Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
eeh_pseries.c
Go to the documentation of this file.
1 /*
2  * The file intends to implement the platform dependent EEH operations on pseries.
3  * Actually, the pseries platform is built based on RTAS heavily. That means the
4  * pseries platform dependent EEH operations will be built on RTAS calls. The functions
5  * are devired from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
6  * been done.
7  *
8  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
9  * Copyright IBM Corporation 2001, 2005, 2006
10  * Copyright Dave Engebretsen & Todd Inglett 2001
11  * Copyright Linas Vepstas 2005, 2006
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26  */
27 
28 #include <linux/atomic.h>
29 #include <linux/delay.h>
30 #include <linux/export.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/of.h>
34 #include <linux/pci.h>
35 #include <linux/proc_fs.h>
36 #include <linux/rbtree.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/ppc-pci.h>
46 #include <asm/rtas.h>
47 
48 /* RTAS tokens */
49 static int ibm_set_eeh_option;
50 static int ibm_set_slot_reset;
51 static int ibm_read_slot_reset_state;
52 static int ibm_read_slot_reset_state2;
53 static int ibm_slot_error_detail;
54 static int ibm_get_config_addr_info;
55 static int ibm_get_config_addr_info2;
56 static int ibm_configure_bridge;
57 static int ibm_configure_pe;
58 
59 /*
60  * Buffer for reporting slot-error-detail rtas calls. Its here
61  * in BSS, and not dynamically alloced, so that it ends up in
62  * RMO where RTAS can access it.
63  */
64 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
65 static DEFINE_SPINLOCK(slot_errbuf_lock);
66 static int eeh_error_buf_size;
67 
73 static int pseries_eeh_init(void)
74 {
75  /* figure out EEH RTAS function call tokens */
76  ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
77  ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
78  ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
79  ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
80  ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
81  ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
82  ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
83  ibm_configure_pe = rtas_token("ibm,configure-pe");
84  ibm_configure_bridge = rtas_token("ibm,configure-bridge");
85 
86  /* necessary sanity check */
87  if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE) {
88  pr_warning("%s: RTAS service <ibm,set-eeh-option> invalid\n",
89  __func__);
90  return -EINVAL;
91  } else if (ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE) {
92  pr_warning("%s: RTAS service <ibm,set-slot-reset> invalid\n",
93  __func__);
94  return -EINVAL;
95  } else if (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
96  ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) {
97  pr_warning("%s: RTAS service <ibm,read-slot-reset-state2> and "
98  "<ibm,read-slot-reset-state> invalid\n",
99  __func__);
100  return -EINVAL;
101  } else if (ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE) {
102  pr_warning("%s: RTAS service <ibm,slot-error-detail> invalid\n",
103  __func__);
104  return -EINVAL;
105  } else if (ibm_get_config_addr_info2 == RTAS_UNKNOWN_SERVICE &&
106  ibm_get_config_addr_info == RTAS_UNKNOWN_SERVICE) {
107  pr_warning("%s: RTAS service <ibm,get-config-addr-info2> and "
108  "<ibm,get-config-addr-info> invalid\n",
109  __func__);
110  return -EINVAL;
111  } else if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE &&
112  ibm_configure_bridge == RTAS_UNKNOWN_SERVICE) {
113  pr_warning("%s: RTAS service <ibm,configure-pe> and "
114  "<ibm,configure-bridge> invalid\n",
115  __func__);
116  return -EINVAL;
117  }
118 
119  /* Initialize error log lock and size */
120  spin_lock_init(&slot_errbuf_lock);
121  eeh_error_buf_size = rtas_token("rtas-error-log-max");
122  if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
123  pr_warning("%s: unknown EEH error log size\n",
124  __func__);
125  eeh_error_buf_size = 1024;
126  } else if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
