Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dwarf.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2009 Matt Fleming <[email protected]>
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License. See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * This is an implementation of a DWARF unwinder. Its main purpose is
9  * for generating stacktrace information. Based on the DWARF 3
10  * specification from http://www.dwarfstd.org.
11  *
12  * TODO:
13  * - DWARF64 doesn't work.
14  * - Registers with DWARF_VAL_OFFSET rules aren't handled properly.
15  */
16 
17 /* #define DEBUG */
18 #include <linux/kernel.h>
19 #include <linux/io.h>
20 #include <linux/list.h>
21 #include <linux/mempool.h>
22 #include <linux/mm.h>
23 #include <linux/elf.h>
24 #include <linux/ftrace.h>
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <asm/dwarf.h>
28 #include <asm/unwinder.h>
29 #include <asm/sections.h>
30 #include <asm/unaligned.h>
31 #include <asm/stacktrace.h>
32 
33 /* Reserve enough memory for two stack frames */
34 #define DWARF_FRAME_MIN_REQ 2
35 /* ... with 4 registers per frame. */
36 #define DWARF_REG_MIN_REQ (DWARF_FRAME_MIN_REQ * 4)
37 
38 static struct kmem_cache *dwarf_frame_cachep;
39 static mempool_t *dwarf_frame_pool;
40 
41 static struct kmem_cache *dwarf_reg_cachep;
42 static mempool_t *dwarf_reg_pool;
43 
44 static struct rb_root cie_root;
45 static DEFINE_SPINLOCK(dwarf_cie_lock);
46 
47 static struct rb_root fde_root;
48 static DEFINE_SPINLOCK(dwarf_fde_lock);
49 
50 static struct dwarf_cie *cached_cie;
51 
52 static unsigned int dwarf_unwinder_ready;
53 
65 static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame,
66  unsigned int reg_num)
67 {
68  struct dwarf_reg *reg;
69 
70  reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC);
71  if (!reg) {
72  printk(KERN_WARNING "Unable to allocate a DWARF register\n");
73  /*
74  * Let's just bomb hard here, we have no way to
75  * gracefully recover.
76  */
77  UNWINDER_BUG();
78  }
79 
80  reg->number = reg_num;
81  reg->addr = 0;
82  reg->flags = 0;
83 
84  list_add(&reg->link, &frame->reg_list);
85 
86  return reg;
87 }
88 
89 static void dwarf_frame_free_regs(struct dwarf_frame *frame)
90 {
91  struct dwarf_reg *reg, *n;
92 
93  list_for_each_entry_safe(reg, n, &frame->reg_list, link) {
94  list_del(&reg->link);
95  mempool_free(reg, dwarf_reg_pool);
96  }
97 }
98 
107 static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame,
108  unsigned int reg_num)
109 {
110  struct dwarf_reg *reg;
111 
112  list_for_each_entry(reg, &frame->reg_list, link) {
113  if (reg->number == reg_num)
114  return reg;
115  }
116 
117  return NULL;
118 }
119 
131 static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
132 {
133  u32 val = get_unaligned(src);
134  put_unaligned(val, dst);
135  return sizeof(unsigned long *);
136 }
137 
148 static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
149 {
150  unsigned int result;
151  unsigned char byte;
152  int shift, count;
153 
154  result = 0;
155  shift = 0;
156  count = 0;
157 
158  while (1) {
159  byte = __raw_readb(addr);
160  addr++;
161  count++;
162 
163  result |= (byte & 0x7f) << shift;
164  shift += 7;
165 
166  if (!(byte & 0x80))
167  break;
168  }
169 
170  *ret = result;
171 
172  return count;
173 }
174 
183 static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
184 {
185  unsigned char byte;
186  int result, shift;
187  int num_bits;
188  int count;
189 
190  result = 0;
191  shift = 0;
192  count = 0;
193 
194  while (1) {
195  byte = __raw_readb(addr);
196  addr++;
197  result |= (byte & 0x7f) << shift;
198  shift += 7;
199  count++;
200 
201  if (!(byte & 0x80))
202  break;
203  }
204 
205  /* The number of bits in a signed integer. */
206  num_bits = 8 * sizeof(result);
207 
208  if ((shift < num_bits) && (byte & 0x40))
209  result |= (-1 << shift);
210 
211  *ret = result;
212 
213  return count;
214 }
215 
226 static int dwarf_read_encoded_value(char *addr, unsigned long *val,
227  char encoding)
228 {
