Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
send.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2012 Alexander Block. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/crc32c.h>
28 #include <linux/vmalloc.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "locking.h"
33 #include "disk-io.h"
34 #include "btrfs_inode.h"
35 #include "transaction.h"
36 
37 static int g_verbose = 0;
38 
39 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
40 
41 /*
42  * A fs_path is a helper to dynamically build path names with unknown size.
43  * It reallocates the internal buffer on demand.
44  * It allows fast adding of path elements on the right side (normal path) and
45  * fast adding to the left side (reversed path). A reversed path can also be
46  * unreversed if needed.
47  */
48 struct fs_path {
49  union {
50  struct {
51  char *start;
52  char *end;
53  char *prepared;
54 
55  char *buf;
56  int buf_len;
57  int reversed:1;
58  int virtual_mem:1;
59  char inline_buf[];
60  };
61  char pad[PAGE_SIZE];
62  };
63 };
64 #define FS_PATH_INLINE_SIZE \
65  (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
66 
67 
68 /* reused for each extent */
69 struct clone_root {
70  struct btrfs_root *root;
73 
75 };
76 
77 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
78 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
79 
80 struct send_ctx {
81  struct file *send_filp;
82  loff_t send_off;
83  char *send_buf;
88 
89  struct vfsmount *mnt;
90 
95 
96  /* current state of the compare_tree call */
99  struct btrfs_key *cmp_key;
100 
101  /*
102  * infos of the currently processed inode. In case of deleted inodes,
103  * these are the values from the deleted inode.
104  */
112 
114 
117 
121 
123  char *read_buf;
124 };
125 
127  struct list_head list;
128  /*
129  * radix_tree has only 32bit entries but we need to handle 64bit inums.
130  * We use the lower 32bit of the 64bit inum to store it in the tree. If
131  * more then one inum would fall into the same entry, we use radix_list
132  * to store the additional entries. radix_list is also used to store
133  * entries where two entries have the same inum but different
134  * generations.
135  */
141  int ret;
143  int name_len;
144  char name[];
145 };
146 
147 static void fs_path_reset(struct fs_path *p)
148 {
149  if (p->reversed) {
150  p->start = p->buf + p->buf_len - 1;
151  p->end = p->start;
152  *p->start = 0;
153  } else {
154  p->start = p->buf;
155  p->end = p->start;
156  *p->start = 0;
157  }
158 }
159 
160 static struct fs_path *fs_path_alloc(struct send_ctx *sctx)
161 {
162  struct fs_path *p;
163 
164  p = kmalloc(sizeof(*p), GFP_NOFS);
165  if (!p)
166  return NULL;
167  p->reversed = 0;
168  p->virtual_mem = 0;
169  p->buf = p->inline_buf;
171  fs_path_reset(p);
172  return p;
173 }
174 
175 static struct fs_path *fs_path_alloc_reversed(struct send_ctx *sctx)
176 {
177  struct fs_path *p;
178 
179  p = fs_path_alloc(sctx);
180  if (!p)
181  return NULL;
182  p->reversed = 1;
183  fs_path_reset(p);
184  return p;
185 }
186 
187 static void fs_path_free(struct send_ctx *sctx, struct fs_path *p)
188 {
189  if (!p)
190  return;
191  if (p->buf != p->inline_buf) {
192  if (p->virtual_mem)
193  vfree(p->buf);
194  else
195  kfree(p->buf);
196  }
197  kfree(p);
198 }
199 
200 static int fs_path_len(struct fs_path *p)
201 {
202  return p->end - p->start;
203 }
204 
205 static int fs_path_ensure_buf(struct fs_path *p, int len)
206 {
207  char *tmp_buf;
208  int path_len;
209  int old_buf_len;
210 
211  len++;
212 
213  if (p->buf_len >= len)
214  return 0;
215 
216  path_len = p->end - p->start;
217  old_buf_len = p->buf_len;
218  len = PAGE_ALIGN(len);
219 
220  if (p->buf == p->inline_buf) {
221  tmp_buf = kmalloc(len, GFP_NOFS);
222  if (!tmp_buf) {
223  tmp_buf = vmalloc(len);
224  if (!tmp_buf)
225  return -ENOMEM;
226  p->virtual_mem = 1;
227  }
228  memcpy(tmp_buf, p->buf, p->buf_len);
229  p->buf = tmp_buf;
230  p->buf_len = len;
231  } else {
232  if (p->virtual_mem) {
233  tmp_buf = vmalloc(len);
234  if (!tmp_buf)
235  return -ENOMEM;
236  memcpy(tmp_buf, p->buf, p->buf_len);
237  vfree(p->buf);
238  } else {
239  tmp_buf = krealloc(p->buf, len, GFP_NOFS);
240  if (!tmp_buf) {
241  tmp_buf = vmalloc(len);
242  if (!tmp_buf)
243  return -ENOMEM;
244  memcpy(tmp_buf, p->buf, p->buf_len);
245  kfree(p->buf);
246  p->virtual_mem = 1;
247  }
248  }
249  p->buf = tmp_buf;
250  p->buf_len = len;
251  }
252  if (p->reversed) {
253  tmp_buf = p->buf + old_buf_len - path_len - 1;
254  p->end = p->buf + p->buf_len - 1;
255  p->start = p->end - path_len;
256  memmove(p->start, tmp_buf, path_len + 1);
257  } else {
258  p->start = p->buf;
259  p->end = p->start + path_len;
260  }
261  return 0;
262 }
263 
264 static int fs_path_prepare_for_add(struct fs_path *p, int name_len)
265 {
266  int ret;
267  int new_len;
268 
269  new_len = p->end - p->start + name_len;
270  if (p->start != p->end)
271  new_len++;
272  ret = fs_path_ensure_buf(p, new_len);
273  if (ret < 0)
274  goto out;
275 
276  if (p->reversed) {
277  if (p->start != p->end)
278  *--p->start = '/';
279  p->start -= name_len;
280  p->prepared = p->start;
281  } else {
282  if (p->start != p->end)
283  *p->end++ = '/';
284  p->prepared = p->end;
285  p->end += name_len;
286  *p->end = 0;
287  }
288 
289 out:
290  return ret;
291 }
292 
293 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
294 {
295  int ret;
296 
297  ret = fs_path_prepare_for_add(p, name_len);
298  if (ret < 0)
299  goto out;
300  memcpy(p->prepared, name, name_len);
301  p->prepared = NULL;
302 
303 out:
304  return ret;
305 }
306 
307 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
308 {
309  int ret;
310 
311  ret = fs_path_prepare_for_add(p, p2->end - p2->start);
312  if (ret < 0)
313  goto out;
314  memcpy(p->prepared, p2->start, p2->end - p2->start);
315  p->prepared = NULL;
316 
317 out:
318  return ret;
319 }
320 
321 static int fs_path_add_from_extent_buffer(struct fs_path *p,
322  struct extent_buffer *eb,
323  unsigned long off, int len)
324 {
325  int ret;
326 
327  ret = fs_path_prepare_for_add(p, len);
328  if (ret < 0)
329  goto out;
330 
331  read_extent_buffer(eb, p->prepared, off, len);
332  p->prepared = NULL;
333 
334 out:
335  return ret;
336 }
337 
338 #if 0
339 static void fs_path_remove(struct fs_path *p)
340 {
341  BUG_ON(p->reversed);
342  while (p->start != p->end && *p->end != '/')
343  p->end--;
344  *p->end = 0;
345 }
346 #endif
347 
348 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
349 {
350  int ret;
351 
352  p->reversed = from->reversed;
353  fs_path_reset(p);
354 
355  ret = fs_path_add_path(p, from);
356 
357  return ret;
358 }
359 
360 
361 static void fs_path_unreverse(struct fs_path *p)
362 {
363  char *tmp;
364  int len;
365 
366  if (!p->reversed)
367  return;
368 
369  tmp = p->start;
370  len = p->end - p->start;
371  p->start = p->buf;
372  p->end = p->start + len;
373  memmove(p->start, tmp, len + 1);
374  p->reversed = 0;
375 }
376 
377 static struct btrfs_path *alloc_path_for_send(void)
378 {
379  struct btrfs_path *path;
380 
381  path = btrfs_alloc_path();
382  if (!path)
383  return NULL;
384  path->search_commit_root = 1;
385  path->skip_locking = 1;
386  return path;
387 }
388 
389 int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
390 {
391  int ret;
392  mm_segment_t old_fs;
393  u32 pos = 0;
394 
395  old_fs = get_fs();
396  set_fs(KERNEL_DS);
397 
398  while (pos < len) {
399  ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
400  /* TODO handle that correctly */
401  /*if (ret == -ERESTARTSYS) {
402  continue;
403  }*/
404  if (ret < 0)
405  goto out;
406  if (ret == 0) {
407  ret = -EIO;
408  goto out;
409  }
410  pos += ret;
411  }
412 
413  ret = 0;
414 
415 out:
416  set_fs(old_fs);
417  return ret;
418 }
419 
420 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
421 {
422  struct btrfs_tlv_header *hdr;
423  int total_len = sizeof(*hdr) + len;
424  int left = sctx->send_max_size - sctx->send_size;
425 
426  if (unlikely(left < total_len))
427  return -EOVERFLOW;
428 
429  hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
430  hdr->tlv_type = cpu_to_le16(attr);
431  hdr->tlv_len = cpu_to_le16(len);
432  memcpy(hdr + 1, data, len);
433  sctx->send_size += total_len;
434 
435  return 0;
436 }
437 
438 #if 0
439 static int tlv_put_u8(struct send_ctx *sctx, u16 attr, u8 value)
440 {
441  return tlv_put(sctx, attr, &value, sizeof(value));
442 }
443 
444 static int tlv_put_u16(struct send_ctx *sctx, u16 attr, u16 value)
445 {
446  __le16 tmp = cpu_to_le16(value);
447  return tlv_put(sctx, attr, &tmp, sizeof(tmp));
448 }
449 
450 static int tlv_put_u32(struct send_ctx *sctx, u16 attr, u32 value)
451 {
452  __le32 tmp = cpu_to_le32(value);
453  return tlv_put(sctx, attr, &tmp, sizeof(tmp));
454 }
455 #endif
456 
457 static int tlv_put_u64(struct send_ctx *sctx, u16 attr, u64 value)
458 {
459  __le64 tmp = cpu_to_le64(value);
460  return tlv_put(sctx, attr, &tmp, sizeof(tmp));
461 }
462 
463 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
464  const char *str, int len)
465 {
466  if (len == -1)
467  len = strlen(str);
468  return tlv_put(sctx, attr, str, len);
469 }
470 
471 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
472  const u8 *uuid)
473 {
474  return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
475 }
476 
477 #if 0
478 static int tlv_put_timespec(struct send_ctx *sctx, u16 attr,
479  struct timespec *ts)
480 {
481  struct btrfs_timespec bts;
482  bts.sec = cpu_to_le64(ts->tv_sec);
483  bts.nsec = cpu_to_le32(ts->tv_nsec);
484  return tlv_put(sctx, attr, &bts, sizeof(bts));
485 }
486 #endif
487 
488 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
489  struct extent_buffer *eb,
490  struct btrfs_timespec *ts)
491 {
492  struct btrfs_timespec bts;
493  read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
494  return tlv_put(sctx, attr, &bts, sizeof(bts));
495 }
496 
497 
498 #define TLV_PUT(sctx, attrtype, attrlen, data) \
499  do { \
500  ret = tlv_put(sctx, attrtype, attrlen, data); \
501  if (ret < 0) \
502  goto tlv_put_failure; \
503  } while (0)
504 
505 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
506  do { \
507  ret = tlv_put_u##bits(sctx, attrtype, value); \
508  if (ret < 0) \
509  goto tlv_put_failure; \
510  } while (0)
511 
512 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
513 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
514 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
515 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
516 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
517  do { \
518  ret = tlv_put_string(sctx, attrtype, str, len); \
519  if (ret < 0) \
520  goto tlv_put_failure; \
521  } while (0)
522 #define TLV_PUT_PATH(sctx, attrtype, p) \
523  do { \
524  ret = tlv_put_string(sctx, attrtype, p->start, \
525  p->end - p->start); \
526  if (ret < 0) \
527  goto tlv_put_failure; \
528  } while(0)
529 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
530  do { \
531  ret = tlv_put_uuid(sctx, attrtype, uuid); \
532  if (ret < 0) \
533  goto tlv_put_failure; \
534  } while (0)
535 #define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \
536  do { \
537  ret = tlv_put_timespec(sctx, attrtype, ts); \
538  if (ret < 0) \
539  goto tlv_put_failure; \
540  } while (0)
541 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
542  do { \
543  ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
544  if (ret < 0) \
545  goto tlv_put_failure; \
546  } while (0)
547 
548 static int send_header(struct send_ctx *sctx)
549 {
550  struct btrfs_stream_header hdr;
551 
554 
555  return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
556  &sctx->send_off);
557 }
558 
559 /*
560  * For each command/item we want to send to userspace, we call this function.
561  */
562 static int begin_cmd(struct send_ctx *sctx, int cmd)
563 {
564  struct btrfs_cmd_header *hdr;
565 
566  if (!sctx->send_buf) {
567  WARN_ON(1);
568  return -EINVAL;
569  }
570 
571  BUG_ON(sctx->send_size);
572 
573  sctx->send_size += sizeof(*hdr);
574  hdr = (struct btrfs_cmd_header *)sctx->send_buf;
575  hdr->cmd = cpu_to_le16(cmd);
576 
577  return 0;
578 }
579 
580 static int send_cmd(struct send_ctx *sctx)
581 {
582  int ret;
583  struct btrfs_cmd_header *hdr;
584  u32 crc;
585 
586  hdr = (struct btrfs_cmd_header *)sctx->send_buf;
587  hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
588  hdr->crc = 0;
589 
590  crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
591  hdr->crc = cpu_to_le32(crc);
592 
593  ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
594  &sctx->send_off);
595 
596  sctx->total_send_size += sctx->send_size;
597  sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
598  sctx->send_size = 0;
599 
600  return ret;
601 }
602 
603 /*
604  * Sends a move instruction to user space
605  */
606 static int send_rename(struct send_ctx *sctx,
607  struct fs_path *from, struct fs_path *to)
608 {
609  int ret;
610 
611 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
612 
613  ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
614  if (ret < 0)
615  goto out;
616 
617  TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
619 
620  ret = send_cmd(sctx);
621 
622 tlv_put_failure:
623 out:
624  return ret;
625 }
626 
627 /*
628  * Sends a link instruction to user space
629  */
630 static int send_link(struct send_ctx *sctx,
631  struct fs_path *path, struct fs_path *lnk)
632 {
633  int ret;
634 
635 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
636 
637  ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
638  if (ret < 0)
639  goto out;
640 
641  TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
643 
644  ret = send_cmd(sctx);
645 
646 tlv_put_failure:
647 out:
648  return ret;
649 }
650 
651 /*
652  * Sends an unlink instruction to user space
653  */
654 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
655 {
656  int ret;
657 
658 verbose_printk("btrfs: send_unlink %s\n", path->start);
659 
660  ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
661  if (ret < 0)
662  goto out;
663 
664  TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
665 
666  ret = send_cmd(sctx);
667 
668 tlv_put_failure:
669 out:
670  return ret;
671 }
672 
673 /*
674  * Sends a rmdir instruction to user space
675  */
676 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
677 {
678  int ret;
679 
680 verbose_printk("btrfs: send_rmdir %s\n", path->start);
681 
682  ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
683  if (ret < 0)
684  goto out;
685 
686  TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
687 
688  ret = send_cmd(sctx);
689 
690 tlv_put_failure:
691 out:
692  return ret;
693 }
694 
695 /*
696  * Helper function to retrieve some fields from an inode item.