127  pr_warning("%s: EEH error log size %d exceeds the maximal %d\n",
128  __func__, eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
129  eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
130  }
131 
132  /* Set EEH probe mode */
133  eeh_probe_mode_set(EEH_PROBE_MODE_DEVTREE);
134 
135  return 0;
136 }
137 
147 static void *pseries_eeh_of_probe(struct device_node *dn, void *flag)
148 {
149  struct eeh_dev *edev;
150  struct eeh_pe pe;
151  const u32 *class_code, *vendor_id, *device_id;
152  const u32 *regs;
153  int enable = 0;
154  int ret;
155 
156  /* Retrieve OF node and eeh device */
157  edev = of_node_to_eeh_dev(dn);
158  if (!of_device_is_available(dn))
159  return NULL;
160 
161  /* Retrieve class/vendor/device IDs */
162  class_code = of_get_property(dn, "class-code", NULL);
163  vendor_id = of_get_property(dn, "vendor-id", NULL);
164  device_id = of_get_property(dn, "device-id", NULL);
165 
166  /* Skip for bad OF node or PCI-ISA bridge */
167  if (!class_code || !vendor_id || !device_id)
168  return NULL;
169  if (dn->type && !strcmp(dn->type, "isa"))
170  return NULL;
171 
172  /* Update class code and mode of eeh device */
173  edev->class_code = *class_code;
174  edev->mode = 0;
175 
176  /* Retrieve the device address */
177  regs = of_get_property(dn, "reg", NULL);
178  if (!regs) {
179  pr_warning("%s: OF node property %s::reg not found\n",
180  __func__, dn->full_name);
181  return NULL;
182  }
183 
184  /* Initialize the fake PE */
185  memset(&pe, 0, sizeof(struct eeh_pe));
186  pe.phb = edev->phb;
187  pe.config_addr = regs[0];
188 
189  /* Enable EEH on the device */
190  ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
191  if (!ret) {
192  edev->config_addr = regs[0];
193  /* Retrieve PE address */
194  edev->pe_config_addr = eeh_ops->get_pe_addr(&pe);
195  pe.addr = edev->pe_config_addr;
196 
197  /* Some older systems (Power4) allow the ibm,set-eeh-option
198  * call to succeed even on nodes where EEH is not supported.
199  * Verify support explicitly.
200  */
201  ret = eeh_ops->get_state(&pe, NULL);
202  if (ret > 0 && ret != EEH_STATE_NOT_SUPPORT)
203  enable = 1;
204 
205  if (enable) {
207  eeh_add_to_parent_pe(edev);
208 
209  pr_debug("%s: EEH enabled on %s PHB#%d-PE#%x, config addr#%x\n",
210  __func__, dn->full_name, pe.phb->global_number,
211  pe.addr, pe.config_addr);
212  } else if (dn->parent && of_node_to_eeh_dev(dn->parent) &&
213  (of_node_to_eeh_dev(dn->parent))->pe) {
214  /* This device doesn't support EEH, but it may have an
215  * EEH parent, in which case we mark it as supported.
216  */
217  edev->config_addr = of_node_to_eeh_dev(dn->parent)->config_addr;
218  edev->pe_config_addr = of_node_to_eeh_dev(dn->parent)->pe_config_addr;
219  eeh_add_to_parent_pe(edev);
220  }
221  }
222 
223  /* Save memory bars */
224  eeh_save_bars(edev);
225 
226  return NULL;
227 }
228 
238 static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
239 {
240  int ret = 0;
241  int config_addr;
242 
243  /*
244  * When we're enabling or disabling EEH functioality on
245  * the particular PE, the PE config address is possibly
246  * unavailable. Therefore, we have to figure it out from
247  * the FDT node.
248  */
249  switch (option) {
250  case EEH_OPT_DISABLE:
251  case EEH_OPT_ENABLE:
252  case EEH_OPT_THAW_MMIO:
253  case EEH_OPT_THAW_DMA:
254  config_addr = pe->config_addr;
255  if (pe->addr)
256  config_addr = pe->addr;
257  break;
258 
259  default:
260  pr_err("%s: Invalid option %d\n",
261  __func__, option);
262  return -EINVAL;
263  }
264 
265  ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
266  config_addr, BUID_HI(pe->phb->buid),
267  BUID_LO(pe->phb->buid), option);
268 
269  return ret;
270 }
271 
285 static int pseries_eeh_get_pe_addr(struct eeh_pe *pe)
286 {
287  int ret = 0;
288  int rets[3];
289 
290  if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
291  /*
292  * First of all, we need to make sure there has one PE
293  * associated with the device. Otherwise, PE address is
294  * meaningless.
