Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
fpu_entry.c
Go to the documentation of this file.
1 /*---------------------------------------------------------------------------+
2  | fpu_entry.c |
3  | |
4  | The entry functions for wm-FPU-emu |
5  | |
6  | Copyright (C) 1992,1993,1994,1996,1997 |
7  | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
8  | E-mail [email protected] |
9  | |
10  | See the files "README" and "COPYING" for further copyright and warranty |
11  | information. |
12  | |
13  +---------------------------------------------------------------------------*/
14 
15 /*---------------------------------------------------------------------------+
16  | Note: |
17  | The file contains code which accesses user memory. |
18  | Emulator static data may change when user memory is accessed, due to |
19  | other processes using the emulator while swapping is in progress. |
20  +---------------------------------------------------------------------------*/
21 
22 /*---------------------------------------------------------------------------+
23  | math_emulate(), restore_i387_soft() and save_i387_soft() are the only |
24  | entry points for wm-FPU-emu. |
25  +---------------------------------------------------------------------------*/
26 
27 #include <linux/signal.h>
28 #include <linux/regset.h>
29 
30 #include <asm/uaccess.h>
31 #include <asm/traps.h>
32 #include <asm/desc.h>
33 #include <asm/user.h>
34 #include <asm/i387.h>
35 
36 #include "fpu_system.h"
37 #include "fpu_emu.h"
38 #include "exception.h"
39 #include "control_w.h"
40 #include "status_w.h"
41 
42 #define __BAD__ FPU_illegal /* Illegal on an 80486, causes SIGILL */
43 
44 #ifndef NO_UNDOC_CODE /* Un-documented FPU op-codes supported by default. */
45 
46 /* WARNING: These codes are not documented by Intel in their 80486 manual
47  and may not work on FPU clones or later Intel FPUs. */
48 
49 /* Changes to support the un-doc codes provided by Linus Torvalds. */
50 
51 #define _d9_d8_ fstp_i /* unofficial code (19) */
52 #define _dc_d0_ fcom_st /* unofficial code (14) */
53 #define _dc_d8_ fcompst /* unofficial code (1c) */
54 #define _dd_c8_ fxch_i /* unofficial code (0d) */
55 #define _de_d0_ fcompst /* unofficial code (16) */
56 #define _df_c0_ ffreep /* unofficial code (07) ffree + pop */
57 #define _df_c8_ fxch_i /* unofficial code (0f) */
58 #define _df_d0_ fstp_i /* unofficial code (17) */
59 #define _df_d8_ fstp_i /* unofficial code (1f) */
60 
61 static FUNC const st_instr_table[64] = {
70 };
71 
72 #else /* Support only documented FPU op-codes */
73 
74 static FUNC const st_instr_table[64] = {
83 };
84 
85 #endif /* NO_UNDOC_CODE */
86 
87 #define _NONE_ 0 /* Take no special action */
88 #define _REG0_ 1 /* Need to check for not empty st(0) */
89 #define _REGI_ 2 /* Need to check for not empty st(0) and st(rm) */
90 #define _REGi_ 0 /* Uses st(rm) */
91 #define _PUSH_ 3 /* Need to check for space to push onto stack */
92 #define _null_ 4 /* Function illegal or not implemented */
93 #define _REGIi 5 /* Uses st(0) and st(rm), result to st(rm) */
94 #define _REGIp 6 /* Uses st(0) and st(rm), result to st(rm) then pop */
95 #define _REGIc 0 /* Compare st(0) and st(rm) */
96 #define _REGIn 0 /* Uses st(0) and st(rm), but handle checks later */
97 
98 #ifndef NO_UNDOC_CODE
99 
100 /* Un-documented FPU op-codes supported by default. (see above) */
101 
102 static u_char const type_table[64] = {
111 };
112 
113 #else /* Support only documented FPU op-codes */
114 
115 static u_char const type_table[64] = {