697  */
698 static int get_inode_info(struct btrfs_root *root,
699  u64 ino, u64 *size, u64 *gen,
700  u64 *mode, u64 *uid, u64 *gid,
701  u64 *rdev)
702 {
703  int ret;
704  struct btrfs_inode_item *ii;
705  struct btrfs_key key;
706  struct btrfs_path *path;
707 
708  path = alloc_path_for_send();
709  if (!path)
710  return -ENOMEM;
711 
712  key.objectid = ino;
713  key.type = BTRFS_INODE_ITEM_KEY;
714  key.offset = 0;
715  ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
716  if (ret < 0)
717  goto out;
718  if (ret) {
719  ret = -ENOENT;
720  goto out;
721  }
722 
723  ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
724  struct btrfs_inode_item);
725  if (size)
726  *size = btrfs_inode_size(path->nodes[0], ii);
727  if (gen)
728  *gen = btrfs_inode_generation(path->nodes[0], ii);
729  if (mode)
730  *mode = btrfs_inode_mode(path->nodes[0], ii);
731  if (uid)
732  *uid = btrfs_inode_uid(path->nodes[0], ii);
733  if (gid)
734  *gid = btrfs_inode_gid(path->nodes[0], ii);
735  if (rdev)
736  *rdev = btrfs_inode_rdev(path->nodes[0], ii);
737 
738 out:
739  btrfs_free_path(path);
740  return ret;
741 }
742 
743 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
744  struct fs_path *p,
745  void *ctx);
746 
747 /*
748  * Helper function to iterate the entries in ONE btrfs_inode_ref or
749  * btrfs_inode_extref.
750  * The iterate callback may return a non zero value to stop iteration. This can
751  * be a negative value for error codes or 1 to simply stop it.
752  *
753  * path must point to the INODE_REF or INODE_EXTREF when called.
754  */
755 static int iterate_inode_ref(struct send_ctx *sctx,
756  struct btrfs_root *root, struct btrfs_path *path,
757  struct btrfs_key *found_key, int resolve,
758  iterate_inode_ref_t iterate, void *ctx)
759 {
760  struct extent_buffer *eb = path->nodes[0];
761  struct btrfs_item *item;
762  struct btrfs_inode_ref *iref;
763  struct btrfs_inode_extref *extref;
764  struct btrfs_path *tmp_path;
765  struct fs_path *p;
766  u32 cur = 0;
767  u32 total;
768  int slot = path->slots[0];
769  u32 name_len;
770  char *start;
771  int ret = 0;
772  int num = 0;
773  int index;
774  u64 dir;
775  unsigned long name_off;
776  unsigned long elem_size;
777  unsigned long ptr;
778 
779  p = fs_path_alloc_reversed(sctx);
780  if (!p)
781  return -ENOMEM;
782 
783  tmp_path = alloc_path_for_send();
784  if (!tmp_path) {
785  fs_path_free(sctx, p);
786  return -ENOMEM;
787  }
788 
789 
790  if (found_key->type == BTRFS_INODE_REF_KEY) {
791  ptr = (unsigned long)btrfs_item_ptr(eb, slot,
792  struct btrfs_inode_ref);
793  item = btrfs_item_nr(eb, slot);
794  total = btrfs_item_size(eb, item);
795  elem_size = sizeof(*iref);
796  } else {
797  ptr = btrfs_item_ptr_offset(eb, slot);
798  total = btrfs_item_size_nr(eb, slot);
799  elem_size = sizeof(*extref);
800  }
801 
802  while (cur < total) {
803  fs_path_reset(p);
804 
805  if (found_key->type == BTRFS_INODE_REF_KEY) {
806  iref = (struct btrfs_inode_ref *)(ptr + cur);
807  name_len = btrfs_inode_ref_name_len(eb, iref);
808  name_off = (unsigned long)(iref + 1);
809  index = btrfs_inode_ref_index(eb, iref);
810  dir = found_key->offset;
811  } else {
812  extref = (struct btrfs_inode_extref *)(ptr + cur);
813  name_len = btrfs_inode_extref_name_len(eb, extref);
814  name_off = (unsigned long)&extref->name;
815  index = btrfs_inode_extref_index(eb, extref);
816  dir = btrfs_inode_extref_parent(eb, extref);
817  }
818 
819  if (resolve) {
820  start = btrfs_ref_to_path(root, tmp_path, name_len,
821  name_off, eb, dir,
822  p->buf, p->buf_len);
823  if (IS_ERR(start)) {
824  ret = PTR_ERR(start);
825  goto out;
826  }
827  if (start < p->buf) {
828  /* overflow , try again with larger buffer */
829  ret = fs_path_ensure_buf(p,
830  p->buf_len + p->buf - start);
831  if (ret < 0)
832  goto out;
833  start = btrfs_ref_to_path(root, tmp_path,
834  name_len, name_off,
835  eb, dir,
836  p->buf, p->buf_len);
837  if (IS_ERR(start)) {
838  ret = PTR_ERR(start);
839  goto out;
840  }
841  BUG_ON(start < p->buf);
842  }
843  p->start = start;
844  } else {
845  ret = fs_path_add_from_extent_buffer(p, eb, name_off,
846  name_len);
847  if (ret < 0)
848  goto out;
849  }
850 
851  cur += elem_size + name_len;
852  ret = iterate(num, dir, index, p, ctx);
853  if (ret)
854  goto out;
855  num++;
856  }
857 
858 out:
859  btrfs_free_path(tmp_path);
860  fs_path_free(sctx, p);
861  return ret;
862 }
863 
864 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
865  const char *name, int name_len,
866  const char *data, int data_len,
867  u8 type, void *ctx);
868 
869 /*
870  * Helper function to iterate the entries in ONE btrfs_dir_item.
871  * The iterate callback may return a non zero value to stop iteration. This can
872  * be a negative value for error codes or 1 to simply stop it.
873  *
874  * path must point to the dir item when called.
875  */
876 static int iterate_dir_item(struct send_ctx *sctx,
877  struct btrfs_root *root, struct btrfs_path *path,
878  struct btrfs_key *found_key,
879  iterate_dir_item_t iterate, void *ctx)
880 {
881  int ret = 0;
882  struct extent_buffer *eb;
883  struct btrfs_item *item;
884  struct btrfs_dir_item *di;
885  struct btrfs_key di_key;
886  char *buf = NULL;
887  char *buf2 = NULL;
888  int buf_len;
889  int buf_virtual = 0;
890  u32 name_len;
891  u32 data_len;
892  u32 cur;
893  u32 len;
894  u32 total;
895  int slot;
896  int num;
897  u8 type;
898 
899  buf_len = PAGE_SIZE;
900  buf = kmalloc(buf_len, GFP_NOFS);
901  if (!buf) {
902  ret = -ENOMEM;
903  goto out;
904  }
905 
906  eb = path->nodes[0];
907  slot = path->slots[0];
908  item = btrfs_item_nr(eb, slot);
909  di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
910  cur = 0;
911  len = 0;
912  total = btrfs_item_size(eb, item);
913 
914  num = 0;
915  while (cur < total) {
916  name_len = btrfs_dir_name_len(eb, di);
917  data_len = btrfs_dir_data_len(eb, di);
918  type = btrfs_dir_type(eb, di);
919  btrfs_dir_item_key_to_cpu(eb, di, &di_key);
920 
921  if (name_len + data_len > buf_len) {
922  buf_len = PAGE_ALIGN(name_len + data_len);
923  if (buf_virtual) {
924  buf2 = vmalloc(buf_len);
925  if (!buf2) {
926  ret = -ENOMEM;
927  goto out;
928  }
929  vfree(buf);
930  } else {
931  buf2 = krealloc(buf, buf_len, GFP_NOFS);
932  if (!buf2) {
933  buf2 = vmalloc(buf_len);
934  if (!buf2) {
935  ret = -ENOMEM;
936  goto out;
937  }
938  kfree(buf);
939  buf_virtual = 1;
940  }
941  }
942 
943  buf = buf2;
944  buf2 = NULL;
945  }
946 
947  read_extent_buffer(eb, buf, (unsigned long)(di + 1),
948  name_len + data_len);
949 
950  len = sizeof(*di) + name_len + data_len;
951  di = (struct btrfs_dir_item *)((char *)di + len);
952  cur += len;
953 
954  ret = iterate(num, &di_key, buf, name_len, buf + name_len,
955  data_len, type, ctx);
956  if (ret < 0)
957  goto out;
958  if (ret) {
959  ret = 0;
960  goto out;
961  }
962 
963  num++;
964  }
965 
966 out:
967  if (buf_virtual)
968  vfree(buf);
969  else
970  kfree(buf);
971  return ret;
972 }
973 
974 static int __copy_first_ref(int num, u64 dir, int index,
975  struct fs_path *p, void *ctx)
976 {
977  int ret;
978  struct fs_path *pt = ctx;
979 
980  ret = fs_path_copy(pt, p);
981  if (ret < 0)
982  return ret;
983 
984  /* we want the first only */
985  return 1;
986 }
987 
988 /*
989  * Retrieve the first path of an inode. If an inode has more then one
990  * ref/hardlink, this is ignored.
991  */
992 static int get_inode_path(struct send_ctx *sctx, struct btrfs_root *root,
993  u64 ino, struct fs_path *path)
994 {
995  int ret;
996  struct btrfs_key key, found_key;
997  struct btrfs_path *p;
998 
999  p = alloc_path_for_send();
1000  if (!p)
1001  return -ENOMEM;
1002 
1003  fs_path_reset(path);
1004 
1005  key.objectid = ino;
1006  key.type = BTRFS_INODE_REF_KEY;
1007  key.offset = 0;
1008 
1009  ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1010  if (ret < 0)
1011  goto out;
1012  if (ret) {
1013  ret = 1;
1014  goto out;
1015  }
1016  btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1017  if (found_key.objectid != ino ||
1018  (found_key.type != BTRFS_INODE_REF_KEY &&
1019  found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1020  ret = -ENOENT;
1021  goto out;
1022  }
1023 
1024  ret = iterate_inode_ref(sctx, root, p, &found_key, 1,
1025  __copy_first_ref, path);
1026  if (ret < 0)
1027  goto out;
1028  ret = 0;
1029 
1030 out:
1031  btrfs_free_path(p);
1032  return ret;
1033 }
1034 
1035 struct backref_ctx {
1036  struct send_ctx *sctx;
1037 
1038  /* number of total found references */
1040 
1041  /*
1042  * used for clones found in send_root. clones found behind cur_objectid
1043  * and cur_offset are not considered as allowed clones.
1044  */
1047 
1048  /* may be truncated in case it's the last extent in a file */
1050 
1051  /* Just to check for bugs in backref resolving */
1053 };
1054 
1055 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1056 {
1057  u64 root = (u64)(uintptr_t)key;
1058  struct clone_root *cr = (struct clone_root *)elt;
1059 
1060  if (root < cr->root->objectid)
1061  return -1;
1062  if (root > cr->root->objectid)
1063  return 1;
1064  return 0;
1065 }
1066 
1067 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1068 {
1069  struct clone_root *cr1 = (struct clone_root *)e1;
1070  struct clone_root *cr2 = (struct clone_root *)e2;
1071 
1072  if (cr1->root->objectid < cr2->root->objectid)
1073  return -1;
1074  if (cr1->root->objectid > cr2->root->objectid)
1075  return 1;
1076  return 0;
1077 }
1078 
1079 /*
1080  * Called for every backref that is found for the current extent.
1081  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1082  */
1083 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1084 {
1085  struct backref_ctx *bctx = ctx_;
1086  struct clone_root *found;
1087  int ret;
1088  u64 i_size;
1089 
1090  /* First check if the root is in the list of accepted clone sources */
1091  found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1092  bctx->sctx->clone_roots_cnt,
1093  sizeof(struct clone_root),
1094  __clone_root_cmp_bsearch);
1095  if (!found)
1096  return 0;
1097 
1098  if (found->root == bctx->sctx->send_root &&
1099  ino == bctx->cur_objectid &&
1100  offset == bctx->cur_offset) {
1101  bctx->found_itself = 1;
1102  }
1103 
1104  /*
1105  * There are inodes that have extents that lie behind its i_size. Don't
1106  * accept clones from these extents.
1107  */
1108  ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1109  NULL);
1110  if (ret < 0)
1111  return ret;
1112 
1113  if (offset + bctx->extent_len > i_size)
1114  return 0;
1115 
1116  /*
1117  * Make sure we don't consider clones from send_root that are
1118  * behind the current inode/offset.
1119  */
1120  if (found->root == bctx->sctx->send_root) {
1121  /*
1122  * TODO for the moment we don't accept clones from the inode
1123  * that is currently send. We may change this when
1124  * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1125  * file.
1126  */
1127  if (ino >= bctx->cur_objectid)
1128  return 0;
1129 #if 0
1130  if (ino > bctx->cur_objectid)
1131  return 0;
1132  if (offset + bctx->extent_len > bctx->cur_offset)
1133  return 0;
1134 #endif
1135  }
1136 
1137  bctx->found++;
1138  found->found_refs++;
1139  if (ino < found->ino) {
1140  found->ino = ino;
1141  found->offset = offset;
1142  } else if (found->ino == ino) {
1143  /*
1144  * same extent found more then once in the same file.
1145  */
1146  if (found->offset > offset + bctx->extent_len)
1147  found->offset = offset;
1148  }
1149 
1150  return 0;
1151 }
1152 
1153 /*
1154  * Given an inode, offset and extent item, it finds a good clone for a clone
1155  * instruction. Returns -ENOENT when none could be found. The function makes
1156  * sure that the returned clone is usable at the point where sending is at the
1157  * moment. This means, that no clones are accepted which lie behind the current
1158  * inode+offset.
1159  *
1160  * path must point to the extent item when called.
1161  */
1162 static int find_extent_clone(struct send_ctx *sctx,
1163  struct btrfs_path *path,
1164  u64 ino, u64 data_offset,
1165  u64 ino_size,
1166  struct clone_root **found)
1167 {
1168  int ret;
1169  int extent_type;
1170  u64 logical;
1171  u64 disk_byte;
1172  u64 num_bytes;
1173  u64 extent_item_pos;
1174  u64 flags = 0;
1175  struct btrfs_file_extent_item *fi;
1176  struct extent_buffer *eb = path->nodes[0];
1177  struct backref_ctx *backref_ctx = NULL;
1178  struct clone_root *cur_clone_root;
1179  struct btrfs_key found_key;
1180  struct btrfs_path *tmp_path;
1181  int compressed;
1182  u32 i;
1183 
1184  tmp_path = alloc_path_for_send();
1185  if (!tmp_path)
1186  return -ENOMEM;
1187 
1188  backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1189  if (!backref_ctx) {
1190  ret = -ENOMEM;
1191  goto out;
1192  }
1193 
1194  if (data_offset >= ino_size) {
1195  /*
1196  * There may be extents that lie behind the file's size.
1197  * I at least had this in combination with snapshotting while
1198  * writing large files.
1199  */
1200  ret = 0;
1201  goto out;
1202  }
1203 
1204  fi = btrfs_item_ptr(eb, path->slots[0],
1205  struct btrfs_file_extent_item);
1206  extent_type = btrfs_file_extent_type(eb, fi);
1207  if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1208  ret = -ENOENT;
1209  goto out;
1210  }
1211  compressed = btrfs_file_extent_compression(eb, fi);
1212 
1213  num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1214  disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1215  if (disk_byte == 0) {
1216  ret = -ENOENT;
1217  goto out;
1218  }
1219  logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1220 
1221  ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1222  &found_key, &flags);
1223  btrfs_release_path(tmp_path);
1224 
1225  if (ret < 0)
1226  goto out;
1227  if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1228  ret = -EIO;
1229  goto out;
1230  }
1231 
1232  /*
1233  * Setup the clone roots.