229  unsigned long decoded_addr = 0;
230  int count = 0;
231 
232  switch (encoding & 0x70) {
233  case DW_EH_PE_absptr:
234  break;
235  case DW_EH_PE_pcrel:
236  decoded_addr = (unsigned long)addr;
237  break;
238  default:
239  pr_debug("encoding=0x%x\n", (encoding & 0x70));
240  UNWINDER_BUG();
241  }
242 
243  if ((encoding & 0x07) == 0x00)
244  encoding |= DW_EH_PE_udata4;
245 
246  switch (encoding & 0x0f) {
247  case DW_EH_PE_sdata4:
248  case DW_EH_PE_udata4:
249  count += 4;
250  decoded_addr += get_unaligned((u32 *)addr);
251  __raw_writel(decoded_addr, val);
252  break;
253  default:
254  pr_debug("encoding=0x%x\n", encoding);
255  UNWINDER_BUG();
256  }
257 
258  return count;
259 }
260 
270 static inline int dwarf_entry_len(char *addr, unsigned long *len)
271 {
272  u32 initial_len;
273  int count;
274 
275  initial_len = get_unaligned((u32 *)addr);
276  count = 4;
277 
278  /*
279  * An initial length field value in the range DW_LEN_EXT_LO -
280  * DW_LEN_EXT_HI indicates an extension, and should not be
281  * interpreted as a length. The only extension that we currently
282  * understand is the use of DWARF64 addresses.
283  */
284  if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
285  /*
286  * The 64-bit length field immediately follows the
287  * compulsory 32-bit length field.
288  */
289  if (initial_len == DW_EXT_DWARF64) {
290  *len = get_unaligned((u64 *)addr + 4);
291  count = 12;
292  } else {
293  printk(KERN_WARNING "Unknown DWARF extension\n");
294  count = 0;
295  }
296  } else
297  *len = initial_len;
298 
299  return count;
300 }
301 
306 static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
307 {
308  struct rb_node **rb_node = &cie_root.rb_node;
309  struct dwarf_cie *cie = NULL;
310  unsigned long flags;
311 
312  spin_lock_irqsave(&dwarf_cie_lock, flags);
313 
314  /*
315  * We've cached the last CIE we looked up because chances are
316  * that the FDE wants this CIE.
317  */
318  if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
319  cie = cached_cie;
320  goto out;
321  }
322 
323  while (*rb_node) {
324  struct dwarf_cie *cie_tmp;
325 
326  cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node);
327  BUG_ON(!cie_tmp);
328 
329  if (cie_ptr == cie_tmp->cie_pointer) {
330  cie = cie_tmp;
331  cached_cie = cie_tmp;
332  goto out;
333  } else {
334  if (cie_ptr < cie_tmp->cie_pointer)
335  rb_node = &(*rb_node)->rb_left;
336  else
337  rb_node = &(*rb_node)->rb_right;
338  }
339  }
340 
341 out:
342  spin_unlock_irqrestore(&dwarf_cie_lock, flags);
343  return cie;
344 }
345 
350 struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
351 {
352  struct rb_node **rb_node = &fde_root.rb_node;
353  struct dwarf_fde *fde = NULL;
354  unsigned long flags;
355 
356  spin_lock_irqsave(&dwarf_fde_lock, flags);
357 
358  while (*rb_node) {
359  struct dwarf_fde *fde_tmp;
360  unsigned long tmp_start, tmp_end;
361 
362  fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node);
363  BUG_ON(!fde_tmp);
364 
365  tmp_start = fde_tmp->initial_location;
366  tmp_end = fde_tmp->initial_location + fde_tmp->address_range;
367 
368  if (pc < tmp_start) {
369  rb_node = &(*rb_node)->rb_left;
370  } else {
371  if (pc < tmp_end) {
372  fde = fde_tmp;
373  goto out;
374  } else
375  rb_node = &(*rb_node)->rb_right;
376  }
377  }
378 
379 out:
380  spin_unlock_irqrestore(&dwarf_fde_lock, flags);
381 
382  return fde;
383 }
384 
399 static int dwarf_cfa_execute_insns(unsigned char *insn_start,
400  unsigned char *insn_end,
401  struct dwarf_cie *cie,
402  struct dwarf_fde *fde,
403  struct dwarf_frame *frame,
404  unsigned long pc)
405 {
406  unsigned char insn;
407  unsigned char *current_insn;
408  unsigned int count, delta, reg, expr_len, offset;
409  struct dwarf_reg *regp;
410 
411  current_insn = insn_start;
412 
413  while (current_insn < insn_end && frame->pc <= pc) {
414  insn = __raw_readb(current_insn++);
415 
416  /*
417  * Firstly, handle the opcodes that embed their operands
418  * in the instructions.