124 };
125 
126 #endif /* NO_UNDOC_CODE */
127 
128 #ifdef RE_ENTRANT_CHECKING
129 u_char emulating = 0;
130 #endif /* RE_ENTRANT_CHECKING */
131 
132 static int valid_prefix(u_char *Byte, u_char __user ** fpu_eip,
133  overrides * override);
134 
136 {
137  u_char FPU_modrm, byte1;
138  unsigned short code;
139  fpu_addr_modes addr_modes;
140  int unmasked;
141  FPU_REG loaded_data;
142  FPU_REG *st0_ptr;
143  u_char loaded_tag, st0_tag;
144  void __user *data_address;
145  struct address data_sel_off;
146  struct address entry_sel_off;
147  unsigned long code_base = 0;
148  unsigned long code_limit = 0; /* Initialized to stop compiler warnings */
149  struct desc_struct code_descriptor;
150 
151  if (!used_math()) {
152  if (init_fpu(current)) {
154  return;
155  }
156  }
157 
158 #ifdef RE_ENTRANT_CHECKING
159  if (emulating) {
160  printk("ERROR: wm-FPU-emu is not RE-ENTRANT!\n");
161  }
163 #endif /* RE_ENTRANT_CHECKING */
164 
165  FPU_info = info;
166 
168 
169  if ((FPU_EFLAGS & 0x00020000) != 0) {
170  /* Virtual 8086 mode */
171  addr_modes.default_mode = VM86;
172  FPU_EIP += code_base = FPU_CS << 4;
173  code_limit = code_base + 0xffff; /* Assumes code_base <= 0xffff0000 */
174  } else if (FPU_CS == __USER_CS && FPU_DS == __USER_DS) {
175  addr_modes.default_mode = 0;
176  } else if (FPU_CS == __KERNEL_CS) {
177  printk("math_emulate: %04x:%08lx\n", FPU_CS, FPU_EIP);
178  panic("Math emulation needed in kernel");
179  } else {
180 
181  if ((FPU_CS & 4) != 4) { /* Must be in the LDT */
182  /* Can only handle segmented addressing via the LDT
183  for now, and it must be 16 bit */
184  printk("FPU emulator: Unsupported addressing mode\n");
186  }
187 
188  code_descriptor = LDT_DESCRIPTOR(FPU_CS);
189  if (SEG_D_SIZE(code_descriptor)) {
190  /* The above test may be wrong, the book is not clear */
191  /* Segmented 32 bit protected mode */
192  addr_modes.default_mode = SEG32;
193  } else {
194  /* 16 bit protected mode */
195  addr_modes.default_mode = PM16;
196  }
197  FPU_EIP += code_base = SEG_BASE_ADDR(code_descriptor);
198  code_limit = code_base
199  + (SEG_LIMIT(code_descriptor) +
200  1) * SEG_GRANULARITY(code_descriptor)
201  - 1;
202  if (code_limit < code_base)
203  code_limit = 0xffffffff;
204  }
205 
207 
208  if (!valid_prefix(&byte1, (u_char __user **) & FPU_EIP,
209  &addr_modes.override)) {
211  printk
212  ("FPU emulator: Unknown prefix byte 0x%02x, probably due to\n"
213  "FPU emulator: self-modifying code! (emulation impossible)\n",
214  byte1);
216  EXCEPTION(EX_INTERNAL | 0x126);
218  }
219 
220  do_another_FPU_instruction:
221 
222  no_ip_update = 0;
223 
224  FPU_EIP++; /* We have fetched the prefix and first code bytes. */
225 
226  if (addr_modes.default_mode) {
227  /* This checks for the minimum instruction bytes.
228  We also need to check any extra (address mode) code access. */
229  if (FPU_EIP > code_limit)
231  }
232 
233  if ((byte1 & 0xf8) != 0xd8) {
234  if (byte1 == FWAIT_OPCODE) {
236  goto do_the_FPU_interrupt;
237  else
238  goto FPU_fwait_done;
239  }
240 #ifdef PARANOID
241  EXCEPTION(EX_INTERNAL | 0x128);
243 #endif /* PARANOID */
244  }
245 
248  FPU_get_user(FPU_modrm, (u_char __user *) FPU_EIP);
250  FPU_EIP++;
251 
252  if (partial_status & SW_Summary) {
253  /* Ignore the error for now if the current instruction is a no-wait
254  control instruction */
255  /* The 80486 manual contradicts itself on this topic,
256  but a real 80486 uses the following instructions:
257  fninit, fnstenv, fnsave, fnstsw, fnstenv, fnclex.