295  */
296  ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
297  pe->config_addr, BUID_HI(pe->phb->buid),
298  BUID_LO(pe->phb->buid), 1);
299  if (ret || (rets[0] == 0))
300  return 0;
301 
302  /* Retrieve the associated PE config address */
303  ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
304  pe->config_addr, BUID_HI(pe->phb->buid),
305  BUID_LO(pe->phb->buid), 0);
306  if (ret) {
307  pr_warning("%s: Failed to get address for PHB#%d-PE#%x\n",
308  __func__, pe->phb->global_number, pe->config_addr);
309  return 0;
310  }
311 
312  return rets[0];
313  }
314 
315  if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
316  ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
317  pe->config_addr, BUID_HI(pe->phb->buid),
318  BUID_LO(pe->phb->buid), 0);
319  if (ret) {
320  pr_warning("%s: Failed to get address for PHB#%d-PE#%x\n",
321  __func__, pe->phb->global_number, pe->config_addr);
322  return 0;
323  }
324 
325  return rets[0];
326  }
327 
328  return ret;
329 }
330 
344 static int pseries_eeh_get_state(struct eeh_pe *pe, int *state)
345 {
346  int config_addr;
347  int ret;
348  int rets[4];
349  int result;
350 
351  /* Figure out PE config address if possible */
352  config_addr = pe->config_addr;
353  if (pe->addr)
354  config_addr = pe->addr;
355 
356  if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
357  ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
358  config_addr, BUID_HI(pe->phb->buid),
359  BUID_LO(pe->phb->buid));
360  } else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
361  /* Fake PE unavailable info */
362  rets[2] = 0;
363  ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
364  config_addr, BUID_HI(pe->phb->buid),
365  BUID_LO(pe->phb->buid));
366  } else {
367  return EEH_STATE_NOT_SUPPORT;
368  }
369 
370  if (ret)
371  return ret;
372 
373  /* Parse the result out */
374  result = 0;
375  if (rets[1]) {
376  switch(rets[0]) {
377  case 0:
378  result &= ~EEH_STATE_RESET_ACTIVE;
379  result |= EEH_STATE_MMIO_ACTIVE;
380  result |= EEH_STATE_DMA_ACTIVE;
381  break;
382  case 1:
383  result |= EEH_STATE_RESET_ACTIVE;
384  result |= EEH_STATE_MMIO_ACTIVE;
385  result |= EEH_STATE_DMA_ACTIVE;
386  break;
387  case 2:
388  result &= ~EEH_STATE_RESET_ACTIVE;
389  result &= ~EEH_STATE_MMIO_ACTIVE;
390  result &= ~EEH_STATE_DMA_ACTIVE;
391  break;
392  case 4:
393  result &= ~EEH_STATE_RESET_ACTIVE;
394  result &= ~EEH_STATE_MMIO_ACTIVE;
395  result &= ~EEH_STATE_DMA_ACTIVE;
396  result |= EEH_STATE_MMIO_ENABLED;
397  break;
398  case 5:
399  if (rets[2]) {
400  if (state) *state = rets[2];
401  result = EEH_STATE_UNAVAILABLE;
402  } else {
403  result = EEH_STATE_NOT_SUPPORT;
404  }
405  default:
406  result = EEH_STATE_NOT_SUPPORT;
407  }
408  } else {
409  result = EEH_STATE_NOT_SUPPORT;
410  }
411 
412  return result;
413 }
414 
422 static int pseries_eeh_reset(struct eeh_pe *pe, int option)
423 {
424  int config_addr;
425  int ret;
426 
427  /* Figure out PE address */
428  config_addr = pe->config_addr;
429  if (pe->addr)
430  config_addr = pe->addr;
431 
432  /* Reset PE through RTAS call */
433  ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
434  config_addr, BUID_HI(pe->phb->buid),
435  BUID_LO(pe->phb->buid), option);
436 
437  /* If fundamental-reset not supported, try hot-reset */
438  if (option == EEH_RESET_FUNDAMENTAL &&
439  ret == -8) {
440  ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
441  config_addr, BUID_HI(pe->phb->buid),
442  BUID_LO(pe->phb->buid), EEH_RESET_HOT);
443  }
444 
445  return ret;
446 }
447 
456 static int pseries_eeh_wait_state(struct eeh_pe *pe, int max_wait)
457 {
458  int ret;
459  int mwait;
460 
461  /*
462  * According to PAPR, the state of PE might be temporarily
463  * unavailable. Under the circumstance, we have to wait
464  * for indicated time determined by firmware. The maximal
465  * wait time is 5 minutes, which is acquired from the original
466  * EEH implementation. Also, the original implementation
467  * also defined the minimal wait time as 1 second.
468  */
469 #define EEH_STATE_MIN_WAIT_TIME (1000)
470 #define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
471 
472  while (1) {
473  ret = pseries_eeh_get_state(pe, &mwait);
474 
475  /*
476  * If the PE's state is temporarily unavailable,
477  * we have to wait for the specified time. Otherwise,
478  * the PE's state will be returned immediately.