419  */
420  switch (DW_CFA_opcode(insn)) {
421  case DW_CFA_advance_loc:
422  delta = DW_CFA_operand(insn);
423  delta *= cie->code_alignment_factor;
424  frame->pc += delta;
425  continue;
426  /* NOTREACHED */
427  case DW_CFA_offset:
428  reg = DW_CFA_operand(insn);
429  count = dwarf_read_uleb128(current_insn, &offset);
430  current_insn += count;
431  offset *= cie->data_alignment_factor;
432  regp = dwarf_frame_alloc_reg(frame, reg);
433  regp->addr = offset;
434  regp->flags |= DWARF_REG_OFFSET;
435  continue;
436  /* NOTREACHED */
437  case DW_CFA_restore:
438  reg = DW_CFA_operand(insn);
439  continue;
440  /* NOTREACHED */
441  }
442 
443  /*
444  * Secondly, handle the opcodes that don't embed their
445  * operands in the instruction.
446  */
447  switch (insn) {
448  case DW_CFA_nop:
449  continue;
450  case DW_CFA_advance_loc1:
451  delta = *current_insn++;
452  frame->pc += delta * cie->code_alignment_factor;
453  break;
454  case DW_CFA_advance_loc2:
455  delta = get_unaligned((u16 *)current_insn);
456  current_insn += 2;
457  frame->pc += delta * cie->code_alignment_factor;
458  break;
459  case DW_CFA_advance_loc4:
460  delta = get_unaligned((u32 *)current_insn);
461  current_insn += 4;
462  frame->pc += delta * cie->code_alignment_factor;
463  break;
464  case DW_CFA_offset_extended:
465  count = dwarf_read_uleb128(current_insn, &reg);
466  current_insn += count;
467  count = dwarf_read_uleb128(current_insn, &offset);
468  current_insn += count;
469  offset *= cie->data_alignment_factor;
470  break;
471  case DW_CFA_restore_extended:
472  count = dwarf_read_uleb128(current_insn, &reg);
473  current_insn += count;
474  break;
475  case DW_CFA_undefined:
476  count = dwarf_read_uleb128(current_insn, &reg);
477  current_insn += count;
478  regp = dwarf_frame_alloc_reg(frame, reg);
479  regp->flags |= DWARF_UNDEFINED;
480  break;
481  case DW_CFA_def_cfa:
482  count = dwarf_read_uleb128(current_insn,
483  &frame->cfa_register);
484  current_insn += count;
485  count = dwarf_read_uleb128(current_insn,
486  &frame->cfa_offset);
487  current_insn += count;
488 
489  frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
490  break;
491  case DW_CFA_def_cfa_register:
492  count = dwarf_read_uleb128(current_insn,
493  &frame->cfa_register);
494  current_insn += count;
495  frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
496  break;
497  case DW_CFA_def_cfa_offset:
498  count = dwarf_read_uleb128(current_insn, &offset);
499  current_insn += count;
500  frame->cfa_offset = offset;
501  break;
502  case DW_CFA_def_cfa_expression:
503  count = dwarf_read_uleb128(current_insn, &expr_len);
504  current_insn += count;
505 
506  frame->cfa_expr = current_insn;
507  frame->cfa_expr_len = expr_len;
508  current_insn += expr_len;
509 
510  frame->flags |= DWARF_FRAME_CFA_REG_EXP;
511  break;
512  case DW_CFA_offset_extended_sf:
513  count = dwarf_read_uleb128(current_insn, &reg);
514  current_insn += count;
515  count = dwarf_read_leb128(current_insn, &offset);
516  current_insn += count;
517  offset *= cie->data_alignment_factor;
518  regp = dwarf_frame_alloc_reg(frame, reg);
519  regp->flags |= DWARF_REG_OFFSET;
520  regp->addr = offset;
521  break;
522  case DW_CFA_val_offset:
523  count = dwarf_read_uleb128(current_insn, &reg);
524  current_insn += count;
525  count = dwarf_read_leb128(current_insn, &offset);