258  */
259  code = (FPU_modrm << 8) | byte1;
260  if (!((((code & 0xf803) == 0xe003) || /* fnclex, fninit, fnstsw */
261  (((code & 0x3003) == 0x3001) && /* fnsave, fnstcw, fnstenv,
262  fnstsw */
263  ((code & 0xc000) != 0xc000))))) {
264  /*
265  * We need to simulate the action of the kernel to FPU
266  * interrupts here.
267  */
268  do_the_FPU_interrupt:
269 
270  FPU_EIP = FPU_ORIG_EIP; /* Point to current FPU instruction. */
271 
273  current->thread.trap_nr = X86_TRAP_MF;
274  current->thread.error_code = 0;
275  send_sig(SIGFPE, current, 1);
276  return;
277  }
278  }
279 
280  entry_sel_off.offset = FPU_ORIG_EIP;
281  entry_sel_off.selector = FPU_CS;
282  entry_sel_off.opcode = (byte1 << 8) | FPU_modrm;
283  entry_sel_off.empty = 0;
284 
285  FPU_rm = FPU_modrm & 7;
286 
287  if (FPU_modrm < 0300) {
288  /* All of these instructions use the mod/rm byte to get a data address */
289 
290  if ((addr_modes.default_mode & SIXTEEN)
291  ^ (addr_modes.override.address_size == ADDR_SIZE_PREFIX))
292  data_address =
293  FPU_get_address_16(FPU_modrm, &FPU_EIP,
294  &data_sel_off, addr_modes);
295  else
296  data_address =
297  FPU_get_address(FPU_modrm, &FPU_EIP, &data_sel_off,
298  addr_modes);
299 
300  if (addr_modes.default_mode) {
301  if (FPU_EIP - 1 > code_limit)
303  }
304 
305  if (!(byte1 & 1)) {
306  unsigned short status1 = partial_status;
307 
308  st0_ptr = &st(0);
309  st0_tag = FPU_gettag0();
310 
311  /* Stack underflow has priority */
312  if (NOT_EMPTY_ST0) {
313  if (addr_modes.default_mode & PROTECTED) {
314  /* This table works for 16 and 32 bit protected mode */
315  if (access_limit <
316  data_sizes_16[(byte1 >> 1) & 3])
318  }
319 
320  unmasked = 0; /* Do this here to stop compiler warnings. */
321  switch ((byte1 >> 1) & 3) {
322  case 0:
323  unmasked =
324  FPU_load_single((float __user *)
325  data_address,
326  &loaded_data);
327  loaded_tag = unmasked & 0xff;
328  unmasked &= ~0xff;
329  break;
330  case 1:
331  loaded_tag =
332  FPU_load_int32((long __user *)
333  data_address,
334  &loaded_data);
335  break;
336  case 2:
337  unmasked =
338  FPU_load_double((double __user *)
339  data_address,
340  &loaded_data);
341  loaded_tag = unmasked & 0xff;
342  unmasked &= ~0xff;
343  break;
344  case 3:
345  default: /* Used here to suppress gcc warnings. */
346  loaded_tag =
347  FPU_load_int16((short __user *)
348  data_address,
349  &loaded_data);
350  break;
351  }
352 
353  /* No more access to user memory, it is safe
354  to use static data now */
355 
356  /* NaN operands have the next priority. */
357  /* We have to delay looking at st(0) until after
358  loading the data, because that data might contain an SNaN */
359  if (((st0_tag == TAG_Special) && isNaN(st0_ptr))
360  || ((loaded_tag == TAG_Special)
361  && isNaN(&loaded_data))) {
362  /* Restore the status word; we might have loaded a
363  denormal. */
365  if ((FPU_modrm & 0x30) == 0x10) {
366  /* fcom or fcomp */
368  setcc(SW_C3 | SW_C2 | SW_C0);
369  if ((FPU_modrm & 0x08)
370  && (control_word &
371  CW_Invalid))
372  FPU_pop(); /* fcomp, masked, so we pop. */
373  } else {