479  */
480  if (ret != EEH_STATE_UNAVAILABLE)
481  return ret;
482 
483  if (max_wait <= 0) {
484  pr_warning("%s: Timeout when getting PE's state (%d)\n",
485  __func__, max_wait);
486  return EEH_STATE_NOT_SUPPORT;
487  }
488 
489  if (mwait <= 0) {
490  pr_warning("%s: Firmware returned bad wait value %d\n",
491  __func__, mwait);
492  mwait = EEH_STATE_MIN_WAIT_TIME;
493  } else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
494  pr_warning("%s: Firmware returned too long wait value %d\n",
495  __func__, mwait);
496  mwait = EEH_STATE_MAX_WAIT_TIME;
497  }
498 
499  max_wait -= mwait;
500  msleep(mwait);
501  }
502 
503  return EEH_STATE_NOT_SUPPORT;
504 }
505 
517 static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
518 {
519  int config_addr;
520  unsigned long flags;
521  int ret;
522 
523  spin_lock_irqsave(&slot_errbuf_lock, flags);
524  memset(slot_errbuf, 0, eeh_error_buf_size);
525 
526  /* Figure out the PE address */
527  config_addr = pe->config_addr;
528  if (pe->addr)
529  config_addr = pe->addr;
530 
531  ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, config_addr,
532  BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
533  virt_to_phys(drv_log), len,
534  virt_to_phys(slot_errbuf), eeh_error_buf_size,
535  severity);
536  if (!ret)
537  log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
538  spin_unlock_irqrestore(&slot_errbuf_lock, flags);
539 
540  return ret;
541 }
542 
551 static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
552 {
553  int config_addr;
554  int ret;
555 
556  /* Figure out the PE address */
557  config_addr = pe->config_addr;
558  if (pe->addr)
559  config_addr = pe->addr;
560 
561  /* Use new configure-pe function, if supported */
562  if (ibm_configure_pe != RTAS_UNKNOWN_SERVICE) {
563  ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
564  config_addr, BUID_HI(pe->phb->buid),
565  BUID_LO(pe->phb->buid));
566  } else if (ibm_configure_bridge != RTAS_UNKNOWN_SERVICE) {
567  ret = rtas_call(ibm_configure_bridge, 3, 1, NULL,
568  config_addr, BUID_HI(pe->phb->buid),
569  BUID_LO(pe->phb->buid));
570  } else {
571  return -EFAULT;
572  }
573 
574  if (ret)
575  pr_warning("%s: Unable to configure bridge PHB#%d-PE#%x (%d)\n",
576  __func__, pe->phb->global_number, pe->addr, ret);
577 
578  return ret;
579 }
580 
590 static int pseries_eeh_read_config(struct device_node *dn, int where, int size, u32 *val)
591 {
592  struct pci_dn *pdn;
593 
594  pdn = PCI_DN(dn);
595 
596  return rtas_read_config(pdn, where, size, val);
597 }
598 
608 static int pseries_eeh_write_config(struct device_node *dn, int where, int size, u32 val)
609 {
610  struct pci_dn *pdn;
611 
612  pdn = PCI_DN(dn);
613 
614  return rtas_write_config(pdn, where, size, val);
615 }
616 
617 static struct eeh_ops pseries_eeh_ops = {
618  .name = "pseries",
619  .init = pseries_eeh_init,
620  .of_probe = pseries_eeh_of_probe,
621  .dev_probe = NULL,
622  .set_option = pseries_eeh_set_option,
623  .get_pe_addr = pseries_eeh_get_pe_addr,
624  .get_state = pseries_eeh_get_state,
625  .reset = pseries_eeh_reset,
626  .wait_state = pseries_eeh_wait_state,
627  .get_log = pseries_eeh_get_log,
628  .configure_bridge = pseries_eeh_configure_bridge,
629  .read_config = pseries_eeh_read_config,
630  .write_config = pseries_eeh_write_config
631 };
632 
639 static int __init eeh_pseries_init(void)
640 {
641  int ret = -EINVAL;
642 
643  if (!machine_is(pseries))
644  return ret;
645 
646  ret = eeh_ops_register(&pseries_eeh_ops);
647  if (!ret)
648  pr_info("EEH: pSeries platform initialized\n");
649  else
650  pr_info("EEH: pSeries platform initialization failure (%d)\n",
651  ret);
652 
653  return ret;
654 }
655 
656 early_initcall(eeh_pseries_init);