526  offset *= cie->data_alignment_factor;
527  regp = dwarf_frame_alloc_reg(frame, reg);
528  regp->flags |= DWARF_VAL_OFFSET;
529  regp->addr = offset;
530  break;
531  case DW_CFA_GNU_args_size:
532  count = dwarf_read_uleb128(current_insn, &offset);
533  current_insn += count;
534  break;
535  case DW_CFA_GNU_negative_offset_extended:
536  count = dwarf_read_uleb128(current_insn, &reg);
537  current_insn += count;
538  count = dwarf_read_uleb128(current_insn, &offset);
539  offset *= cie->data_alignment_factor;
540 
541  regp = dwarf_frame_alloc_reg(frame, reg);
542  regp->flags |= DWARF_REG_OFFSET;
543  regp->addr = -offset;
544  break;
545  default:
546  pr_debug("unhandled DWARF instruction 0x%x\n", insn);
547  UNWINDER_BUG();
548  break;
549  }
550  }
551 
552  return 0;
553 }
554 
559 void dwarf_free_frame(struct dwarf_frame *frame)
560 {
561  dwarf_frame_free_regs(frame);
562  mempool_free(frame, dwarf_frame_pool);
563 }
564 
565 extern void ret_from_irq(void);
566 
577 struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
578  struct dwarf_frame *prev)
579 {
580  struct dwarf_frame *frame;
581  struct dwarf_cie *cie;
582  struct dwarf_fde *fde;
583  struct dwarf_reg *reg;
584  unsigned long addr;
585 
586  /*
587  * If we've been called in to before initialization has
588  * completed, bail out immediately.
589  */
590  if (!dwarf_unwinder_ready)
591  return NULL;
592 
593  /*
594  * If we're starting at the top of the stack we need get the
595  * contents of a physical register to get the CFA in order to
596  * begin the virtual unwinding of the stack.
597  *
598  * NOTE: the return address is guaranteed to be setup by the
599  * time this function makes its first function call.
600  */
601  if (!pc || !prev)
602  pc = (unsigned long)current_text_addr();
603 
604 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
605  /*
606  * If our stack has been patched by the function graph tracer
607  * then we might see the address of return_to_handler() where we
608  * expected to find the real return address.
609  */
610  if (pc == (unsigned long)&return_to_handler) {
611  int index = current->curr_ret_stack;
612 
613  /*
614  * We currently have no way of tracking how many
615  * return_to_handler()'s we've seen. If there is more
616  * than one patched return address on our stack,
617  * complain loudly.
618  */
619  WARN_ON(index > 0);
620 
621  pc = current->ret_stack[index].ret;
622  }
623 #endif
624 
625  frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC);
626  if (!frame) {
627  printk(KERN_ERR "Unable to allocate a dwarf frame\n");
628  UNWINDER_BUG();
629  }
630 
631  INIT_LIST_HEAD(&frame->reg_list);
632  frame->flags = 0;
633  frame->prev = prev;
634  frame->return_addr = 0;
635 
636  fde = dwarf_lookup_fde(pc);
637  if (!fde) {
638  /*
639  * This is our normal exit path. There are two reasons
640  * why we might exit here,
641  *
642  * a) pc has no asscociated DWARF frame info and so
643  * we don't know how to unwind this frame. This is
644  * usually the case when we're trying to unwind a
645  * frame that was called from some assembly code
646  * that has no DWARF info, e.g. syscalls.
647  *
648  * b) the DEBUG info for pc is bogus. There's
649  * really no way to distinguish this case from the
650  * case above, which sucks because we could print a
651  * warning here.