1234  */
1235  for (i = 0; i < sctx->clone_roots_cnt; i++) {
1236  cur_clone_root = sctx->clone_roots + i;
1237  cur_clone_root->ino = (u64)-1;
1238  cur_clone_root->offset = 0;
1239  cur_clone_root->found_refs = 0;
1240  }
1241 
1242  backref_ctx->sctx = sctx;
1243  backref_ctx->found = 0;
1244  backref_ctx->cur_objectid = ino;
1245  backref_ctx->cur_offset = data_offset;
1246  backref_ctx->found_itself = 0;
1247  backref_ctx->extent_len = num_bytes;
1248 
1249  /*
1250  * The last extent of a file may be too large due to page alignment.
1251  * We need to adjust extent_len in this case so that the checks in
1252  * __iterate_backrefs work.
1253  */
1254  if (data_offset + num_bytes >= ino_size)
1255  backref_ctx->extent_len = ino_size - data_offset;
1256 
1257  /*
1258  * Now collect all backrefs.
1259  */
1260  if (compressed == BTRFS_COMPRESS_NONE)
1261  extent_item_pos = logical - found_key.objectid;
1262  else
1263  extent_item_pos = 0;
1264 
1265  extent_item_pos = logical - found_key.objectid;
1266  ret = iterate_extent_inodes(sctx->send_root->fs_info,
1267  found_key.objectid, extent_item_pos, 1,
1268  __iterate_backrefs, backref_ctx);
1269 
1270  if (ret < 0)
1271  goto out;
1272 
1273  if (!backref_ctx->found_itself) {
1274  /* found a bug in backref code? */
1275  ret = -EIO;
1276  printk(KERN_ERR "btrfs: ERROR did not find backref in "
1277  "send_root. inode=%llu, offset=%llu, "
1278  "disk_byte=%llu found extent=%llu\n",
1279  ino, data_offset, disk_byte, found_key.objectid);
1280  goto out;
1281  }
1282 
1283 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1284  "ino=%llu, "
1285  "num_bytes=%llu, logical=%llu\n",
1286  data_offset, ino, num_bytes, logical);
1287 
1288  if (!backref_ctx->found)
1289  verbose_printk("btrfs: no clones found\n");
1290 
1291  cur_clone_root = NULL;
1292  for (i = 0; i < sctx->clone_roots_cnt; i++) {
1293  if (sctx->clone_roots[i].found_refs) {
1294  if (!cur_clone_root)
1295  cur_clone_root = sctx->clone_roots + i;
1296  else if (sctx->clone_roots[i].root == sctx->send_root)
1297  /* prefer clones from send_root over others */
1298  cur_clone_root = sctx->clone_roots + i;
1299  }
1300 
1301  }
1302 
1303  if (cur_clone_root) {
1304  *found = cur_clone_root;
1305  ret = 0;
1306  } else {
1307  ret = -ENOENT;
1308  }
1309 
1310 out:
1311  btrfs_free_path(tmp_path);
1312  kfree(backref_ctx);
1313  return ret;
1314 }
1315 
1316 static int read_symlink(struct send_ctx *sctx,
1317  struct btrfs_root *root,
1318  u64 ino,
1319  struct fs_path *dest)
1320 {
1321  int ret;
1322  struct btrfs_path *path;
1323  struct btrfs_key key;
1324  struct btrfs_file_extent_item *ei;
1325  u8 type;
1326  u8 compression;
1327  unsigned long off;
1328  int len;
1329 
1330  path = alloc_path_for_send();
1331  if (!path)
1332  return -ENOMEM;
1333 
1334  key.objectid = ino;
1335  key.type = BTRFS_EXTENT_DATA_KEY;
1336  key.offset = 0;
1337  ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1338  if (ret < 0)
1339  goto out;
1340  BUG_ON(ret);
1341 
1342  ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1343  struct btrfs_file_extent_item);
1344  type = btrfs_file_extent_type(path->nodes[0], ei);
1345  compression = btrfs_file_extent_compression(path->nodes[0], ei);
1347  BUG_ON(compression);
1348 
1349  off = btrfs_file_extent_inline_start(ei);
1350  len = btrfs_file_extent_inline_len(path->nodes[0], ei);
1351 
1352  ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1353 
1354 out:
1355  btrfs_free_path(path);
1356  return ret;
1357 }
1358 
1359 /*
1360  * Helper function to generate a file name that is unique in the root of
1361  * send_root and parent_root. This is used to generate names for orphan inodes.
1362  */
1363 static int gen_unique_name(struct send_ctx *sctx,
1364  u64 ino, u64 gen,
1365  struct fs_path *dest)
1366 {
1367  int ret = 0;
1368  struct btrfs_path *path;
1369  struct btrfs_dir_item *di;
1370  char tmp[64];
1371  int len;
1372  u64 idx = 0;
1373 
1374  path = alloc_path_for_send();
1375  if (!path)
1376  return -ENOMEM;
1377 
1378  while (1) {
1379  len = snprintf(tmp, sizeof(tmp) - 1, "o%llu-%llu-%llu",
1380  ino, gen, idx);
1381  if (len >= sizeof(tmp)) {
1382  /* should really not happen */
1383  ret = -EOVERFLOW;
1384  goto out;
1385  }
1386 
1387  di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1389  tmp, strlen(tmp), 0);
1390  btrfs_release_path(path);
1391  if (IS_ERR(di)) {
1392  ret = PTR_ERR(di);
1393  goto out;
1394  }
1395  if (di) {
1396  /* not unique, try again */
1397  idx++;
1398  continue;
1399  }
1400 
1401  if (!sctx->parent_root) {
1402  /* unique */
1403  ret = 0;
1404  break;
1405  }
1406 
1409  tmp, strlen(tmp), 0);
1410  btrfs_release_path(path);
1411  if (IS_ERR(di)) {
1412  ret = PTR_ERR(di);
1413  goto out;
1414  }
1415  if (di) {
1416  /* not unique, try again */
1417  idx++;
1418  continue;
1419  }
1420  /* unique */
1421  break;
1422  }
1423 
1424  ret = fs_path_add(dest, tmp, strlen(tmp));
1425 
1426 out:
1427  btrfs_free_path(path);
1428  return ret;
1429 }
1430 
1437 };
1438 
1439 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1440 {
1441  int ret;
1442  int left_ret;
1443  int right_ret;
1444  u64 left_gen;
1445  u64 right_gen;
1446 
1447  ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1448  NULL, NULL);
1449  if (ret < 0 && ret != -ENOENT)
1450  goto out;
1451  left_ret = ret;
1452 
1453  if (!sctx->parent_root) {
1454  right_ret = -ENOENT;
1455  } else {
1456  ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1457  NULL, NULL, NULL, NULL);
1458  if (ret < 0 && ret != -ENOENT)
1459  goto out;
1460  right_ret = ret;
1461  }
1462 
1463  if (!left_ret && !right_ret) {
1464  if (left_gen == gen && right_gen == gen) {
1465  ret = inode_state_no_change;
1466  } else if (left_gen == gen) {
1467  if (ino < sctx->send_progress)
1468  ret = inode_state_did_create;
1469  else
1471  } else if (right_gen == gen) {
1472  if (ino < sctx->send_progress)
1473  ret = inode_state_did_delete;
1474  else
1476  } else {
1477  ret = -ENOENT;
1478  }
1479  } else if (!left_ret) {
1480  if (left_gen == gen) {
1481  if (ino < sctx->send_progress)
1482  ret = inode_state_did_create;
1483  else
1485  } else {
1486  ret = -ENOENT;
1487  }
1488  } else if (!right_ret) {
1489  if (right_gen == gen) {
1490  if (ino < sctx->send_progress)
1491  ret = inode_state_did_delete;
1492  else
1494  } else {
1495  ret = -ENOENT;
1496  }
1497  } else {
1498  ret = -ENOENT;
1499  }
1500 
1501 out:
1502  return ret;
1503 }
1504 
1505 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1506 {
1507  int ret;
1508 
1509  ret = get_cur_inode_state(sctx, ino, gen);
1510  if (ret < 0)
1511  goto out;
1512 
1513  if (ret == inode_state_no_change ||
1514  ret == inode_state_did_create ||
1515  ret == inode_state_will_delete)
1516  ret = 1;
1517  else
1518  ret = 0;
1519 
1520 out:
1521  return ret;
1522 }
1523 
1524 /*
1525  * Helper function to lookup a dir item in a dir.
1526  */
1527 static int lookup_dir_item_inode(struct btrfs_root *root,
1528  u64 dir, const char *name, int name_len,
1529  u64 *found_inode,
1530  u8 *found_type)
1531 {
1532  int ret = 0;
1533  struct btrfs_dir_item *di;
1534  struct btrfs_key key;
1535  struct btrfs_path *path;
1536 
1537  path = alloc_path_for_send();
1538  if (!path)
1539  return -ENOMEM;
1540 
1541  di = btrfs_lookup_dir_item(NULL, root, path,
1542  dir, name, name_len, 0);
1543  if (!di) {
1544  ret = -ENOENT;
1545  goto out;
1546  }
1547  if (IS_ERR(di)) {
1548  ret = PTR_ERR(di);
1549  goto out;
1550  }
1551  btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1552  *found_inode = key.objectid;
1553  *found_type = btrfs_dir_type(path->nodes[0], di);
1554 
1555 out:
1556  btrfs_free_path(path);
1557  return ret;
1558 }
1559 
1560 /*
1561  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1562  * generation of the parent dir and the name of the dir entry.
1563  */
1564 static int get_first_ref(struct send_ctx *sctx,
1565  struct btrfs_root *root, u64 ino,
1566  u64 *dir, u64 *dir_gen, struct fs_path *name)
1567 {
1568  int ret;
1569  struct btrfs_key key;
1570  struct btrfs_key found_key;
1571  struct btrfs_path *path;
1572  int len;
1573  u64 parent_dir;
1574 
1575  path = alloc_path_for_send();
1576  if (!path)
1577  return -ENOMEM;
1578 
1579  key.objectid = ino;
1580  key.type = BTRFS_INODE_REF_KEY;
1581  key.offset = 0;
1582 
1583  ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1584  if (ret < 0)
1585  goto out;
1586  if (!ret)
1587  btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1588  path->slots[0]);
1589  if (ret || found_key.objectid != ino ||
1590  (found_key.type != BTRFS_INODE_REF_KEY &&
1591  found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1592  ret = -ENOENT;
1593  goto out;
1594  }
1595 
1596  if (key.type == BTRFS_INODE_REF_KEY) {
1597  struct btrfs_inode_ref *iref;
1598  iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1599  struct btrfs_inode_ref);
1600  len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1601  ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1602  (unsigned long)(iref + 1),
1603  len);
1604  parent_dir = found_key.offset;
1605  } else {
1606  struct btrfs_inode_extref *extref;
1607  extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1608  struct btrfs_inode_extref);
1609  len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1610  ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1611  (unsigned long)&extref->name, len);
1612  parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1613  }
1614  if (ret < 0)
1615  goto out;
1616  btrfs_release_path(path);
1617 
1618  ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
1619  NULL, NULL);
1620  if (ret < 0)
1621  goto out;
1622 
1623  *dir = parent_dir;
1624 
1625 out:
1626  btrfs_free_path(path);
1627  return ret;
1628 }
1629 
1630 static int is_first_ref(struct send_ctx *sctx,
1631  struct btrfs_root *root,
1632  u64 ino, u64 dir,
1633  const char *name, int name_len)
1634 {
1635  int ret;
1636  struct fs_path *tmp_name;
1637  u64 tmp_dir;
1638  u64 tmp_dir_gen;
1639 
1640  tmp_name = fs_path_alloc(sctx);
1641  if (!tmp_name)
1642  return -ENOMEM;
1643 
1644  ret = get_first_ref(sctx, root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
1645  if (ret < 0)
1646  goto out;
1647 
1648  if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1649  ret = 0;
1650  goto out;
1651  }
1652 
1653  ret = !memcmp(tmp_name->start, name, name_len);
1654 
1655 out:
1656  fs_path_free(sctx, tmp_name);
1657  return ret;
1658 }
1659 
1660 /*
1661  * Used by process_recorded_refs to determine if a new ref would overwrite an
1662  * already existing ref. In case it detects an overwrite, it returns the
1663  * inode/gen in who_ino/who_gen.
1664  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1665  * to make sure later references to the overwritten inode are possible.
1666  * Orphanizing is however only required for the first ref of an inode.
1667  * process_recorded_refs does an additional is_first_ref check to see if
1668  * orphanizing is really required.
1669  */
1670 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1671  const char *name, int name_len,
1672  u64 *who_ino, u64 *who_gen)
1673 {
1674  int ret = 0;
1675  u64 other_inode = 0;
1676  u8 other_type = 0;
1677 
1678  if (!sctx->parent_root)
1679  goto out;
1680 
1681  ret = is_inode_existent(sctx, dir, dir_gen);
1682  if (ret <= 0)
1683  goto out;
1684 
1685  ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1686  &other_inode, &other_type);
1687  if (ret < 0 && ret != -ENOENT)
1688  goto out;
1689  if (ret) {
1690  ret = 0;
1691  goto out;
1692  }
1693 
1694  /*
1695  * Check if the overwritten ref was already processed. If yes, the ref
1696  * was already unlinked/moved, so we can safely assume that we will not
1697  * overwrite anything at this point in time.
1698  */
1699  if (other_inode > sctx->send_progress) {
1700  ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1701  who_gen, NULL, NULL, NULL, NULL);
1702  if (ret < 0)
1703  goto out;
1704 
1705  ret = 1;
1706  *who_ino = other_inode;
1707  } else {
1708  ret = 0;
1709  }
1710 
1711 out:
1712  return ret;
1713 }
1714 
1715 /*
1716  * Checks if the ref was overwritten by an already processed inode. This is
1717  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1718  * thus the orphan name needs be used.
1719  * process_recorded_refs also uses it to avoid unlinking of refs that were
1720  * overwritten.
1721  */
1722 static int did_overwrite_ref(struct send_ctx *sctx,
1723  u64 dir, u64 dir_gen,
1724  u64 ino, u64 ino_gen,
1725  const char *name, int name_len)
1726 {
1727  int ret = 0;
1728  u64 gen;
1729  u64 ow_inode;
1730  u8 other_type;
1731 
1732  if (!sctx->parent_root)
1733  goto out;
1734 
1735  ret = is_inode_existent(sctx, dir, dir_gen);
1736  if (ret <= 0)
1737  goto out;
1738 
1739  /* check if the ref was overwritten by another ref */
1740  ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1741  &ow_inode, &other_type);
1742  if (ret < 0 && ret != -ENOENT)
1743  goto out;
1744  if (ret) {
1745  /* was never and will never be overwritten */
1746  ret = 0;
1747  goto out;
1748  }
1749 
1750  ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1751  NULL, NULL);
1752  if (ret < 0)
1753  goto out;
1754 
1755  if (ow_inode == ino && gen == ino_gen) {
1756  ret = 0;
1757  goto out;
1758  }
1759 
1760  /* we know that it is or will be overwritten. check this now */
1761  if (ow_inode < sctx->send_progress)
1762  ret = 1;
1763  else
1764  ret = 0;
1765 
1766 out:
1767  return ret;
1768 }
1769 
1770 /*
1771  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1772  * that got overwritten. This is used by process_recorded_refs to determine
1773  * if it has to use the path as returned by get_cur_path or the orphan name.