374  if (loaded_tag == TAG_Special)
375  loaded_tag =
377  (&loaded_data);
378 #ifdef PECULIAR_486
379  /* This is not really needed, but gives behaviour
380  identical to an 80486 */
381  if ((FPU_modrm & 0x28) == 0x20)
382  /* fdiv or fsub */
384  (&loaded_data,
385  loaded_tag, 0,
386  &loaded_data);
387  else
388 #endif /* PECULIAR_486 */
389  /* fadd, fdivr, fmul, or fsubr */
391  (&loaded_data,
392  loaded_tag, 0,
393  st0_ptr);
394  }
395  goto reg_mem_instr_done;
396  }
397 
398  if (unmasked && !((FPU_modrm & 0x30) == 0x10)) {
399  /* Is not a comparison instruction. */
400  if ((FPU_modrm & 0x38) == 0x38) {
401  /* fdivr */
402  if ((st0_tag == TAG_Zero) &&
403  ((loaded_tag == TAG_Valid)
404  || (loaded_tag ==
406  &&
407  isdenormal
408  (&loaded_data)))) {
410  (0,
411  getsign
412  (&loaded_data))
413  < 0) {
414  /* We use the fact here that the unmasked
415  exception in the loaded data was for a
416  denormal operand */
417  /* Restore the state of the denormal op bit */
419  &=
420  ~SW_Denorm_Op;
422  |=
423  status1 &
424  SW_Denorm_Op;
425  } else
426  setsign(st0_ptr,
427  getsign
428  (&loaded_data));
429  }
430  }
431  goto reg_mem_instr_done;
432  }
433 
434  switch ((FPU_modrm >> 3) & 7) {
435  case 0: /* fadd */
436  clear_C1();
437  FPU_add(&loaded_data, loaded_tag, 0,
438  control_word);
439  break;
440  case 1: /* fmul */
441  clear_C1();
442  FPU_mul(&loaded_data, loaded_tag, 0,
443  control_word);
444  break;
445  case 2: /* fcom */
446  FPU_compare_st_data(&loaded_data,
447  loaded_tag);
448  break;
449  case 3: /* fcomp */
451  (&loaded_data, loaded_tag)
452  && !unmasked)
453  FPU_pop();
454  break;
455  case 4: /* fsub */
456  clear_C1();
457  FPU_sub(LOADED | loaded_tag,
458  (int)&loaded_data,
459  control_word);
460  break;
461  case 5: /* fsubr */
462  clear_C1();
463  FPU_sub(REV | LOADED | loaded_tag,
464  (int)&loaded_data,
465  control_word);
466  break;
467  case 6: /* fdiv */
468  clear_C1();
469  FPU_div(LOADED | loaded_tag,
470  (int)&loaded_data,
471  control_word);
472  break;
473  case 7: /* fdivr */
474  clear_C1();
475  if (st0_tag == TAG_Zero)
476  partial_status = status1; /* Undo any denorm tag,
477  zero-divide has priority. */
478  FPU_div(REV | LOADED | loaded_tag,
479  (int)&loaded_data,
480  control_word);
481  break;
482  }
483  } else {
484  if ((FPU_modrm & 0x30) == 0x10) {
485  /* The instruction is fcom or fcomp */
487  setcc(SW_C3 | SW_C2 | SW_C0);
488  if ((FPU_modrm & 0x08)
489  && (control_word & CW_Invalid))
490  FPU_pop(); /* fcomp */
491  } else
493  }
494  reg_mem_instr_done:
495  operand_address = data_sel_off;
496  } else {
497  if (!(no_ip_update =
498  FPU_load_store(((FPU_modrm & 0x38) | (byte1 & 6))
499  >> 1, addr_modes, data_address))) {
500  operand_address = data_sel_off;
501  }
502  }
503 
504  } else {
505  /* None of these instructions access user memory */
506  u_char instr_index = (FPU_modrm & 0x38) | (byte1 & 7);
507 
508 #ifdef PECULIAR_486
509  /* This is supposed to be undefined, but a real 80486 seems
510  to do this: */
511  operand_address.offset = 0;
512  operand_address.selector = FPU_DS;