652  */
653  goto bail;
654  }
655 
656  cie = dwarf_lookup_cie(fde->cie_pointer);
657 
658  frame->pc = fde->initial_location;
659 
660  /* CIE initial instructions */
661  dwarf_cfa_execute_insns(cie->initial_instructions,
662  cie->instructions_end, cie, fde,
663  frame, pc);
664 
665  /* FDE instructions */
666  dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
667  fde, frame, pc);
668 
669  /* Calculate the CFA */
670  switch (frame->flags) {
671  case DWARF_FRAME_CFA_REG_OFFSET:
672  if (prev) {
673  reg = dwarf_frame_reg(prev, frame->cfa_register);
674  UNWINDER_BUG_ON(!reg);
675  UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
676 
677  addr = prev->cfa + reg->addr;
678  frame->cfa = __raw_readl(addr);
679 
680  } else {
681  /*
682  * Again, we're starting from the top of the
683  * stack. We need to physically read
684  * the contents of a register in order to get
685  * the Canonical Frame Address for this
686  * function.
687  */
688  frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
689  }
690 
691  frame->cfa += frame->cfa_offset;
692  break;
693  default:
694  UNWINDER_BUG();
695  }
696 
697  reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG);
698 
699  /*
700  * If we haven't seen the return address register or the return
701  * address column is undefined then we must assume that this is
702  * the end of the callstack.
703  */
704  if (!reg || reg->flags == DWARF_UNDEFINED)
705  goto bail;
706 
707  UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
708 
709  addr = frame->cfa + reg->addr;
710  frame->return_addr = __raw_readl(addr);
711 
712  /*
713  * Ah, the joys of unwinding through interrupts.
714  *
715  * Interrupts are tricky - the DWARF info needs to be _really_
716  * accurate and unfortunately I'm seeing a lot of bogus DWARF
717  * info. For example, I've seen interrupts occur in epilogues
718  * just after the frame pointer (r14) had been restored. The
719  * problem was that the DWARF info claimed that the CFA could be
720  * reached by using the value of the frame pointer before it was
721  * restored.
722  *
723  * So until the compiler can be trusted to produce reliable
724  * DWARF info when it really matters, let's stop unwinding once
725  * we've calculated the function that was interrupted.
726  */
727  if (prev && prev->pc == (unsigned long)ret_from_irq)
728  frame->return_addr = 0;
729 
730  return frame;
731 
732 bail:
733  dwarf_free_frame(frame);
734  return NULL;
735 }
736 
737 static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
738  unsigned char *end, struct module *mod)
739 {
740  struct rb_node **rb_node = &cie_root.rb_node;
741  struct rb_node *parent = *rb_node;
742  struct dwarf_cie *cie;
743  unsigned long flags;
744  int count;
745 
746  cie = kzalloc(sizeof(*cie), GFP_KERNEL);
747  if (!cie)
748  return -ENOMEM;
749 
750  cie->length = len;
751 
752  /*
753  * Record the offset into the .eh_frame section
754  * for this CIE. It allows this CIE to be
755  * quickly and easily looked up from the
756  * corresponding FDE.
757  */
758  cie->cie_pointer = (unsigned long)entry;
759 
760  cie->version = *(char *)p++;
761  UNWINDER_BUG_ON(cie->version != 1);
762 
763  cie->augmentation = p;
764  p += strlen(cie->augmentation) + 1;
765 
766  count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
767  p += count;
768 
769  count = dwarf_read_leb128(p, &cie->data_alignment_factor);
770  p += count;
771 
772  /*
773  * Which column in the rule table contains the
774  * return address?
775  */
776  if (cie->version == 1) {
777  cie->return_address_reg = __raw_readb(p);
778  p++;
779  } else {
780  count = dwarf_read_uleb128(p, &cie->return_address_reg);
781  p += count;
782  }
783 
784  if (cie->augmentation[0] == 'z') {
785  unsigned int length, count;
786  cie->flags |= DWARF_CIE_Z_AUGMENTATION;
787 
788  count = dwarf_read_uleb128(p, &length);
789  p += count;
790 
791  UNWINDER_BUG_ON((unsigned char *)p > end);
792 
793  cie->initial_instructions = p + length;
794  cie->augmentation++;
795  }
796 
797  while (*cie->augmentation) {
798  /*
799  * "L" indicates a byte showing how the
800  * LSDA pointer is encoded. Skip it.