1774  */
1775 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1776 {
1777  int ret = 0;
1778  struct fs_path *name = NULL;
1779  u64 dir;
1780  u64 dir_gen;
1781 
1782  if (!sctx->parent_root)
1783  goto out;
1784 
1785  name = fs_path_alloc(sctx);
1786  if (!name)
1787  return -ENOMEM;
1788 
1789  ret = get_first_ref(sctx, sctx->parent_root, ino, &dir, &dir_gen, name);
1790  if (ret < 0)
1791  goto out;
1792 
1793  ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1794  name->start, fs_path_len(name));
1795 
1796 out:
1797  fs_path_free(sctx, name);
1798  return ret;
1799 }
1800 
1801 /*
1802  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1803  * so we need to do some special handling in case we have clashes. This function
1804  * takes care of this with the help of name_cache_entry::radix_list.
1805  * In case of error, nce is kfreed.
1806  */
1807 static int name_cache_insert(struct send_ctx *sctx,
1808  struct name_cache_entry *nce)
1809 {
1810  int ret = 0;
1811  struct list_head *nce_head;
1812 
1813  nce_head = radix_tree_lookup(&sctx->name_cache,
1814  (unsigned long)nce->ino);
1815  if (!nce_head) {
1816  nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1817  if (!nce_head)
1818  return -ENOMEM;
1819  INIT_LIST_HEAD(nce_head);
1820 
1821  ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1822  if (ret < 0) {
1823  kfree(nce_head);
1824  kfree(nce);
1825  return ret;
1826  }
1827  }
1828  list_add_tail(&nce->radix_list, nce_head);
1829  list_add_tail(&nce->list, &sctx->name_cache_list);
1830  sctx->name_cache_size++;
1831 
1832  return ret;
1833 }
1834 
1835 static void name_cache_delete(struct send_ctx *sctx,
1836  struct name_cache_entry *nce)
1837 {
1838  struct list_head *nce_head;
1839 
1840  nce_head = radix_tree_lookup(&sctx->name_cache,
1841  (unsigned long)nce->ino);
1842  BUG_ON(!nce_head);
1843 
1844  list_del(&nce->radix_list);
1845  list_del(&nce->list);
1846  sctx->name_cache_size--;
1847 
1848  if (list_empty(nce_head)) {
1849  radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1850  kfree(nce_head);
1851  }
1852 }
1853 
1854 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1855  u64 ino, u64 gen)
1856 {
1857  struct list_head *nce_head;
1858  struct name_cache_entry *cur;
1859 
1860  nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1861  if (!nce_head)
1862  return NULL;
1863 
1864  list_for_each_entry(cur, nce_head, radix_list) {
1865  if (cur->ino == ino && cur->gen == gen)
1866  return cur;
1867  }
1868  return NULL;
1869 }
1870 
1871 /*
1872  * Removes the entry from the list and adds it back to the end. This marks the
1873  * entry as recently used so that name_cache_clean_unused does not remove it.
1874  */
1875 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1876 {
1877  list_del(&nce->list);
1878  list_add_tail(&nce->list, &sctx->name_cache_list);
1879 }
1880 
1881 /*
1882  * Remove some entries from the beginning of name_cache_list.
1883  */
1884 static void name_cache_clean_unused(struct send_ctx *sctx)
1885 {
1886  struct name_cache_entry *nce;
1887 
1889  return;
1890 
1892  nce = list_entry(sctx->name_cache_list.next,
1893  struct name_cache_entry, list);
1894  name_cache_delete(sctx, nce);
1895  kfree(nce);
1896  }
1897 }
1898 
1899 static void name_cache_free(struct send_ctx *sctx)
1900 {
1901  struct name_cache_entry *nce;
1902 
1903  while (!list_empty(&sctx->name_cache_list)) {
1904  nce = list_entry(sctx->name_cache_list.next,
1905  struct name_cache_entry, list);
1906  name_cache_delete(sctx, nce);
1907  kfree(nce);
1908  }
1909 }
1910 
1911 /*
1912  * Used by get_cur_path for each ref up to the root.
1913  * Returns 0 if it succeeded.
1914  * Returns 1 if the inode is not existent or got overwritten. In that case, the
1915  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1916  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1917  * Returns <0 in case of error.
1918  */
1919 static int __get_cur_name_and_parent(struct send_ctx *sctx,
1920  u64 ino, u64 gen,
1921  u64 *parent_ino,
1922  u64 *parent_gen,
1923  struct fs_path *dest)
1924 {
1925  int ret;
1926  int nce_ret;
1927  struct btrfs_path *path = NULL;
1928  struct name_cache_entry *nce = NULL;
1929 
1930  /*
1931  * First check if we already did a call to this function with the same
1932  * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1933  * return the cached result.
1934  */
1935  nce = name_cache_search(sctx, ino, gen);
1936  if (nce) {
1937  if (ino < sctx->send_progress && nce->need_later_update) {
1938  name_cache_delete(sctx, nce);
1939  kfree(nce);
1940  nce = NULL;
1941  } else {
1942  name_cache_used(sctx, nce);
1943  *parent_ino = nce->parent_ino;
1944  *parent_gen = nce->parent_gen;
1945  ret = fs_path_add(dest, nce->name, nce->name_len);
1946  if (ret < 0)
1947  goto out;
1948  ret = nce->ret;
1949  goto out;
1950  }
1951  }
1952 
1953  path = alloc_path_for_send();
1954  if (!path)
1955  return -ENOMEM;
1956 
1957  /*
1958  * If the inode is not existent yet, add the orphan name and return 1.
1959  * This should only happen for the parent dir that we determine in
1960  * __record_new_ref
1961  */
1962  ret = is_inode_existent(sctx, ino, gen);
1963  if (ret < 0)
1964  goto out;
1965 
1966  if (!ret) {
1967  ret = gen_unique_name(sctx, ino, gen, dest);
1968  if (ret < 0)
1969  goto out;
1970  ret = 1;
1971  goto out_cache;
1972  }
1973 
1974  /*
1975  * Depending on whether the inode was already processed or not, use
1976  * send_root or parent_root for ref lookup.
1977  */
1978  if (ino < sctx->send_progress)
1979  ret = get_first_ref(sctx, sctx->send_root, ino,
1980  parent_ino, parent_gen, dest);
1981  else
1982  ret = get_first_ref(sctx, sctx->parent_root, ino,
1983  parent_ino, parent_gen, dest);
1984  if (ret < 0)
1985  goto out;
1986 
1987  /*
1988  * Check if the ref was overwritten by an inode's ref that was processed
1989  * earlier. If yes, treat as orphan and return 1.
1990  */
1991  ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
1992  dest->start, dest->end - dest->start);
1993  if (ret < 0)
1994  goto out;
1995  if (ret) {
1996  fs_path_reset(dest);
1997  ret = gen_unique_name(sctx, ino, gen, dest);
1998  if (ret < 0)
1999  goto out;
2000  ret = 1;
2001  }
2002 
2003 out_cache:
2004  /*
2005  * Store the result of the lookup in the name cache.
2006  */
2007  nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2008  if (!nce) {
2009  ret = -ENOMEM;
2010  goto out;
2011  }
2012 
2013  nce->ino = ino;
2014  nce->gen = gen;
2015  nce->parent_ino = *parent_ino;
2016  nce->parent_gen = *parent_gen;
2017  nce->name_len = fs_path_len(dest);
2018  nce->ret = ret;
2019  strcpy(nce->name, dest->start);
2020 
2021  if (ino < sctx->send_progress)
2022  nce->need_later_update = 0;
2023  else
2024  nce->need_later_update = 1;
2025 
2026  nce_ret = name_cache_insert(sctx, nce);
2027  if (nce_ret < 0)
2028  ret = nce_ret;
2029  name_cache_clean_unused(sctx);
2030 
2031 out:
2032  btrfs_free_path(path);
2033  return ret;
2034 }
2035 
2036 /*
2037  * Magic happens here. This function returns the first ref to an inode as it
2038  * would look like while receiving the stream at this point in time.
2039  * We walk the path up to the root. For every inode in between, we check if it
2040  * was already processed/sent. If yes, we continue with the parent as found
2041  * in send_root. If not, we continue with the parent as found in parent_root.
2042  * If we encounter an inode that was deleted at this point in time, we use the
2043  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2044  * that were not created yet and overwritten inodes/refs.
2045  *
2046  * When do we have have orphan inodes:
2047  * 1. When an inode is freshly created and thus no valid refs are available yet
2048  * 2. When a directory lost all it's refs (deleted) but still has dir items
2049  * inside which were not processed yet (pending for move/delete). If anyone
2050  * tried to get the path to the dir items, it would get a path inside that
2051  * orphan directory.
2052  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2053  * of an unprocessed inode. If in that case the first ref would be
2054  * overwritten, the overwritten inode gets "orphanized". Later when we
2055  * process this overwritten inode, it is restored at a new place by moving
2056  * the orphan inode.
2057  *
2058  * sctx->send_progress tells this function at which point in time receiving
2059  * would be.
2060  */
2061 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2062  struct fs_path *dest)
2063 {
2064  int ret = 0;
2065  struct fs_path *name = NULL;
2066  u64 parent_inode = 0;
2067  u64 parent_gen = 0;
2068  int stop = 0;
2069 
2070  name = fs_path_alloc(sctx);
2071  if (!name) {
2072  ret = -ENOMEM;
2073  goto out;
2074  }
2075 
2076  dest->reversed = 1;
2077  fs_path_reset(dest);
2078 
2079  while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2080  fs_path_reset(name);
2081 
2082  ret = __get_cur_name_and_parent(sctx, ino, gen,
2083  &parent_inode, &parent_gen, name);
2084  if (ret < 0)
2085  goto out;
2086  if (ret)
2087  stop = 1;
2088 
2089  ret = fs_path_add_path(dest, name);
2090  if (ret < 0)
2091  goto out;
2092 
2093  ino = parent_inode;
2094  gen = parent_gen;
2095  }
2096 
2097 out:
2098  fs_path_free(sctx, name);
2099  if (!ret)
2100  fs_path_unreverse(dest);
2101  return ret;
2102 }
2103 
2104 /*
2105  * Called for regular files when sending extents data. Opens a struct file
2106  * to read from the file.
2107  */
2108 static int open_cur_inode_file(struct send_ctx *sctx)
2109 {
2110  int ret = 0;
2111  struct btrfs_key key;
2112  struct path path;
2113  struct inode *inode;
2114  struct dentry *dentry;
2115  struct file *filp;
2116  int new = 0;
2117 
2118  if (sctx->cur_inode_filp)
2119  goto out;
2120 
2121  key.objectid = sctx->cur_ino;
2122  key.type = BTRFS_INODE_ITEM_KEY;
2123  key.offset = 0;
2124 
2125  inode = btrfs_iget(sctx->send_root->fs_info->sb, &key, sctx->send_root,
2126  &new);
2127  if (IS_ERR(inode)) {
2128  ret = PTR_ERR(inode);
2129  goto out;
2130  }
2131 
2132  dentry = d_obtain_alias(inode);
2133  inode = NULL;
2134  if (IS_ERR(dentry)) {
2135  ret = PTR_ERR(dentry);
2136  goto out;
2137  }
2138 
2139  path.mnt = sctx->mnt;
2140  path.dentry = dentry;
2141  filp = dentry_open(&path, O_RDONLY | O_LARGEFILE, current_cred());
2142  dput(dentry);
2143  dentry = NULL;
2144  if (IS_ERR(filp)) {
2145  ret = PTR_ERR(filp);
2146  goto out;
2147  }
2148  sctx->cur_inode_filp = filp;
2149 
2150 out:
2151  /*
2152  * no xxxput required here as every vfs op
2153  * does it by itself on failure
2154  */
2155  return ret;
2156 }
2157 
2158 /*
2159  * Closes the struct file that was created in open_cur_inode_file
2160  */
2161 static int close_cur_inode_file(struct send_ctx *sctx)
2162 {
2163  int ret = 0;
2164 
2165  if (!sctx->cur_inode_filp)
2166  goto out;
2167 
2168  ret = filp_close(sctx->cur_inode_filp, NULL);
2169  sctx->cur_inode_filp = NULL;
2170 
2171 out:
2172  return ret;
2173 }
2174 
2175 /*
2176  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2177  */
2178 static int send_subvol_begin(struct send_ctx *sctx)
2179 {
2180  int ret;
2181  struct btrfs_root *send_root = sctx->send_root;
2182  struct btrfs_root *parent_root = sctx->parent_root;
2183  struct btrfs_path *path;
2184  struct btrfs_key key;
2185  struct btrfs_root_ref *ref;
2186  struct extent_buffer *leaf;
2187  char *name = NULL;
2188  int namelen;
2189 
2190  path = alloc_path_for_send();
2191  if (!path)
2192  return -ENOMEM;
2193 
2195  if (!name) {
2196  btrfs_free_path(path);
2197  return -ENOMEM;
2198  }
2199 
2200  key.objectid = send_root->objectid;
2201  key.type = BTRFS_ROOT_BACKREF_KEY;
2202  key.offset = 0;
2203 
2204  ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2205  &key, path, 1, 0);
2206  if (ret < 0)
2207  goto out;
2208  if (ret) {
2209  ret = -ENOENT;
2210  goto out;
2211  }
2212 
2213  leaf = path->nodes[0];
2214  btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2215  if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2216  key.objectid != send_root->objectid) {
2217  ret = -ENOENT;
2218  goto out;
2219  }
2220  ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2221  namelen = btrfs_root_ref_name_len(leaf, ref);
2222  read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2223  btrfs_release_path(path);
2224 
2225  if (parent_root) {
2226  ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2227  if (ret < 0)
2228  goto out;
2229  } else {
2230  ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2231  if (ret < 0)
2232  goto out;
2233  }
2234 
2235  TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2237  sctx->send_root->root_item.uuid);
2239  sctx->send_root->root_item.ctransid);
2240  if (parent_root) {
2242  sctx->parent_root->root_item.uuid);
2244  sctx->parent_root->root_item.ctransid);
2245  }
2246 
2247  ret = send_cmd(sctx);
2248 
2249 tlv_put_failure:
2250 out:
2251  btrfs_free_path(path);
2252  kfree(name);
2253  return ret;
2254 }
2255 
2256 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2257 {
2258  int ret = 0;
2259  struct fs_path *p;
2260 
2261 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2262 
2263  p = fs_path_alloc(sctx);
2264  if (!p)
2265  return -ENOMEM;
2266 
2267  ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2268  if (ret < 0)
2269  goto out;
2270 
2271  ret = get_cur_path(sctx, ino, gen, p);
2272  if (ret < 0)
2273  goto out;
2274  TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2275  TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2276 
2277  ret = send_cmd(sctx);
2278 
2279 tlv_put_failure:
2280 out:
2281  fs_path_free(sctx, p);
2282  return ret;
2283 }
2284 
2285 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2286 {
2287  int ret = 0;
2288  struct fs_path *p;
2289 
2290 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2291 
2292  p = fs_path_alloc(sctx);
2293  if (!p)
2294  return -ENOMEM;
2295 
2296  ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2297  if (ret < 0)
2298  goto out;
2299 
2300  ret = get_cur_path(sctx, ino, gen, p);
2301  if (ret < 0)
2302  goto out;
2303  TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2304  TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2305 
2306  ret = send_cmd(sctx);
2307 
2308 tlv_put_failure:
2309 out:
2310  fs_path_free(sctx, p);
2311  return ret;
2312 }
2313 
2314 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2315 {
2316  int ret = 0;
2317  struct fs_path *p;
2318 
2319 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2320 
2321  p = fs_path_alloc(sctx);
2322  if (!p)
2323  return -ENOMEM;
2324 
2325  ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2326  if (ret < 0)
2327  goto out;
2328 
2329  ret = get_cur_path(sctx, ino, gen, p);
2330  if (ret < 0)
2331  goto out;
2332  TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2333  TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2334  TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2335 
2336  ret = send_cmd(sctx);
2337 
2338 tlv_put_failure:
2339 out:
2340  fs_path_free(sctx, p);
2341  return ret;
2342 }
2343 
2344 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2345 {
2346  int ret = 0;
2347  struct fs_path *p = NULL;
2348  struct btrfs_inode_item *ii;
2349  struct btrfs_path *path = NULL;
2350  struct extent_buffer *eb;
2351  struct btrfs_key key;
2352  int slot;
2353 
2354 verbose_printk("btrfs: send_utimes %llu\n", ino);
2355 
2356  p = fs_path_alloc(sctx);
2357  if (!p)
2358  return -ENOMEM;
2359 
2360  path = alloc_path_for_send();
2361  if (!path) {
2362  ret = -ENOMEM;
2363  goto out;
2364  }
2365 
2366  key.objectid = ino;
2367  key.type = BTRFS_INODE_ITEM_KEY;
2368  key.offset = 0;
2369  ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2370  if (ret < 0)
2371  goto out;
2372 
2373  eb = path->nodes[0];
2374  slot = path->slots[0];
2375  ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2376 
2377  ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2378  if (ret < 0)
2379  goto out;
2380 
2381  ret = get_cur_path(sctx, ino, gen, p);
2382  if (ret < 0)
2383  goto out;
2384  TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2386  btrfs_inode_atime(ii));
2388  btrfs_inode_mtime(ii));
2390  btrfs_inode_ctime(ii));
2391  /* TODO Add otime support when the otime patches get into upstream */
2392 
2393  ret = send_cmd(sctx);
2394 
2395 tlv_put_failure:
2396 out:
2397  fs_path_free(sctx, p);
2398  btrfs_free_path(path);
2399  return ret;
2400 }
2401 
2402 /*
2403  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2404  * a valid path yet because we did not process the refs yet. So, the inode
2405  * is created as orphan.