513 #endif /* PECULIAR_486 */
514 
515  st0_ptr = &st(0);
516  st0_tag = FPU_gettag0();
517  switch (type_table[(int)instr_index]) {
518  case _NONE_: /* also _REGIc: _REGIn */
519  break;
520  case _REG0_:
521  if (!NOT_EMPTY_ST0) {
523  goto FPU_instruction_done;
524  }
525  break;
526  case _REGIi:
527  if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) {
529  goto FPU_instruction_done;
530  }
531  break;
532  case _REGIp:
533  if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) {
535  goto FPU_instruction_done;
536  }
537  break;
538  case _REGI_:
539  if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) {
541  goto FPU_instruction_done;
542  }
543  break;
544  case _PUSH_: /* Only used by the fld st(i) instruction */
545  break;
546  case _null_:
547  FPU_illegal();
548  goto FPU_instruction_done;
549  default:
550  EXCEPTION(EX_INTERNAL | 0x111);
551  goto FPU_instruction_done;
552  }
553  (*st_instr_table[(int)instr_index]) ();
554 
555  FPU_instruction_done:
556  ;
557  }
558 
559  if (!no_ip_update)
560  instruction_address = entry_sel_off;
561 
562  FPU_fwait_done:
563 
564 #ifdef DEBUG
566  FPU_printall();
568 #endif /* DEBUG */
569 
570  if (FPU_lookahead && !need_resched()) {
571  FPU_ORIG_EIP = FPU_EIP - code_base;
572  if (valid_prefix(&byte1, (u_char __user **) & FPU_EIP,
573  &addr_modes.override))
574  goto do_another_FPU_instruction;
575  }
576 
577  if (addr_modes.default_mode)
578  FPU_EIP -= code_base;
579 
581 }
582 
583 /* Support for prefix bytes is not yet complete. To properly handle
584  all prefix bytes, further changes are needed in the emulator code
585  which accesses user address space. Access to separate segments is
586  important for msdos emulation. */
587 static int valid_prefix(u_char *Byte, u_char __user **fpu_eip,
588  overrides * override)
589 {
590  u_char byte;
591  u_char __user *ip = *fpu_eip;
592 
593  *override = (overrides) {
594  0, 0, PREFIX_DEFAULT}; /* defaults */
595 
598  FPU_get_user(byte, ip);
600 
601  while (1) {
602  switch (byte) {
603  case ADDR_SIZE_PREFIX:
604  override->address_size = ADDR_SIZE_PREFIX;
605  goto do_next_byte;
606 
607  case OP_SIZE_PREFIX:
608  override->operand_size = OP_SIZE_PREFIX;
609  goto do_next_byte;
610 
611  case PREFIX_CS:
612  override->segment = PREFIX_CS_;
613  goto do_next_byte;
614  case PREFIX_ES:
615  override->segment = PREFIX_ES_;
616  goto do_next_byte;
617  case PREFIX_SS:
618  override->segment = PREFIX_SS_;
619  goto do_next_byte;
620  case PREFIX_FS:
621  override->segment = PREFIX_FS_;
622  goto do_next_byte;
623  case PREFIX_GS:
624  override->segment = PREFIX_GS_;
625  goto do_next_byte;
626  case PREFIX_DS:
627  override->segment = PREFIX_DS_;
628  goto do_next_byte;
629 
630 /* lock is not a valid prefix for FPU instructions,
631  let the cpu handle it to generate a SIGILL. */
632 /* case PREFIX_LOCK: */
633 
634  /* rep.. prefixes have no meaning for FPU instructions */
635  case PREFIX_REPE:
636  case PREFIX_REPNE:
637 
638  do_next_byte:
639  ip++;
642  FPU_get_user(byte, ip);
644  break;
645  case FWAIT_OPCODE:
646  *Byte = byte;
647  return 1;
