base)
286 {
287  u32 val;
288  int err;
289 
290  err = of_property_read_u32_array(node, "ti,dscr-devstat", &val, 1);
291  if (!err)
292  c6x_devstat = soc_readl(base + val);
293  printk(KERN_INFO "DEVSTAT: %08x\n", c6x_devstat);
294 }
295 
296 static void __init dscr_parse_silicon_rev(struct device_node *node,
297  void __iomem *base)
298 {
299  u32 vals[3];
300  int err;
301 
302  err = of_property_read_u32_array(node, "ti,dscr-silicon-rev", vals, 3);
303  if (!err) {
304  c6x_silicon_rev = soc_readl(base + vals[0]);
305  c6x_silicon_rev >>= vals[1];
306  c6x_silicon_rev &= vals[2];
307  }
308 }
309 
310 /*
311  * Some SoCs will have a pair of fuse registers which hold
312  * an ethernet MAC address. The "ti,dscr-mac-fuse-regs"
313  * property is a mapping from fuse register bytes to MAC
314  * address bytes. The expected format is:
315  *
316  * ti,dscr-mac-fuse-regs = <reg0 b3 b2 b1 b0
317  * reg1 b3 b2 b1 b0>
318  *
319  * reg0 and reg1 are the offsets of the two fuse registers.
320  * b3-b0 positionally represent bytes within the fuse register.
321  * b3 is the most significant byte and b0 is the least.
322  * Allowable values for b3-b0 are:
323  *
324  * 0 = fuse register byte not used in MAC address
325  * 1-6 = index+1 into c6x_fuse_mac[]
326  */
327 static void __init dscr_parse_mac_fuse(struct device_node *node,
328  void __iomem *base)
329 {
330  u32 vals[10], fuse;
331  int f, i, j, err;
332 
333  err = of_property_read_u32_array(node, "ti,dscr-mac-fuse-regs",
334  vals, 10);
335  if (err)
336  return;
337 
338  for (f = 0; f < 2; f++) {
339  fuse = soc_readl(base + vals[f * 5]);
340  for (j = (f * 5) + 1, i = 24; i >= 0; i -= 8, j++)
341  if (vals[j] && vals[j] <= 6)
342  c6x_fuse_mac[vals[j] - 1] = fuse >> i;
343  }
344 }
345 
346 static void __init dscr_parse_rmii_resets(struct device_node *node,
347  void __iomem *base)
348 {
349  const __be32 *p;
350  int i, size;
351 
352  /* look for RMII reset registers */
353  p = of_get_property(node, "ti,dscr-rmii-resets", &size);
354  if (p) {
355  /* parse all the reg/mask pairs we can handle */
356  size /= (sizeof(*p) * 2);
357  if (size > MAX_SOC_EMACS)
358  size = MAX_SOC_EMACS;
359 
360  for (i = 0; i < size; i++) {
361  dscr.rmii_resets[i].reg = be32_to_cpup(p++);
362  dscr.rmii_resets[i].mask = be32_to_cpup(p++);
363  }
364  }
365 }
366 
367 
368 static void __init dscr_parse_privperm(struct device_node *node,
369  void __iomem *base)
370 {
371  u32 vals[2];
372  int err;
373 
374  err = of_property_read_u32_array(node, "ti,dscr-privperm", vals, 2);
375  if (err)
376  return;
377  dscr_write(vals[0], vals[1]);
378 }
379 
380 /*
381  * SoCs may have "locked" DSCR registers which can only be written
382  * to only after writing a key value to a lock registers. These
383  * regisers can be described with the "ti,dscr-locked-regs" property.
384  * This property provides a list of register descriptions with each
385  * description consisting of three values.
386  *
387  * ti,dscr-locked-regs = <reg0 lockreg0 key0
388  * ...
389  * regN lockregN keyN>;
390  *
391  * reg is the offset of the locked register
392  * lockreg is the offset of the lock register
393  * key is the unlock key written to lockreg
394  *
395  */
396 static void __init dscr_parse_locked_regs(struct device_node *node,
397  void __iomem *base)
398 {
399  struct locked_reg *r;
400  const __be32 *p;
401  int i, size;
402 
403  p = of_get_property(node, "ti,dscr-locked-regs", &size);
404  if (p) {
405  /* parse all the register descriptions we can handle */
406  size /= (sizeof(*p) * 3);
407  if (size > MAX_LOCKED_REGS)
408  size = MAX_LOCKED_REGS;
409 
410  for (i = 0; i < size; i++) {
411  r = &dscr.locked[i];
412 
413  r->reg = be32_to_cpup(p++);
414  r->lockreg = be32_to_cpup(p++);
415  r->key = be32_to_cpup(p++);
416  }
417  }
418 }
419 
420 /*
421  * SoCs may have DSCR registers which are only write enabled after
422  * writing specific key values to two registers. The two key registers
423  * and the key values can be parsed from a "ti,dscr-kick-regs"
424  * propety with the following layout:
425  *
426  * ti,dscr-kick-regs = <kickreg0 key0 kickreg1 key1>
427  *
428  * kickreg is the offset of the "kick" register
429  * key is the value which unlocks writing for protected regs
430  */
431 static void __init dscr_parse_kick_regs(struct device_node *node,
432  void __iomem *base)
433 {
434  u32 vals[4];
435  int err;
436 
437  err = of_property_read_u32_array(node, "ti,dscr-kick-regs", vals, 4);
438  if (!err) {
439  dscr.kick_reg[0] = vals[0];
440  dscr.kick_key[0] = vals[1];
441  dscr.kick_reg[1] = vals[2];
442  dscr.kick_key[1] = vals[3];
443  }
444 }
445 
446 
447 /*
448  * SoCs may provide controls to enable/disable individual IP blocks. These
449  * controls in the DSCR usually control pin drivers but also may control
450  * clocking and or resets. The device tree is used to describe the bitfields
451  * in registers used to control device state. The number of bits and their
452  * values may vary even within the same register.