2406  */
2407 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2408 {
2409  int ret = 0;
2410  struct fs_path *p;
2411  int cmd;
2412  u64 gen;
2413  u64 mode;
2414  u64 rdev;
2415 
2416 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2417 
2418  p = fs_path_alloc(sctx);
2419  if (!p)
2420  return -ENOMEM;
2421 
2422  ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2423  NULL, &rdev);
2424  if (ret < 0)
2425  goto out;
2426 
2427  if (S_ISREG(mode)) {
2428  cmd = BTRFS_SEND_C_MKFILE;
2429  } else if (S_ISDIR(mode)) {
2430  cmd = BTRFS_SEND_C_MKDIR;
2431  } else if (S_ISLNK(mode)) {
2432  cmd = BTRFS_SEND_C_SYMLINK;
2433  } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2434  cmd = BTRFS_SEND_C_MKNOD;
2435  } else if (S_ISFIFO(mode)) {
2436  cmd = BTRFS_SEND_C_MKFIFO;
2437  } else if (S_ISSOCK(mode)) {
2438  cmd = BTRFS_SEND_C_MKSOCK;
2439  } else {
2440  printk(KERN_WARNING "btrfs: unexpected inode type %o",
2441  (int)(mode & S_IFMT));
2442  ret = -ENOTSUPP;
2443  goto out;
2444  }
2445 
2446  ret = begin_cmd(sctx, cmd);
2447  if (ret < 0)
2448  goto out;
2449 
2450  ret = gen_unique_name(sctx, ino, gen, p);
2451  if (ret < 0)
2452  goto out;
2453 
2454  TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2455  TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2456 
2457  if (S_ISLNK(mode)) {
2458  fs_path_reset(p);
2459  ret = read_symlink(sctx, sctx->send_root, ino, p);
2460  if (ret < 0)
2461  goto out;
2463  } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2464  S_ISFIFO(mode) || S_ISSOCK(mode)) {
2465  TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2466  TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2467  }
2468 
2469  ret = send_cmd(sctx);
2470  if (ret < 0)
2471  goto out;
2472 
2473 
2474 tlv_put_failure:
2475 out:
2476  fs_path_free(sctx, p);
2477  return ret;
2478 }
2479 
2480 /*
2481  * We need some special handling for inodes that get processed before the parent
2482  * directory got created. See process_recorded_refs for details.
2483  * This function does the check if we already created the dir out of order.
2484  */
2485 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2486 {
2487  int ret = 0;
2488  struct btrfs_path *path = NULL;
2489  struct btrfs_key key;
2490  struct btrfs_key found_key;
2491  struct btrfs_key di_key;
2492  struct extent_buffer *eb;
2493  struct btrfs_dir_item *di;
2494  int slot;
2495 
2496  path = alloc_path_for_send();
2497  if (!path) {
2498  ret = -ENOMEM;
2499  goto out;
2500  }
2501 
2502  key.objectid = dir;
2503  key.type = BTRFS_DIR_INDEX_KEY;
2504  key.offset = 0;
2505  while (1) {
2506  ret = btrfs_search_slot_for_read(sctx->send_root, &key, path,
2507  1, 0);
2508  if (ret < 0)
2509  goto out;
2510  if (!ret) {
2511  eb = path->nodes[0];
2512  slot = path->slots[0];
2513  btrfs_item_key_to_cpu(eb, &found_key, slot);
2514  }
2515  if (ret || found_key.objectid != key.objectid ||
2516  found_key.type != key.type) {
2517  ret = 0;
2518  goto out;
2519  }
2520 
2521  di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2522  btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2523 
2524  if (di_key.objectid < sctx->send_progress) {
2525  ret = 1;
2526  goto out;
2527  }
2528 
2529  key.offset = found_key.offset + 1;
2530  btrfs_release_path(path);
2531  }
2532 
2533 out:
2534  btrfs_free_path(path);
2535  return ret;
2536 }
2537 
2538 /*
2539  * Only creates the inode if it is:
2540  * 1. Not a directory
2541  * 2. Or a directory which was not created already due to out of order
2542  * directories. See did_create_dir and process_recorded_refs for details.
2543  */
2544 static int send_create_inode_if_needed(struct send_ctx *sctx)
2545 {
2546  int ret;
2547 
2548  if (S_ISDIR(sctx->cur_inode_mode)) {
2549  ret = did_create_dir(sctx, sctx->cur_ino);
2550  if (ret < 0)
2551  goto out;
2552  if (ret) {
2553  ret = 0;
2554  goto out;
2555  }
2556  }
2557 
2558  ret = send_create_inode(sctx, sctx->cur_ino);
2559  if (ret < 0)
2560  goto out;
2561 
2562 out:
2563  return ret;
2564 }
2565 
2567  struct list_head list;
2568  char *dir_path;
2569  char *name;
2575 };
2576 
2577 /*
2578  * We need to process new refs before deleted refs, but compare_tree gives us
2579  * everything mixed. So we first record all refs and later process them.
2580  * This function is a helper to record one ref.
2581  */
2582 static int record_ref(struct list_head *head, u64 dir,
2583  u64 dir_gen, struct fs_path *path)
2584 {
2585  struct recorded_ref *ref;
2586  char *tmp;
2587 
2588  ref = kmalloc(sizeof(*ref), GFP_NOFS);
2589  if (!ref)
2590  return -ENOMEM;
2591 
2592  ref->dir = dir;
2593  ref->dir_gen = dir_gen;
2594  ref->full_path = path;
2595 
2596  tmp = strrchr(ref->full_path->start, '/');
2597  if (!tmp) {
2598  ref->name_len = ref->full_path->end - ref->full_path->start;
2599  ref->name = ref->full_path->start;
2600  ref->dir_path_len = 0;
2601  ref->dir_path = ref->full_path->start;
2602  } else {
2603  tmp++;
2604  ref->name_len = ref->full_path->end - tmp;
2605  ref->name = tmp;
2606  ref->dir_path = ref->full_path->start;
2607  ref->dir_path_len = ref->full_path->end -
2608  ref->full_path->start - 1 - ref->name_len;
2609  }
2610 
2611  list_add_tail(&ref->list, head);
2612  return 0;
2613 }
2614 
2615 static void __free_recorded_refs(struct send_ctx *sctx, struct list_head *head)
2616 {
2617  struct recorded_ref *cur;
2618 
2619  while (!list_empty(head)) {
2620  cur = list_entry(head->next, struct recorded_ref, list);
2621  fs_path_free(sctx, cur->full_path);
2622  list_del(&cur->list);
2623  kfree(cur);
2624  }
2625 }
2626 
2627 static void free_recorded_refs(struct send_ctx *sctx)
2628 {
2629  __free_recorded_refs(sctx, &sctx->new_refs);
2630  __free_recorded_refs(sctx, &sctx->deleted_refs);
2631 }
2632 
2633 /*
2634  * Renames/moves a file/dir to its orphan name. Used when the first
2635  * ref of an unprocessed inode gets overwritten and for all non empty
2636  * directories.
2637  */
2638 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2639  struct fs_path *path)
2640 {
2641  int ret;
2642  struct fs_path *orphan;
2643 
2644  orphan = fs_path_alloc(sctx);
2645  if (!orphan)
2646  return -ENOMEM;
2647 
2648  ret = gen_unique_name(sctx, ino, gen, orphan);
2649  if (ret < 0)
2650  goto out;
2651 
2652  ret = send_rename(sctx, path, orphan);
2653 
2654 out:
2655  fs_path_free(sctx, orphan);
2656  return ret;
2657 }
2658 
2659 /*
2660  * Returns 1 if a directory can be removed at this point in time.
2661  * We check this by iterating all dir items and checking if the inode behind
2662  * the dir item was already processed.
2663  */
2664 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2665 {
2666  int ret = 0;
2667  struct btrfs_root *root = sctx->parent_root;
2668  struct btrfs_path *path;
2669  struct btrfs_key key;
2670  struct btrfs_key found_key;
2671  struct btrfs_key loc;
2672  struct btrfs_dir_item *di;
2673 
2674  /*
2675  * Don't try to rmdir the top/root subvolume dir.
2676  */
2677  if (dir == BTRFS_FIRST_FREE_OBJECTID)
2678  return 0;
2679 
2680  path = alloc_path_for_send();
2681  if (!path)
2682  return -ENOMEM;
2683 
2684  key.objectid = dir;
2685  key.type = BTRFS_DIR_INDEX_KEY;
2686  key.offset = 0;
2687 
2688  while (1) {
2689  ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2690  if (ret < 0)
2691  goto out;
2692  if (!ret) {
2693  btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2694  path->slots[0]);
2695  }
2696  if (ret || found_key.objectid != key.objectid ||
2697  found_key.type != key.type) {
2698  break;
2699  }
2700 
2701  di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2702  struct btrfs_dir_item);
2703  btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2704 
2705  if (loc.objectid > send_progress) {
2706  ret = 0;
2707  goto out;
2708  }
2709 
2710  btrfs_release_path(path);
2711  key.offset = found_key.offset + 1;
2712  }
2713 
2714  ret = 1;
2715 
2716 out:
2717  btrfs_free_path(path);
2718  return ret;
2719 }
2720 
2721 /*
2722  * This does all the move/link/unlink/rmdir magic.
2723  */
2724 static int process_recorded_refs(struct send_ctx *sctx)
2725 {
2726  int ret = 0;
2727  struct recorded_ref *cur;
2728  struct recorded_ref *cur2;
2729  struct ulist *check_dirs = NULL;
2730  struct ulist_iterator uit;
2731  struct ulist_node *un;
2732  struct fs_path *valid_path = NULL;
2733  u64 ow_inode = 0;
2734  u64 ow_gen;
2735  int did_overwrite = 0;
2736  int is_orphan = 0;
2737 
2738 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
2739 
2740  /*
2741  * This should never happen as the root dir always has the same ref
2742  * which is always '..'
2743  */
2745 
2746  valid_path = fs_path_alloc(sctx);
2747  if (!valid_path) {
2748  ret = -ENOMEM;
2749  goto out;
2750  }
2751 
2752  check_dirs = ulist_alloc(GFP_NOFS);
2753  if (!check_dirs) {
2754  ret = -ENOMEM;
2755  goto out;
2756  }
2757 
2758  /*
2759  * First, check if the first ref of the current inode was overwritten
2760  * before. If yes, we know that the current inode was already orphanized
2761  * and thus use the orphan name. If not, we can use get_cur_path to
2762  * get the path of the first ref as it would like while receiving at
2763  * this point in time.
2764  * New inodes are always orphan at the beginning, so force to use the
2765  * orphan name in this case.
2766  * The first ref is stored in valid_path and will be updated if it
2767  * gets moved around.
2768  */
2769  if (!sctx->cur_inode_new) {
2770  ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
2771  sctx->cur_inode_gen);
2772  if (ret < 0)
2773  goto out;
2774  if (ret)
2775  did_overwrite = 1;
2776  }
2777  if (sctx->cur_inode_new || did_overwrite) {
2778  ret = gen_unique_name(sctx, sctx->cur_ino,
2779  sctx->cur_inode_gen, valid_path);
2780  if (ret < 0)
2781  goto out;
2782  is_orphan = 1;
2783  } else {
2784  ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2785  valid_path);
2786  if (ret < 0)
2787  goto out;
2788  }
2789 
2790  list_for_each_entry(cur, &sctx->new_refs, list) {
2791  /*
2792  * We may have refs where the parent directory does not exist
2793  * yet. This happens if the parent directories inum is higher
2794  * the the current inum. To handle this case, we create the
2795  * parent directory out of order. But we need to check if this
2796  * did already happen before due to other refs in the same dir.
2797  */
2798  ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
2799  if (ret < 0)
2800  goto out;
2801  if (ret == inode_state_will_create) {
2802  ret = 0;
2803  /*
2804  * First check if any of the current inodes refs did
2805  * already create the dir.
2806  */
2807  list_for_each_entry(cur2, &sctx->new_refs, list) {
2808  if (cur == cur2)
2809  break;
2810  if (cur2->dir == cur->dir) {
2811  ret = 1;
2812  break;
2813  }
2814  }
2815 
2816  /*
2817  * If that did not happen, check if a previous inode
2818  * did already create the dir.
2819  */
2820  if (!ret)
2821  ret = did_create_dir(sctx, cur->dir);
2822  if (ret < 0)
2823  goto out;
2824  if (!ret) {
2825  ret = send_create_inode(sctx, cur->dir);
2826  if (ret < 0)
2827  goto out;
2828  }
2829  }
2830 
2831  /*
2832  * Check if this new ref would overwrite the first ref of
2833  * another unprocessed inode. If yes, orphanize the
2834  * overwritten inode. If we find an overwritten ref that is
2835  * not the first ref, simply unlink it.
2836  */
2837  ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2838  cur->name, cur->name_len,
2839  &ow_inode, &ow_gen);
2840  if (ret < 0)
2841  goto out;
2842  if (ret) {
2843  ret = is_first_ref(sctx, sctx->parent_root,
2844  ow_inode, cur->dir, cur->name,
2845  cur->name_len);
2846  if (ret < 0)
2847  goto out;
2848  if (ret) {
2849  ret = orphanize_inode(sctx, ow_inode, ow_gen,
2850  cur->full_path);
2851  if (ret < 0)
2852  goto out;
2853  } else {
2854  ret = send_unlink(sctx, cur->full_path);
2855  if (ret < 0)
2856  goto out;
2857  }
2858  }
2859 
2860  /*
2861  * link/move the ref to the new place. If we have an orphan
2862  * inode, move it and update valid_path. If not, link or move
2863  * it depending on the inode mode.