801  */
802  if (*cie->augmentation == 'L') {
803  p++;
804  cie->augmentation++;
805  } else if (*cie->augmentation == 'R') {
806  /*
807  * "R" indicates a byte showing
808  * how FDE addresses are
809  * encoded.
810  */
811  cie->encoding = *(char *)p++;
812  cie->augmentation++;
813  } else if (*cie->augmentation == 'P') {
814  /*
815  * "R" indicates a personality
816  * routine in the CIE
817  * augmentation.
818  */
819  UNWINDER_BUG();
820  } else if (*cie->augmentation == 'S') {
821  UNWINDER_BUG();
822  } else {
823  /*
824  * Unknown augmentation. Assume
825  * 'z' augmentation.
826  */
827  p = cie->initial_instructions;
828  UNWINDER_BUG_ON(!p);
829  break;
830  }
831  }
832 
833  cie->initial_instructions = p;
834  cie->instructions_end = end;
835 
836  /* Add to list */
837  spin_lock_irqsave(&dwarf_cie_lock, flags);
838 
839  while (*rb_node) {
840  struct dwarf_cie *cie_tmp;
841 
842  cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node);
843 
844  parent = *rb_node;
845 
846  if (cie->cie_pointer < cie_tmp->cie_pointer)
847  rb_node = &parent->rb_left;
848  else if (cie->cie_pointer >= cie_tmp->cie_pointer)
849  rb_node = &parent->rb_right;
850  else
851  WARN_ON(1);
852  }
853 
854  rb_link_node(&cie->node, parent, rb_node);
855  rb_insert_color(&cie->node, &cie_root);
856 
857 #ifdef CONFIG_MODULES
858  if (mod != NULL)
859  list_add_tail(&cie->link, &mod->arch.cie_list);
860 #endif
861 
862  spin_unlock_irqrestore(&dwarf_cie_lock, flags);
863 
864  return 0;
865 }
866 
867 static int dwarf_parse_fde(void *entry, u32 entry_type,
868  void *start, unsigned long len,
869  unsigned char *end, struct module *mod)
870 {
871  struct rb_node **rb_node = &fde_root.rb_node;
872  struct rb_node *parent = *rb_node;
873  struct dwarf_fde *fde;
874  struct dwarf_cie *cie;
875  unsigned long flags;
876  int count;
877  void *p = start;
878 
879  fde = kzalloc(sizeof(*fde), GFP_KERNEL);
880  if (!fde)
881  return -ENOMEM;
882 
883  fde->length = len;
884 
885  /*
886  * In a .eh_frame section the CIE pointer is the
887  * delta between the address within the FDE
888  */
889  fde->cie_pointer = (unsigned long)(p - entry_type - 4);
890 
891  cie = dwarf_lookup_cie(fde->cie_pointer);
892  fde->cie = cie;
893 
894  if (cie->encoding)
895  count = dwarf_read_encoded_value(p, &fde->initial_location,
896  cie->encoding);
897  else
898  count = dwarf_read_addr(p, &fde->initial_location);
899 
900  p += count;
901 
902  if (cie->encoding)
903  count = dwarf_read_encoded_value(p, &fde->address_range,
904  cie->encoding & 0x0f);
905  else
906  count = dwarf_read_addr(p, &fde->address_range);
907 
908  p += count;
909 
910  if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
911  unsigned int length;
912  count = dwarf_read_uleb128(p, &length);
913  p += count + length;
914  }
915 
916  /* Call frame instructions. */
917  fde->instructions = p;
918  fde->end = end;
919 
920  /* Add to list. */
921  spin_lock_irqsave(&dwarf_fde_lock, flags);
922 
923  while (*rb_node) {
924  struct dwarf_fde *fde_tmp;
925  unsigned long tmp_start, tmp_end;
926  unsigned long start, end;
927 
928  fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node);