453  *
454  * The layout of these bitfields is described by the ti,dscr-devstate-ctl-regs
455  * property. This property is a list where each element describes a contiguous
456  * range of control fields with like properties. Each element of the list
457  * consists of 7 cells with the following values:
458  *
459  * start_id num_ids reg enable disable start_bit nbits
460  *
461  * start_id is device id for the first device control in the range
462  * num_ids is the number of device controls in the range
463  * reg is the offset of the register holding the control bits
464  * enable is the value to enable a device
465  * disable is the value to disable a device (0xffffffff if cannot disable)
466  * start_bit is the bit number of the first bit in the range
467  * nbits is the number of bits per device control
468  */
469 static void __init dscr_parse_devstate_ctl_regs(struct device_node *node,
470  void __iomem *base)
471 {
472  struct devstate_ctl_reg *r;
473  const __be32 *p;
474  int i, j, size;
475 
476  p = of_get_property(node, "ti,dscr-devstate-ctl-regs", &size);
477  if (p) {
478  /* parse all the ranges we can handle */
479  size /= (sizeof(*p) * 7);
480  if (size > MAX_DEVCTL_REGS)
481  size = MAX_DEVCTL_REGS;
482 
483  for (i = 0; i < size; i++) {
484  r = &dscr.devctl[i];
485 
486  r->start_id = be32_to_cpup(p++);
487  r->num_ids = be32_to_cpup(p++);
488  r->reg = be32_to_cpup(p++);
489  r->enable = be32_to_cpup(p++);
490  r->disable = be32_to_cpup(p++);
491  if (r->disable == 0xffffffff)
492  r->enable_only = 1;
493  r->shift = be32_to_cpup(p++);
494  r->nbits = be32_to_cpup(p++);
495 
496  for (j = r->start_id;
497  j < (r->start_id + r->num_ids);
498  j++)
499  dscr.devstate_info[j].ctl = r;
500  }
501  }
502 }
503 
504 /*
505  * SoCs may provide status registers indicating the state (enabled/disabled) of
506  * devices on the SoC. The device tree is used to describe the bitfields in
507  * registers used to provide device status. The number of bits and their
508  * values used to provide status may vary even within the same register.
509  *
510  * The layout of these bitfields is described by the ti,dscr-devstate-stat-regs
511  * property. This property is a list where each element describes a contiguous
512  * range of status fields with like properties. Each element of the list
513  * consists of 7 cells with the following values:
514  *
515  * start_id num_ids reg enable disable start_bit nbits
516  *
517  * start_id is device id for the first device status in the range
518  * num_ids is the number of devices covered by the range
519  * reg is the offset of the register holding the status bits
520  * enable is the value indicating device is enabled
521  * disable is the value indicating device is disabled
522  * start_bit is the bit number of the first bit in the range
523  * nbits is the number of bits per device status
524  */
525 static void __init dscr_parse_devstate_stat_regs(struct device_node *node,
526  void __iomem *base)
527 {
528  struct devstate_stat_reg *r;
529  const __be32 *p;
530  int i, j, size;
531 
532  p = of_get_property(node, "ti,dscr-devstate-stat-regs", &size);
533  if (p) {
534  /* parse all the ranges we can handle */
535  size /= (sizeof(*p) * 7);
536  if (size > MAX_DEVSTAT_REGS)
537  size = MAX_DEVSTAT_REGS;
538 
539  for (i = 0; i < size; i++) {
540  r = &dscr.devstat[i];
541 
542  r->start_id = be32_to_cpup(p++);
543  r->num_ids = be32_to_cpup(p++);
544  r->reg = be32_to_cpup(p++);
545  r->enable = be32_to_cpup(p++);
546  r->disable = be32_to_cpup(p++);
547  r->shift = be32_to_cpup(p++);
548  r->nbits = be32_to_cpup(p++);
549 
550  for (j = r->start_id;
551  j < (r->start_id + r->num_ids);
552  j++)
553  dscr.devstate_info[j].stat = r;
554  }
555  }
556 }
557 
558 static struct of_device_id dscr_ids[] __initdata = {
559  { .compatible = "ti,c64x+dscr" },
560  {}
561 };
562 
563 /*
564  * Probe for DSCR area.
565  *
566  * This has to be done early on in case timer or interrupt controller
567  * needs something. e.g. On C6455 SoC, timer must be enabled through
568  * DSCR before it is functional.
569  */
570 void __init dscr_probe(void)
571 {
572  struct device_node *node;
573  void __iomem *base;
574 
575  spin_lock_init(&dscr.lock);
576 
577  node = of_find_matching_node(NULL, dscr_ids);
578  if (!node)
579  return;
580 
581  base = of_iomap(node, 0);
582  if (!base) {
583  of_node_put(node);
584  return;
585  }
586 
587  dscr.base = base;
588 
589  dscr_parse_devstat(node, base);
590  dscr_parse_silicon_rev(node, base);
591  dscr_parse_mac_fuse(node, base);
592  dscr_parse_rmii_resets(node, base);
593  dscr_parse_locked_regs(node, base);
594  dscr_parse_kick_regs(node, base);
595  dscr_parse_devstate_ctl_regs(node, base);
596  dscr_parse_devstate_stat_regs(node, base);
597  dscr_parse_privperm(node, base);
598 }