2864  */
2865  if (is_orphan) {
2866  ret = send_rename(sctx, valid_path, cur->full_path);
2867  if (ret < 0)
2868  goto out;
2869  is_orphan = 0;
2870  ret = fs_path_copy(valid_path, cur->full_path);
2871  if (ret < 0)
2872  goto out;
2873  } else {
2874  if (S_ISDIR(sctx->cur_inode_mode)) {
2875  /*
2876  * Dirs can't be linked, so move it. For moved
2877  * dirs, we always have one new and one deleted
2878  * ref. The deleted ref is ignored later.
2879  */
2880  ret = send_rename(sctx, valid_path,
2881  cur->full_path);
2882  if (ret < 0)
2883  goto out;
2884  ret = fs_path_copy(valid_path, cur->full_path);
2885  if (ret < 0)
2886  goto out;
2887  } else {
2888  ret = send_link(sctx, cur->full_path,
2889  valid_path);
2890  if (ret < 0)
2891  goto out;
2892  }
2893  }
2894  ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2895  GFP_NOFS);
2896  if (ret < 0)
2897  goto out;
2898  }
2899 
2900  if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
2901  /*
2902  * Check if we can already rmdir the directory. If not,
2903  * orphanize it. For every dir item inside that gets deleted
2904  * later, we do this check again and rmdir it then if possible.
2905  * See the use of check_dirs for more details.
2906  */
2907  ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
2908  if (ret < 0)
2909  goto out;
2910  if (ret) {
2911  ret = send_rmdir(sctx, valid_path);
2912  if (ret < 0)
2913  goto out;
2914  } else if (!is_orphan) {
2915  ret = orphanize_inode(sctx, sctx->cur_ino,
2916  sctx->cur_inode_gen, valid_path);
2917  if (ret < 0)
2918  goto out;
2919  is_orphan = 1;
2920  }
2921 
2922  list_for_each_entry(cur, &sctx->deleted_refs, list) {
2923  ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2924  GFP_NOFS);
2925  if (ret < 0)
2926  goto out;
2927  }
2928  } else if (S_ISDIR(sctx->cur_inode_mode) &&
2929  !list_empty(&sctx->deleted_refs)) {
2930  /*
2931  * We have a moved dir. Add the old parent to check_dirs
2932  */
2933  cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
2934  list);
2935  ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2936  GFP_NOFS);
2937  if (ret < 0)
2938  goto out;
2939  } else if (!S_ISDIR(sctx->cur_inode_mode)) {
2940  /*
2941  * We have a non dir inode. Go through all deleted refs and
2942  * unlink them if they were not already overwritten by other
2943  * inodes.
2944  */
2945  list_for_each_entry(cur, &sctx->deleted_refs, list) {
2946  ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2947  sctx->cur_ino, sctx->cur_inode_gen,
2948  cur->name, cur->name_len);
2949  if (ret < 0)
2950  goto out;
2951  if (!ret) {
2952  ret = send_unlink(sctx, cur->full_path);
2953  if (ret < 0)
2954  goto out;
2955  }
2956  ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2957  GFP_NOFS);
2958  if (ret < 0)
2959  goto out;
2960  }
2961 
2962  /*
2963  * If the inode is still orphan, unlink the orphan. This may
2964  * happen when a previous inode did overwrite the first ref
2965  * of this inode and no new refs were added for the current
2966  * inode. Unlinking does not mean that the inode is deleted in
2967  * all cases. There may still be links to this inode in other
2968  * places.
2969  */
2970  if (is_orphan) {
2971  ret = send_unlink(sctx, valid_path);
2972  if (ret < 0)
2973  goto out;
2974  }
2975  }
2976 
2977  /*
2978  * We did collect all parent dirs where cur_inode was once located. We
2979  * now go through all these dirs and check if they are pending for
2980  * deletion and if it's finally possible to perform the rmdir now.
2981  * We also update the inode stats of the parent dirs here.
2982  */
2983  ULIST_ITER_INIT(&uit);
2984  while ((un = ulist_next(check_dirs, &uit))) {
2985  /*
2986  * In case we had refs into dirs that were not processed yet,
2987  * we don't need to do the utime and rmdir logic for these dirs.
2988  * The dir will be processed later.
2989  */
2990  if (un->val > sctx->cur_ino)
2991  continue;
2992 
2993  ret = get_cur_inode_state(sctx, un->val, un->aux);
2994  if (ret < 0)
2995  goto out;
2996 
2997  if (ret == inode_state_did_create ||
2998  ret == inode_state_no_change) {
2999  /* TODO delayed utimes */
3000  ret = send_utimes(sctx, un->val, un->aux);
3001  if (ret < 0)
3002  goto out;
3003  } else if (ret == inode_state_did_delete) {
3004  ret = can_rmdir(sctx, un->val, sctx->cur_ino);
3005  if (ret < 0)
3006  goto out;
3007  if (ret) {
3008  ret = get_cur_path(sctx, un->val, un->aux,
3009  valid_path);
3010  if (ret < 0)
3011  goto out;
3012  ret = send_rmdir(sctx, valid_path);
3013  if (ret < 0)
3014  goto out;
3015  }
3016  }
3017  }
3018 
3019  ret = 0;
3020 
3021 out:
3022  free_recorded_refs(sctx);
3023  ulist_free(check_dirs);
3024  fs_path_free(sctx, valid_path);
3025  return ret;
3026 }
3027 
3028 static int __record_new_ref(int num, u64 dir, int index,
3029  struct fs_path *name,
3030  void *ctx)
3031 {
3032  int ret = 0;
3033  struct send_ctx *sctx = ctx;
3034  struct fs_path *p;
3035  u64 gen;
3036 
3037  p = fs_path_alloc(sctx);
3038  if (!p)
3039  return -ENOMEM;
3040 
3041  ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
3042  NULL, NULL);
3043  if (ret < 0)
3044  goto out;
3045 
3046  ret = get_cur_path(sctx, dir, gen, p);
3047  if (ret < 0)
3048  goto out;
3049  ret = fs_path_add_path(p, name);
3050  if (ret < 0)
3051  goto out;
3052 
3053  ret = record_ref(&sctx->new_refs, dir, gen, p);
3054 
3055 out:
3056  if (ret)
3057  fs_path_free(sctx, p);
3058  return ret;
3059 }
3060 
3061 static int __record_deleted_ref(int num, u64 dir, int index,
3062  struct fs_path *name,
3063  void *ctx)
3064 {
3065  int ret = 0;
3066  struct send_ctx *sctx = ctx;
3067  struct fs_path *p;
3068  u64 gen;
3069 
3070  p = fs_path_alloc(sctx);
3071  if (!p)
3072  return -ENOMEM;
3073 
3074  ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
3075  NULL, NULL);
3076  if (ret < 0)
3077  goto out;
3078 
3079  ret = get_cur_path(sctx, dir, gen, p);
3080  if (ret < 0)
3081  goto out;
3082  ret = fs_path_add_path(p, name);
3083  if (ret < 0)
3084  goto out;
3085 
3086  ret = record_ref(&sctx->deleted_refs, dir, gen, p);
3087 
3088 out:
3089  if (ret)
3090  fs_path_free(sctx, p);
3091  return ret;
3092 }
3093 
3094 static int record_new_ref(struct send_ctx *sctx)
3095 {
3096  int ret;
3097 
3098  ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path,
3099  sctx->cmp_key, 0, __record_new_ref, sctx);
3100  if (ret < 0)
3101  goto out;
3102  ret = 0;
3103 
3104 out:
3105  return ret;
3106 }
3107 
3108 static int record_deleted_ref(struct send_ctx *sctx)
3109 {
3110  int ret;
3111 
3112  ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path,
3113  sctx->cmp_key, 0, __record_deleted_ref, sctx);
3114  if (ret < 0)
3115  goto out;
3116  ret = 0;
3117 
3118 out:
3119  return ret;
3120 }
3121 
3124  struct fs_path *name;
3126 };
3127 
3128 static int __find_iref(int num, u64 dir, int index,
3129  struct fs_path *name,
3130  void *ctx_)
3131 {
3132  struct find_ref_ctx *ctx = ctx_;
3133 
3134  if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3135  strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3136  ctx->found_idx = num;
3137  return 1;
3138  }
3139  return 0;
3140 }
3141 
3142 static int find_iref(struct send_ctx *sctx,
3143  struct btrfs_root *root,
3144  struct btrfs_path *path,
3145  struct btrfs_key *key,
3146  u64 dir, struct fs_path *name)
3147 {
3148  int ret;
3149  struct find_ref_ctx ctx;
3150 
3151  ctx.dir = dir;
3152  ctx.name = name;
3153  ctx.found_idx = -1;
3154 
3155  ret = iterate_inode_ref(sctx, root, path, key, 0, __find_iref, &ctx);
3156  if (ret < 0)
3157  return ret;
3158 
3159  if (ctx.found_idx == -1)
3160  return -ENOENT;
3161 
3162  return ctx.found_idx;
3163 }
3164 
3165 static int __record_changed_new_ref(int num, u64 dir, int index,
3166  struct fs_path *name,
3167  void *ctx)
3168 {
3169  int ret;
3170  struct send_ctx *sctx = ctx;
3171 
3172  ret = find_iref(sctx, sctx->parent_root, sctx->right_path,
3173  sctx->cmp_key, dir, name);
3174  if (ret == -ENOENT)
3175  ret = __record_new_ref(num, dir, index, name, sctx);
3176  else if (ret > 0)
3177  ret = 0;
3178 
3179  return ret;
3180 }
3181 
3182 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3183  struct fs_path *name,
3184  void *ctx)
3185 {
3186  int ret;
3187  struct send_ctx *sctx = ctx;
3188 
3189  ret = find_iref(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key,
3190  dir, name);
3191  if (ret == -ENOENT)
3192  ret = __record_deleted_ref(num, dir, index, name, sctx);
3193  else if (ret > 0)
3194  ret = 0;
3195 
3196  return ret;
3197 }
3198 
3199 static int record_changed_ref(struct send_ctx *sctx)
3200 {
3201  int ret = 0;
3202 
3203  ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path,
3204  sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3205  if (ret < 0)
3206  goto out;
3207  ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path,
3208  sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3209  if (ret < 0)
3210  goto out;
3211  ret = 0;
3212 
3213 out:
3214  return ret;
3215 }
3216 
3217 /*
3218  * Record and process all refs at once. Needed when an inode changes the
3219  * generation number, which means that it was deleted and recreated.
3220  */
3221 static int process_all_refs(struct send_ctx *sctx,
3222  enum btrfs_compare_tree_result cmd)
3223 {
3224  int ret;
3225  struct btrfs_root *root;
3226  struct btrfs_path *path;
3227  struct btrfs_key key;
3228  struct btrfs_key found_key;
3229  struct extent_buffer *eb;
3230  int slot;
3232 
3233  path = alloc_path_for_send();
3234  if (!path)
3235  return -ENOMEM;
3236 
3237  if (cmd == BTRFS_COMPARE_TREE_NEW) {
3238  root = sctx->send_root;
3239  cb = __record_new_ref;
3240  } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3241  root = sctx->parent_root;
3242  cb = __record_deleted_ref;
3243  } else {
3244  BUG();
3245  }
3246 
3247  key.objectid = sctx->cmp_key->objectid;
3248  key.type = BTRFS_INODE_REF_KEY;
3249  key.offset = 0;
3250  while (1) {
3251  ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3252  if (ret < 0)
3253  goto out;
3254  if (ret)
3255  break;
3256 
3257  eb = path->nodes[0];
3258  slot = path->slots[0];
3259  btrfs_item_key_to_cpu(eb, &found_key, slot);
3260 
3261  if (found_key.objectid != key.objectid ||
3262  (found_key.type != BTRFS_INODE_REF_KEY &&
3263  found_key.type != BTRFS_INODE_EXTREF_KEY))
3264  break;
3265 
3266  ret = iterate_inode_ref(sctx, root, path, &found_key, 0, cb,
3267  sctx);
3268  btrfs_release_path(path);
3269  if (ret < 0)
3270  goto out;
3271 
3272  key.offset = found_key.offset + 1;
3273  }
3274  btrfs_release_path(path);
3275 
3276  ret = process_recorded_refs(sctx);
3277 
3278 out:
3279  btrfs_free_path(path);
3280  return ret;
3281 }
3282 
3283 static int send_set_xattr(struct send_ctx *sctx,
3284  struct fs_path *path,
3285  const char *name, int name_len,
3286  const char *data, int data_len)
3287 {
3288  int ret = 0;
3289 
3290  ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3291  if (ret < 0)
3292  goto out;
3293 
3294  TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3295  TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3296  TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3297 
3298  ret = send_cmd(sctx);
3299 
3300 tlv_put_failure:
3301 out:
3302  return ret;
3303 }
3304 
3305 static int send_remove_xattr(struct send_ctx *sctx,
3306  struct fs_path *path,
3307  const char *name, int name_len)
3308 {
3309  int ret = 0;
3310 
3311  ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3312  if (ret < 0)
3313  goto out;
3314 
3315  TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3316  TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3317 
3318  ret = send_cmd(sctx);
3319 
3320 tlv_put_failure:
3321 out:
3322  return ret;
3323 }
3324 
3325 static int __process_new_xattr(int num, struct btrfs_key *di_key,
3326  const char *name, int name_len,
3327  const char *data, int data_len,
3328  u8 type, void *ctx)
3329 {
3330  int ret;
3331  struct send_ctx *sctx = ctx;
3332  struct fs_path *p;
3333  posix_acl_xattr_header dummy_acl;
3334 
3335  p = fs_path_alloc(sctx);
3336  if (!p)
3337  return -ENOMEM;
3338 
3339  /*
3340  * This hack is needed because empty acl's are stored as zero byte
3341  * data in xattrs. Problem with that is, that receiving these zero byte
3342  * acl's will fail later. To fix this, we send a dummy acl list that
3343  * only contains the version number and no entries.