929 
930  start = fde->initial_location;
931  end = fde->initial_location + fde->address_range;
932 
933  tmp_start = fde_tmp->initial_location;
934  tmp_end = fde_tmp->initial_location + fde_tmp->address_range;
935 
936  parent = *rb_node;
937 
938  if (start < tmp_start)
939  rb_node = &parent->rb_left;
940  else if (start >= tmp_end)
941  rb_node = &parent->rb_right;
942  else
943  WARN_ON(1);
944  }
945 
946  rb_link_node(&fde->node, parent, rb_node);
947  rb_insert_color(&fde->node, &fde_root);
948 
949 #ifdef CONFIG_MODULES
950  if (mod != NULL)
951  list_add_tail(&fde->link, &mod->arch.fde_list);
952 #endif
953 
954  spin_unlock_irqrestore(&dwarf_fde_lock, flags);
955 
956  return 0;
957 }
958 
959 static void dwarf_unwinder_dump(struct task_struct *task,
960  struct pt_regs *regs,
961  unsigned long *sp,
962  const struct stacktrace_ops *ops,
963  void *data)
964 {
965  struct dwarf_frame *frame, *_frame;
966  unsigned long return_addr;
967 
968  _frame = NULL;
969  return_addr = 0;
970 
971  while (1) {
972  frame = dwarf_unwind_stack(return_addr, _frame);
973 
974  if (_frame)
975  dwarf_free_frame(_frame);
976 
977  _frame = frame;
978 
979  if (!frame || !frame->return_addr)
980  break;
981 
982  return_addr = frame->return_addr;
983  ops->address(data, return_addr, 1);
984  }
985 
986  if (frame)
987  dwarf_free_frame(frame);
988 }
989 
990 static struct unwinder dwarf_unwinder = {
991  .name = "dwarf-unwinder",
992  .dump = dwarf_unwinder_dump,
993  .rating = 150,
994 };
995 
996 static void dwarf_unwinder_cleanup(void)
997 {
998  struct rb_node **fde_rb_node = &fde_root.rb_node;
999  struct rb_node **cie_rb_node = &cie_root.rb_node;
1000 
1001  /*
1002  * Deallocate all the memory allocated for the DWARF unwinder.
1003  * Traverse all the FDE/CIE lists and remove and free all the
1004  * memory associated with those data structures.
1005  */
1006  while (*fde_rb_node) {
1007  struct dwarf_fde *fde;
1008 
1009  fde = rb_entry(*fde_rb_node, struct dwarf_fde, node);
1010  rb_erase(*fde_rb_node, &fde_root);
1011  kfree(fde);
1012  }
1013 
1014  while (*cie_rb_node) {
1015  struct dwarf_cie *cie;
1016 
1017  cie = rb_entry(*cie_rb_node, struct dwarf_cie, node);
1018  rb_erase(*cie_rb_node, &cie_root);
1019  kfree(cie);
1020  }
1021 
1022  kmem_cache_destroy(dwarf_reg_cachep);
1023  kmem_cache_destroy(dwarf_frame_cachep);
1024 }
1025 
1034 static int dwarf_parse_section(char *eh_frame_start, char *eh_frame_end,
1035  struct module *mod)
1036 {
1037  u32 entry_type;
1038  void *p, *entry;
1039  int count, err = 0;
1040  unsigned long len = 0;
1041  unsigned int c_entries, f_entries;
1042  unsigned char *end;
1043 
1044  c_entries = 0;
1045  f_entries = 0;
1046  entry = eh_frame_start;
1047 
1048  while ((char *)entry < eh_frame_end) {
1049  p = entry;
1050 
1051  count = dwarf_entry_len(p, &len);
1052  if (count == 0) {
1053  /*
1054  * We read a bogus length field value. There is
1055  * nothing we can do here apart from disabling
1056  * the DWARF unwinder. We can't even skip this
1057  * entry and move to the next one because 'len'
1058  * tells us where our next entry is.