648  default:
649  if ((byte & 0xf8) == 0xd8) {
650  *Byte = byte;
651  *fpu_eip = ip;
652  return 1;
653  } else {
654  /* Not a valid sequence of prefix bytes followed by
655  an FPU instruction. */
656  *Byte = byte; /* Needed for error message. */
657  return 0;
658  }
659  }
660  }
661 }
662 
663 void math_abort(struct math_emu_info *info, unsigned int signal)
664 {
666  current->thread.trap_nr = X86_TRAP_MF;
667  current->thread.error_code = 0;
668  send_sig(signal, current, 1);
670  __asm__("movl %0,%%esp ; ret": :"g"(((long)info) - 4));
671 #ifdef PARANOID
672  printk("ERROR: wm-FPU-emu math_abort failed!\n");
673 #endif /* PARANOID */
674 }
675 
676 #define S387 ((struct i387_soft_struct *)s387)
677 #define sstatus_word() \
678  ((S387->swd & ~SW_Top & 0xffff) | ((S387->ftop << SW_Top_Shift) & SW_Top))
679 
681  const struct user_regset *regset,
682  unsigned int pos, unsigned int count,
683  const void *kbuf, const void __user *ubuf)
684 {
685  struct i387_soft_struct *s387 = &target->thread.fpu.state->soft;
686  void *space = s387->st_space;
687  int ret;
688  int offset, other, i, tags, regnr, tag, newtop;
689 
691  ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, s387, 0,
694 
695  if (ret)
696  return ret;
697 
698  S387->ftop = (S387->swd >> SW_Top_Shift) & 7;
699  offset = (S387->ftop & 7) * 10;
700  other = 80 - offset;
701 
703 
704  /* Copy all registers in stack order. */
705  ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
706  space + offset, 0, other);
707  if (!ret && offset)
708  ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
709  space, 0, offset);
710 
712 
713  /* The tags may need to be corrected now. */
714  tags = S387->twd;
715  newtop = S387->ftop;
716  for (i = 0; i < 8; i++) {
717  regnr = (i + newtop) & 7;
718  if (((tags >> ((regnr & 7) * 2)) & 3) != TAG_Empty) {
719  /* The loaded data over-rides all other cases. */
720  tag =
721  FPU_tagof((FPU_REG *) ((u_char *) S387->st_space +
722  10 * regnr));
723  tags &= ~(3 << (regnr * 2));
724  tags |= (tag & 3) << (regnr * 2);
725  }
726  }
727  S387->twd = tags;
728 
729  return ret;
730 }
731 
733  const struct user_regset *regset,
734  unsigned int pos, unsigned int count,
735  void *kbuf, void __user *ubuf)
736 {
737  struct i387_soft_struct *s387 = &target->thread.fpu.state->soft;
738  const void *space = s387->st_space;
739  int ret;
740  int offset = (S387->ftop & 7) * 10, other = 80 - offset;
741 
743 
744 #ifdef PECULIAR_486
745  S387->cwd &= ~0xe080;
746  /* An 80486 sets nearly all of the reserved bits to 1. */
747  S387->cwd |= 0xffff0040;
748  S387->swd = sstatus_word() | 0xffff0000;
749  S387->twd |= 0xffff0000;
750  S387->fcs &= ~0xf8000000;
751  S387->fos |= 0xffff0000;
752 #endif /* PECULIAR_486 */
753 
754  ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, s387, 0,
756 
757  /* Copy all registers in stack order. */
758  if (!ret)
759  ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
760  space + offset, 0, other);
761  if (!ret)
762  ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
763  space, 0, offset);
764 
766 
767  return ret;
768 }