3344  */
3345  if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3346  !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3347  if (data_len == 0) {
3348  dummy_acl.a_version =
3350  data = (char *)&dummy_acl;
3351  data_len = sizeof(dummy_acl);
3352  }
3353  }
3354 
3355  ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3356  if (ret < 0)
3357  goto out;
3358 
3359  ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3360 
3361 out:
3362  fs_path_free(sctx, p);
3363  return ret;
3364 }
3365 
3366 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3367  const char *name, int name_len,
3368  const char *data, int data_len,
3369  u8 type, void *ctx)
3370 {
3371  int ret;
3372  struct send_ctx *sctx = ctx;
3373  struct fs_path *p;
3374 
3375  p = fs_path_alloc(sctx);
3376  if (!p)
3377  return -ENOMEM;
3378 
3379  ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3380  if (ret < 0)
3381  goto out;
3382 
3383  ret = send_remove_xattr(sctx, p, name, name_len);
3384 
3385 out:
3386  fs_path_free(sctx, p);
3387  return ret;
3388 }
3389 
3390 static int process_new_xattr(struct send_ctx *sctx)
3391 {
3392  int ret = 0;
3393 
3394  ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path,
3395  sctx->cmp_key, __process_new_xattr, sctx);
3396 
3397  return ret;
3398 }
3399 
3400 static int process_deleted_xattr(struct send_ctx *sctx)
3401 {
3402  int ret;
3403 
3404  ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path,
3405  sctx->cmp_key, __process_deleted_xattr, sctx);
3406 
3407  return ret;
3408 }
3409 
3411  const char *name;
3414  char *found_data;
3416 };
3417 
3418 static int __find_xattr(int num, struct btrfs_key *di_key,
3419  const char *name, int name_len,
3420  const char *data, int data_len,
3421  u8 type, void *vctx)
3422 {
3423  struct find_xattr_ctx *ctx = vctx;
3424 
3425  if (name_len == ctx->name_len &&
3426  strncmp(name, ctx->name, name_len) == 0) {
3427  ctx->found_idx = num;
3428  ctx->found_data_len = data_len;
3429  ctx->found_data = kmalloc(data_len, GFP_NOFS);
3430  if (!ctx->found_data)
3431  return -ENOMEM;
3432  memcpy(ctx->found_data, data, data_len);
3433  return 1;
3434  }
3435  return 0;
3436 }
3437 
3438 static int find_xattr(struct send_ctx *sctx,
3439  struct btrfs_root *root,
3440  struct btrfs_path *path,
3441  struct btrfs_key *key,
3442  const char *name, int name_len,
3443  char **data, int *data_len)
3444 {
3445  int ret;
3446  struct find_xattr_ctx ctx;
3447 
3448  ctx.name = name;
3449  ctx.name_len = name_len;
3450  ctx.found_idx = -1;
3451  ctx.found_data = NULL;
3452  ctx.found_data_len = 0;
3453 
3454  ret = iterate_dir_item(sctx, root, path, key, __find_xattr, &ctx);
3455  if (ret < 0)
3456  return ret;
3457 
3458  if (ctx.found_idx == -1)
3459  return -ENOENT;
3460  if (data) {
3461  *data = ctx.found_data;
3462  *data_len = ctx.found_data_len;
3463  } else {
3464  kfree(ctx.found_data);
3465  }
3466  return ctx.found_idx;
3467 }
3468 
3469 
3470 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3471  const char *name, int name_len,
3472  const char *data, int data_len,
3473  u8 type, void *ctx)
3474 {
3475  int ret;
3476  struct send_ctx *sctx = ctx;
3477  char *found_data = NULL;
3478  int found_data_len = 0;
3479  struct fs_path *p = NULL;
3480 
3481  ret = find_xattr(sctx, sctx->parent_root, sctx->right_path,
3482  sctx->cmp_key, name, name_len, &found_data,
3483  &found_data_len);
3484  if (ret == -ENOENT) {
3485  ret = __process_new_xattr(num, di_key, name, name_len, data,
3486  data_len, type, ctx);
3487  } else if (ret >= 0) {
3488  if (data_len != found_data_len ||
3489  memcmp(data, found_data, data_len)) {
3490  ret = __process_new_xattr(num, di_key, name, name_len,
3491  data, data_len, type, ctx);
3492  } else {
3493  ret = 0;
3494  }
3495  }
3496 
3497  kfree(found_data);
3498  fs_path_free(sctx, p);
3499  return ret;
3500 }
3501 
3502 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3503  const char *name, int name_len,
3504  const char *data, int data_len,
3505  u8 type, void *ctx)
3506 {
3507  int ret;
3508  struct send_ctx *sctx = ctx;
3509 
3510  ret = find_xattr(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key,
3511  name, name_len, NULL, NULL);
3512  if (ret == -ENOENT)
3513  ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3514  data_len, type, ctx);
3515  else if (ret >= 0)
3516  ret = 0;
3517 
3518  return ret;
3519 }
3520 
3521 static int process_changed_xattr(struct send_ctx *sctx)
3522 {
3523  int ret = 0;
3524 
3525  ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path,
3526  sctx->cmp_key, __process_changed_new_xattr, sctx);
3527  if (ret < 0)
3528  goto out;
3529  ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path,
3530  sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3531 
3532 out:
3533  return ret;
3534 }
3535 
3536 static int process_all_new_xattrs(struct send_ctx *sctx)
3537 {
3538  int ret;
3539  struct btrfs_root *root;
3540  struct btrfs_path *path;
3541  struct btrfs_key key;
3542  struct btrfs_key found_key;
3543  struct extent_buffer *eb;
3544  int slot;
3545 
3546  path = alloc_path_for_send();
3547  if (!path)
3548  return -ENOMEM;
3549 
3550  root = sctx->send_root;
3551 
3552  key.objectid = sctx->cmp_key->objectid;
3553  key.type = BTRFS_XATTR_ITEM_KEY;
3554  key.offset = 0;
3555  while (1) {
3556  ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3557  if (ret < 0)
3558  goto out;
3559  if (ret) {
3560  ret = 0;
3561  goto out;
3562  }
3563 
3564  eb = path->nodes[0];
3565  slot = path->slots[0];
3566  btrfs_item_key_to_cpu(eb, &found_key, slot);
3567 
3568  if (found_key.objectid != key.objectid ||
3569  found_key.type != key.type) {
3570  ret = 0;
3571  goto out;
3572  }
3573 
3574  ret = iterate_dir_item(sctx, root, path, &found_key,
3575  __process_new_xattr, sctx);
3576  if (ret < 0)
3577  goto out;
3578 
3579  btrfs_release_path(path);
3580  key.offset = found_key.offset + 1;
3581  }
3582 
3583 out:
3584  btrfs_free_path(path);
3585  return ret;
3586 }
3587 
3588 /*
3589  * Read some bytes from the current inode/file and send a write command to
3590  * user space.
3591  */
3592 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
3593 {
3594  int ret = 0;
3595  struct fs_path *p;
3596  loff_t pos = offset;
3597  int num_read = 0;
3598  mm_segment_t old_fs;
3599 
3600  p = fs_path_alloc(sctx);
3601  if (!p)
3602  return -ENOMEM;
3603 
3604  /*
3605  * vfs normally only accepts user space buffers for security reasons.
3606  * we only read from the file and also only provide the read_buf buffer
3607  * to vfs. As this buffer does not come from a user space call, it's
3608  * ok to temporary allow kernel space buffers.
3609  */
3610  old_fs = get_fs();
3611  set_fs(KERNEL_DS);
3612 
3613 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
3614 
3615  ret = open_cur_inode_file(sctx);
3616  if (ret < 0)
3617  goto out;
3618 
3619  ret = vfs_read(sctx->cur_inode_filp, sctx->read_buf, len, &pos);
3620  if (ret < 0)
3621  goto out;
3622  num_read = ret;
3623  if (!num_read)
3624  goto out;
3625 
3626  ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
3627  if (ret < 0)
3628  goto out;
3629 
3630  ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3631  if (ret < 0)
3632  goto out;
3633 
3634  TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3635  TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3636  TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
3637 
3638  ret = send_cmd(sctx);
3639 
3640 tlv_put_failure:
3641 out:
3642  fs_path_free(sctx, p);
3643  set_fs(old_fs);
3644  if (ret < 0)
3645  return ret;
3646  return num_read;
3647 }
3648 
3649 /*
3650  * Send a clone command to user space.
3651  */
3652 static int send_clone(struct send_ctx *sctx,
3653  u64 offset, u32 len,
3654  struct clone_root *clone_root)
3655 {
3656  int ret = 0;
3657  struct fs_path *p;
3658  u64 gen;
3659 
3660 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
3661  "clone_inode=%llu, clone_offset=%llu\n", offset, len,
3662  clone_root->root->objectid, clone_root->ino,
3663  clone_root->offset);
3664 
3665  p = fs_path_alloc(sctx);
3666  if (!p)
3667  return -ENOMEM;
3668 
3669  ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
3670  if (ret < 0)
3671  goto out;
3672 
3673  ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3674  if (ret < 0)
3675  goto out;
3676 
3677  TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3678  TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
3679  TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3680 
3681  if (clone_root->root == sctx->send_root) {
3682  ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
3683  &gen, NULL, NULL, NULL, NULL);
3684  if (ret < 0)
3685  goto out;
3686  ret = get_cur_path(sctx, clone_root->ino, gen, p);
3687  } else {
3688  ret = get_inode_path(sctx, clone_root->root,
3689  clone_root->ino, p);
3690  }
3691  if (ret < 0)
3692  goto out;
3693 
3695  clone_root->root->root_item.uuid);
3697  clone_root->root->root_item.ctransid);
3700  clone_root->offset);
3701 
3702  ret = send_cmd(sctx);
3703 
3704 tlv_put_failure:
3705 out:
3706  fs_path_free(sctx, p);
3707  return ret;
3708 }
3709 
3710 static int send_write_or_clone(struct send_ctx *sctx,
3711  struct btrfs_path *path,
3712  struct btrfs_key *key,
3713  struct clone_root *clone_root)
3714 {
3715  int ret = 0;
3716  struct btrfs_file_extent_item *ei;
3717  u64 offset = key->offset;
3718  u64 pos = 0;
3719  u64 len;
3720  u32 l;
3721  u8 type;
3722 
3723  ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3724  struct btrfs_file_extent_item);
3725  type = btrfs_file_extent_type(path->nodes[0], ei);
3726  if (type == BTRFS_FILE_EXTENT_INLINE) {
3727  len = btrfs_file_extent_inline_len(path->nodes[0], ei);
3728  /*
3729  * it is possible the inline item won't cover the whole page,
3730  * but there may be items after this page. Make
3731  * sure to send the whole thing
3732  */
3733  len = PAGE_CACHE_ALIGN(len);
3734  } else {
3735  len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3736  }
3737 
3738  if (offset + len > sctx->cur_inode_size)
3739  len = sctx->cur_inode_size - offset;
3740  if (len == 0) {
3741  ret = 0;
3742  goto out;
3743  }
3744 
3745  if (!clone_root) {
3746  while (pos < len) {
3747  l = len - pos;
3748  if (l > BTRFS_SEND_READ_SIZE)
3750  ret = send_write(sctx, pos + offset, l);
3751  if (ret < 0)
3752  goto out;
3753  if (!ret)
3754  break;
3755  pos += ret;
3756  }
3757  ret = 0;
3758  } else {
3759  ret = send_clone(sctx, offset, len, clone_root);
3760  }
3761 
3762 out:
3763  return ret;
3764 }
3765 
3766 static int is_extent_unchanged(struct send_ctx *sctx,
3767  struct btrfs_path *left_path,
3768  struct btrfs_key *ekey)
3769 {
3770  int ret = 0;
3771  struct btrfs_key key;
3772  struct btrfs_path *path = NULL;
3773  struct extent_buffer *eb;
3774  int slot;
3775  struct btrfs_key found_key;
3776  struct btrfs_file_extent_item *ei;
3777  u64 left_disknr;
3778  u64 right_disknr;
3779  u64 left_offset;
3780  u64 right_offset;
3781  u64 left_offset_fixed;
3782  u64 left_len;
3783  u64 right_len;
3784  u64 left_gen;
3785  u64 right_gen;
3786  u8 left_type;
3787  u8 right_type;
3788 
3789  path = alloc_path_for_send();
3790  if (!path)
3791  return -ENOMEM;
3792 
3793  eb = left_path->nodes[0];
3794  slot = left_path->slots[0];
3795  ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3796  left_type = btrfs_file_extent_type(eb, ei);
3797 
3798  if (left_type != BTRFS_FILE_EXTENT_REG) {
3799  ret = 0;
3800  goto out;
3801  }
3802  left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3803  left_len = btrfs_file_extent_num_bytes(eb, ei);
3804  left_offset = btrfs_file_extent_offset(eb, ei);
3805  left_gen = btrfs_file_extent_generation(eb, ei);
3806 
3807  /*
3808  * Following comments will refer to these graphics. L is the left
3809  * extents which we are checking at the moment. 1-8 are the right
3810  * extents that we iterate.
3811  *
3812  * |-----L-----|
3813  * |-1-|-2a-|-3-|-4-|-5-|-6-|
3814  *
3815  * |-----L-----|
3816  * |--1--|-2b-|...(same as above)
3817  *
3818  * Alternative situation. Happens on files where extents got split.
3819  * |-----L-----|
3820  * |-----------7-----------|-6-|
3821  *
3822  * Alternative situation. Happens on files which got larger.
3823  * |-----L-----|
3824  * |-8-|
3825  * Nothing follows after 8.
3826  */
3827 
3828  key.objectid = ekey->objectid;
3830  key.offset = ekey->offset;
3831  ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
3832  if (ret < 0)
3833  goto out;
3834  if (ret) {
3835  ret = 0;
3836  goto out;
3837  }
3838 
3839  /*
3840  * Handle special case where the right side has no extents at all.
3841  */
3842  eb = path->nodes[0];
3843  slot = path->slots[0];
3844  btrfs_item_key_to_cpu(eb, &found_key, slot);
3845  if (found_key.objectid != key.objectid ||
3846  found_key.type != key.type) {
3847  ret = 0;
3848  goto out;
3849  }
3850 
3851  /*
3852  * We're now on 2a, 2b or 7.
3853  */
3854  key = found_key;
3855  while (key.offset < ekey->offset + left_len) {
3856  ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3857  right_type = btrfs_file_extent_type(eb, ei);
3858  right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3859  right_len = btrfs_file_extent_num_bytes(eb, ei);
3860  right_offset = btrfs_file_extent_offset(eb, ei);
3861  right_gen = btrfs_file_extent_generation(eb, ei);
3862 
3863  if (right_type != BTRFS_FILE_EXTENT_REG) {
3864  ret = 0;
3865  goto out;
3866  }
3867 
3868  /*
3869  * Are we at extent 8? If yes, we know the extent is changed.
3870  * This may only happen on the first iteration.
3871  */
3872  if (found_key.offset + right_len <= ekey->offset) {
3873  ret = 0;
3874  goto out;
3875  }
3876 
3877  left_offset_fixed = left_offset;
3878  if (key.offset < ekey->offset) {
3879  /* Fix the right offset for 2a and 7. */
3880  right_offset += ekey->offset - key.offset;
3881  } else {
3882  /* Fix the left offset for all behind 2a and 2b */
3883  left_offset_fixed += key.offset - ekey->offset;
3884  }
3885 
3886  /*
3887  * Check if we have the same extent.
3888  */
3889  if (left_disknr != right_disknr ||
3890  left_offset_fixed != right_offset ||
3891  left_gen != right_gen) {
3892  ret = 0;
3893  goto out;
3894  }
3895 
3896  /*
3897  * Go to the next extent.
3898  */
3899  ret = btrfs_next_item(sctx->parent_root, path);
3900  if (ret < 0)
3901  goto out;
3902  if (!ret) {
3903  eb = path->nodes[0];
3904  slot = path->slots[0];
3905  btrfs_item_key_to_cpu(eb, &found_key, slot);
3906  }
3907  if (ret || found_key.objectid != key.objectid ||
3908  found_key.type != key.type) {
3909  key.offset += right_len;
3910  break;
3911  } else {
3912  if (found_key.offset != key.offset + right_len) {
3913  /* Should really not happen */
3914  ret = -EIO;
3915  goto out;
3916  }
3917  }
3918  key = found_key;
3919  }
3920 
3921  /*
3922  * We're now behind the left extent (treat as unchanged) or at the end
3923  * of the right side (treat as changed).