1059  */
1060  err = -EINVAL;
1061  goto out;
1062  } else
1063  p += count;
1064 
1065  /* initial length does not include itself */
1066  end = p + len;
1067 
1068  entry_type = get_unaligned((u32 *)p);
1069  p += 4;
1070 
1071  if (entry_type == DW_EH_FRAME_CIE) {
1072  err = dwarf_parse_cie(entry, p, len, end, mod);
1073  if (err < 0)
1074  goto out;
1075  else
1076  c_entries++;
1077  } else {
1078  err = dwarf_parse_fde(entry, entry_type, p, len,
1079  end, mod);
1080  if (err < 0)
1081  goto out;
1082  else
1083  f_entries++;
1084  }
1085 
1086  entry = (char *)entry + len + 4;
1087  }
1088 
1089  printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
1090  c_entries, f_entries);
1091 
1092  return 0;
1093 
1094 out:
1095  return err;
1096 }
1097 
1098 #ifdef CONFIG_MODULES
1099 int module_dwarf_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs,
1100  struct module *me)
1101 {
1102  unsigned int i, err;
1103  unsigned long start, end;
1104  char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
1105 
1106  start = end = 0;
1107 
1108  for (i = 1; i < hdr->e_shnum; i++) {
1109  /* Alloc bit cleared means "ignore it." */
1110  if ((sechdrs[i].sh_flags & SHF_ALLOC)
1111  && !strcmp(secstrings+sechdrs[i].sh_name, ".eh_frame")) {
1112  start = sechdrs[i].sh_addr;
1113  end = start + sechdrs[i].sh_size;
1114  break;
1115  }
1116  }
1117 
1118  /* Did we find the .eh_frame section? */
1119  if (i != hdr->e_shnum) {
1120  INIT_LIST_HEAD(&me->arch.cie_list);
1121  INIT_LIST_HEAD(&me->arch.fde_list);
1122  err = dwarf_parse_section((char *)start, (char *)end, me);
1123  if (err) {
1124  printk(KERN_WARNING "%s: failed to parse DWARF info\n",
1125  me->name);
1126  return err;
1127  }
1128  }
1129 
1130  return 0;
1131 }
1132 
1140 void module_dwarf_cleanup(struct module *mod)
1141 {
1142  struct dwarf_fde *fde, *ftmp;
1143  struct dwarf_cie *cie, *ctmp;
1144  unsigned long flags;
1145 
1146  spin_lock_irqsave(&dwarf_cie_lock, flags);
1147 
1148  list_for_each_entry_safe(cie, ctmp, &mod->arch.cie_list, link) {
1149  list_del(&cie->link);
1150  rb_erase(&cie->node, &cie_root);
1151  kfree(cie);
1152  }
1153 
1154  spin_unlock_irqrestore(&dwarf_cie_lock, flags);
1155 
1156  spin_lock_irqsave(&dwarf_fde_lock, flags);
1157 
1158  list_for_each_entry_safe(fde, ftmp, &mod->arch.fde_list, link) {
1159  list_del(&fde->link);
1160  rb_erase(&fde->node, &fde_root);
1161  kfree(fde);
1162  }
1163 
1164  spin_unlock_irqrestore(&dwarf_fde_lock, flags);
1165 }
1166 #endif /* CONFIG_MODULES */
1167 
1177 static int __init dwarf_unwinder_init(void)
1178 {
1179  int err = -ENOMEM;
1180 
1181  dwarf_frame_cachep = kmem_cache_create("dwarf_frames",
1182  sizeof(struct dwarf_frame), 0,
1184 
1185  dwarf_reg_cachep = kmem_cache_create("dwarf_regs",
1186  sizeof(struct dwarf_reg), 0,
1188 
1189  dwarf_frame_pool = mempool_create(DWARF_FRAME_MIN_REQ,
1192  dwarf_frame_cachep);
1193  if (!dwarf_frame_pool)
1194  goto out;
1195 
1196  dwarf_reg_pool = mempool_create(DWARF_REG_MIN_REQ,
1199  dwarf_reg_cachep);
1200  if (!dwarf_reg_pool)
1201  goto out;
1202 
1203  err = dwarf_parse_section(__start_eh_frame, __stop_eh_frame, NULL);
1204  if (err)
1205  goto out;
1206 
1207  err = unwinder_register(&dwarf_unwinder);
1208  if (err)
1209  goto out;
1210 
1211  dwarf_unwinder_ready = 1;
1212 
1213  return 0;
1214 
1215 out:
1216  printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
1217  dwarf_unwinder_cleanup();
1218  return err;
1219 }
1220 early_initcall(dwarf_unwinder_init);