3924  */
3925  if (key.offset >= ekey->offset + left_len)
3926  ret = 1;
3927  else
3928  ret = 0;
3929 
3930 
3931 out:
3932  btrfs_free_path(path);
3933  return ret;
3934 }
3935 
3936 static int process_extent(struct send_ctx *sctx,
3937  struct btrfs_path *path,
3938  struct btrfs_key *key)
3939 {
3940  int ret = 0;
3941  struct clone_root *found_clone = NULL;
3942 
3943  if (S_ISLNK(sctx->cur_inode_mode))
3944  return 0;
3945 
3946  if (sctx->parent_root && !sctx->cur_inode_new) {
3947  ret = is_extent_unchanged(sctx, path, key);
3948  if (ret < 0)
3949  goto out;
3950  if (ret) {
3951  ret = 0;
3952  goto out;
3953  }
3954  }
3955 
3956  ret = find_extent_clone(sctx, path, key->objectid, key->offset,
3957  sctx->cur_inode_size, &found_clone);
3958  if (ret != -ENOENT && ret < 0)
3959  goto out;
3960 
3961  ret = send_write_or_clone(sctx, path, key, found_clone);
3962 
3963 out:
3964  return ret;
3965 }
3966 
3967 static int process_all_extents(struct send_ctx *sctx)
3968 {
3969  int ret;
3970  struct btrfs_root *root;
3971  struct btrfs_path *path;
3972  struct btrfs_key key;
3973  struct btrfs_key found_key;
3974  struct extent_buffer *eb;
3975  int slot;
3976 
3977  root = sctx->send_root;
3978  path = alloc_path_for_send();
3979  if (!path)
3980  return -ENOMEM;
3981 
3982  key.objectid = sctx->cmp_key->objectid;
3984  key.offset = 0;
3985  while (1) {
3986  ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3987  if (ret < 0)
3988  goto out;
3989  if (ret) {
3990  ret = 0;
3991  goto out;
3992  }
3993 
3994  eb = path->nodes[0];
3995  slot = path->slots[0];
3996  btrfs_item_key_to_cpu(eb, &found_key, slot);
3997 
3998  if (found_key.objectid != key.objectid ||
3999  found_key.type != key.type) {
4000  ret = 0;
4001  goto out;
4002  }
4003 
4004  ret = process_extent(sctx, path, &found_key);
4005  if (ret < 0)
4006  goto out;
4007 
4008  btrfs_release_path(path);
4009  key.offset = found_key.offset + 1;
4010  }
4011 
4012 out:
4013  btrfs_free_path(path);
4014  return ret;
4015 }
4016 
4017 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end)
4018 {
4019  int ret = 0;
4020 
4021  if (sctx->cur_ino == 0)
4022  goto out;
4023  if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4024  sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4025  goto out;
4026  if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4027  goto out;
4028 
4029  ret = process_recorded_refs(sctx);
4030  if (ret < 0)
4031  goto out;
4032 
4033  /*
4034  * We have processed the refs and thus need to advance send_progress.
4035  * Now, calls to get_cur_xxx will take the updated refs of the current
4036  * inode into account.
4037  */
4038  sctx->send_progress = sctx->cur_ino + 1;
4039 
4040 out:
4041  return ret;
4042 }
4043 
4044 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4045 {
4046  int ret = 0;
4047  u64 left_mode;
4048  u64 left_uid;
4049  u64 left_gid;
4050  u64 right_mode;
4051  u64 right_uid;
4052  u64 right_gid;
4053  int need_chmod = 0;
4054  int need_chown = 0;
4055 
4056  ret = process_recorded_refs_if_needed(sctx, at_end);
4057  if (ret < 0)
4058  goto out;
4059 
4060  if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4061  goto out;
4062  if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4063  goto out;
4064 
4065  ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
4066  &left_mode, &left_uid, &left_gid, NULL);
4067  if (ret < 0)
4068  goto out;
4069 
4070  if (!sctx->parent_root || sctx->cur_inode_new) {
4071  need_chown = 1;
4072  if (!S_ISLNK(sctx->cur_inode_mode))
4073  need_chmod = 1;
4074  } else {
4075  ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4076  NULL, NULL, &right_mode, &right_uid,
4077  &right_gid, NULL);
4078  if (ret < 0)
4079  goto out;
4080 
4081  if (left_uid != right_uid || left_gid != right_gid)
4082  need_chown = 1;
4083  if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4084  need_chmod = 1;
4085  }
4086 
4087  if (S_ISREG(sctx->cur_inode_mode)) {
4088  ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4089  sctx->cur_inode_size);
4090  if (ret < 0)
4091  goto out;
4092  }
4093 
4094  if (need_chown) {
4095  ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4096  left_uid, left_gid);
4097  if (ret < 0)
4098  goto out;
4099  }
4100  if (need_chmod) {
4101  ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4102  left_mode);
4103  if (ret < 0)
4104  goto out;
4105  }
4106 
4107  /*
4108  * Need to send that every time, no matter if it actually changed
4109  * between the two trees as we have done changes to the inode before.
4110  */
4111  ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4112  if (ret < 0)
4113  goto out;
4114 
4115 out:
4116  return ret;
4117 }
4118 
4119 static int changed_inode(struct send_ctx *sctx,
4121 {
4122  int ret = 0;
4123  struct btrfs_key *key = sctx->cmp_key;
4124  struct btrfs_inode_item *left_ii = NULL;
4125  struct btrfs_inode_item *right_ii = NULL;
4126  u64 left_gen = 0;
4127  u64 right_gen = 0;
4128 
4129  ret = close_cur_inode_file(sctx);
4130  if (ret < 0)
4131  goto out;
4132 
4133  sctx->cur_ino = key->objectid;
4134  sctx->cur_inode_new_gen = 0;
4135 
4136  /*
4137  * Set send_progress to current inode. This will tell all get_cur_xxx
4138  * functions that the current inode's refs are not updated yet. Later,
4139  * when process_recorded_refs is finished, it is set to cur_ino + 1.
4140  */
4141  sctx->send_progress = sctx->cur_ino;
4142 
4143  if (result == BTRFS_COMPARE_TREE_NEW ||
4144  result == BTRFS_COMPARE_TREE_CHANGED) {
4145  left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4146  sctx->left_path->slots[0],
4147  struct btrfs_inode_item);
4148  left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4149  left_ii);
4150  } else {
4151  right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4152  sctx->right_path->slots[0],
4153  struct btrfs_inode_item);
4154  right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4155  right_ii);
4156  }
4157  if (result == BTRFS_COMPARE_TREE_CHANGED) {
4158  right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4159  sctx->right_path->slots[0],
4160  struct btrfs_inode_item);
4161 
4162  right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4163  right_ii);
4164 
4165  /*
4166  * The cur_ino = root dir case is special here. We can't treat
4167  * the inode as deleted+reused because it would generate a
4168  * stream that tries to delete/mkdir the root dir.
4169  */
4170  if (left_gen != right_gen &&
4172  sctx->cur_inode_new_gen = 1;
4173  }
4174 
4175  if (result == BTRFS_COMPARE_TREE_NEW) {
4176  sctx->cur_inode_gen = left_gen;
4177  sctx->cur_inode_new = 1;
4178  sctx->cur_inode_deleted = 0;
4179  sctx->cur_inode_size = btrfs_inode_size(
4180  sctx->left_path->nodes[0], left_ii);
4181  sctx->cur_inode_mode = btrfs_inode_mode(
4182  sctx->left_path->nodes[0], left_ii);
4183  if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4184  ret = send_create_inode_if_needed(sctx);
4185  } else if (result == BTRFS_COMPARE_TREE_DELETED) {
4186  sctx->cur_inode_gen = right_gen;
4187  sctx->cur_inode_new = 0;
4188  sctx->cur_inode_deleted = 1;
4189  sctx->cur_inode_size = btrfs_inode_size(
4190  sctx->right_path->nodes[0], right_ii);
4191  sctx->cur_inode_mode = btrfs_inode_mode(
4192  sctx->right_path->nodes[0], right_ii);
4193  } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
4194  /*
4195  * We need to do some special handling in case the inode was
4196  * reported as changed with a changed generation number. This
4197  * means that the original inode was deleted and new inode
4198  * reused the same inum. So we have to treat the old inode as
4199  * deleted and the new one as new.
4200  */
4201  if (sctx->cur_inode_new_gen) {
4202  /*
4203  * First, process the inode as if it was deleted.
4204  */
4205  sctx->cur_inode_gen = right_gen;
4206  sctx->cur_inode_new = 0;
4207  sctx->cur_inode_deleted = 1;
4208  sctx->cur_inode_size = btrfs_inode_size(
4209  sctx->right_path->nodes[0], right_ii);
4210  sctx->cur_inode_mode = btrfs_inode_mode(
4211  sctx->right_path->nodes[0], right_ii);
4212  ret = process_all_refs(sctx,
4214  if (ret < 0)
4215  goto out;
4216 
4217  /*
4218  * Now process the inode as if it was new.
4219  */
4220  sctx->cur_inode_gen = left_gen;
4221  sctx->cur_inode_new = 1;
4222  sctx->cur_inode_deleted = 0;
4223  sctx->cur_inode_size = btrfs_inode_size(
4224  sctx->left_path->nodes[0], left_ii);
4225  sctx->cur_inode_mode = btrfs_inode_mode(
4226  sctx->left_path->nodes[0], left_ii);
4227  ret = send_create_inode_if_needed(sctx);
4228  if (ret < 0)
4229  goto out;
4230 
4231  ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4232  if (ret < 0)
4233  goto out;
4234  /*
4235  * Advance send_progress now as we did not get into
4236  * process_recorded_refs_if_needed in the new_gen case.
4237  */
4238  sctx->send_progress = sctx->cur_ino + 1;
4239 
4240  /*
4241  * Now process all extents and xattrs of the inode as if
4242  * they were all new.
4243  */
4244  ret = process_all_extents(sctx);
4245  if (ret < 0)
4246  goto out;
4247  ret = process_all_new_xattrs(sctx);
4248  if (ret < 0)
4249  goto out;
4250  } else {
4251  sctx->cur_inode_gen = left_gen;
4252  sctx->cur_inode_new = 0;
4253  sctx->cur_inode_new_gen = 0;
4254  sctx->cur_inode_deleted = 0;
4255  sctx->cur_inode_size = btrfs_inode_size(
4256  sctx->left_path->nodes[0], left_ii);
4257  sctx->cur_inode_mode = btrfs_inode_mode(
4258  sctx->left_path->nodes[0], left_ii);
4259  }
4260  }
4261 
4262 out:
4263  return ret;
4264 }
4265 
4266 /*
4267  * We have to process new refs before deleted refs, but compare_trees gives us
4268  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4269  * first and later process them in process_recorded_refs.
4270  * For the cur_inode_new_gen case, we skip recording completely because
4271  * changed_inode did already initiate processing of refs. The reason for this is
4272  * that in this case, compare_tree actually compares the refs of 2 different
4273  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4274  * refs of the right tree as deleted and all refs of the left tree as new.
4275  */
4276 static int changed_ref(struct send_ctx *sctx,
4277  enum btrfs_compare_tree_result result)
4278 {
4279  int ret = 0;
4280 
4281  BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4282 
4283  if (!sctx->cur_inode_new_gen &&
4285  if (result == BTRFS_COMPARE_TREE_NEW)
4286  ret = record_new_ref(sctx);
4287  else if (result == BTRFS_COMPARE_TREE_DELETED)
4288  ret = record_deleted_ref(sctx);
4289  else if (result == BTRFS_COMPARE_TREE_CHANGED)
4290  ret = record_changed_ref(sctx);
4291  }
4292 
4293  return ret;
4294 }
4295 
4296 /*
4297  * Process new/deleted/changed xattrs. We skip processing in the
4298  * cur_inode_new_gen case because changed_inode did already initiate processing
4299  * of xattrs. The reason is the same as in changed_ref
4300  */
4301 static int changed_xattr(struct send_ctx *sctx,
4302  enum btrfs_compare_tree_result result)
4303 {
4304  int ret = 0;
4305 
4306  BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4307 
4308  if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4309  if (result == BTRFS_COMPARE_TREE_NEW)
4310  ret = process_new_xattr(sctx);
4311  else if (result == BTRFS_COMPARE_TREE_DELETED)
4312  ret = process_deleted_xattr(sctx);
4313  else if (result == BTRFS_COMPARE_TREE_CHANGED)
4314  ret = process_changed_xattr(sctx);
4315  }
4316 
4317  return ret;
4318 }
4319 
4320 /*
4321  * Process new/deleted/changed extents. We skip processing in the
4322  * cur_inode_new_gen case because changed_inode did already initiate processing
4323  * of extents. The reason is the same as in changed_ref
4324  */
4325 static int changed_extent(struct send_ctx *sctx,
4326  enum btrfs_compare_tree_result result)
4327 {
4328  int ret = 0;
4329 
4330  BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4331 
4332  if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4333  if (result != BTRFS_COMPARE_TREE_DELETED)
4334  ret = process_extent(sctx, sctx->left_path,
4335  sctx->cmp_key);
4336  }
4337 
4338  return ret;
4339 }
4340 
4341 /*
4342  * Updates compare related fields in sctx and simply forwards to the actual
4343  * changed_xxx functions.
4344  */
4345 static int changed_cb(struct btrfs_root *left_root,
4346  struct btrfs_root *right_root,
4347  struct btrfs_path *left_path,
4348  struct btrfs_path *right_path,
4349  struct btrfs_key *key,
4350  enum btrfs_compare_tree_result result,
4351  void *ctx)
4352 {
4353  int ret = 0;
4354  struct send_ctx *sctx = ctx;
4355 
4356  sctx->left_path = left_path;
4357  sctx->right_path = right_path;
4358  sctx->cmp_key = key;
4359 
4360  ret = finish_inode_if_needed(sctx, 0);
4361  if (ret < 0)
4362  goto out;
4363 
4364  /* Ignore non-FS objects */
4365  if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
4367  goto out;
4368 
4369  if (key->type == BTRFS_INODE_ITEM_KEY)
4370  ret = changed_inode(sctx, result);
4371  else if (key->type == BTRFS_INODE_REF_KEY ||
4372  key->type == BTRFS_INODE_EXTREF_KEY)
4373  ret = changed_ref(sctx, result);
4374  else if (key->type == BTRFS_XATTR_ITEM_KEY)
4375  ret = changed_xattr(sctx, result);
4376  else if (key->type == BTRFS_EXTENT_DATA_KEY)
4377  ret = changed_extent(sctx, result);
4378 
4379 out:
4380  return ret;
4381 }
4382 
4383 static int full_send_tree(struct send_ctx *sctx)
4384 {
4385  int ret;
4386  struct btrfs_trans_handle *trans = NULL;
4387  struct btrfs_root *send_root = sctx->send_root;
4388  struct btrfs_key key;
4389  struct btrfs_key found_key;
4390  struct btrfs_path *path;
4391  struct extent_buffer *eb;
4392  int slot;
4393  u64 start_ctransid;
4394  u64 ctransid;
4395 
4396  path = alloc_path_for_send();
4397  if (!path)
4398  return -ENOMEM;
4399 
4400  spin_lock(&send_root->root_times_lock);
4401  start_ctransid = btrfs_root_ctransid(&send_root->root_item);
4402  spin_unlock(&send_root->root_times_lock);
4403 
4405  key.type = BTRFS_INODE_ITEM_KEY;
4406  key.offset = 0;
4407 
4408 join_trans:
4409  /*
4410  * We need to make sure the transaction does not get committed
4411  * while we do anything on commit roots. Join a transaction to prevent
4412  * this.
4413  */
4414  trans = btrfs_join_transaction(send_root);
4415  if (IS_ERR(trans)) {
4416  ret = PTR_ERR(trans);
4417  trans = NULL;
4418  goto out;
4419  }
4420 
4421  /*
4422  * Make sure the tree has not changed after re-joining. We detect this
4423  * by comparing start_ctransid and ctransid. They should always match.
4424  */
4425  spin_lock(&send_root->root_times_lock);
4426  ctransid = btrfs_root_ctransid(&send_root->root_item);
4427  spin_unlock(&send_root->root_times_lock);
4428 
4429  if (ctransid != start_ctransid) {
4430  WARN(1, KERN_WARNING "btrfs: the root that you're trying to "
4431  "send was modified in between. This is "
4432  "probably a bug.\n");
4433  ret = -EIO;
4434  goto out;
4435  }
4436 
4437  ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
4438  if (ret < 0)
4439  goto out;
4440  if (ret)
4441  goto out_finish;
4442 
4443  while (1) {
4444  /*
4445  * When someone want to commit while we iterate, end the
4446  * joined transaction and rejoin.
4447  */
4448  if (btrfs_should_end_transaction(trans, send_root)) {
4449  ret = btrfs_end_transaction(trans, send_root);
4450  trans = NULL;
4451  if (ret < 0)
4452  goto out;
4453  btrfs_release_path(path);
4454  goto join_trans;
4455  }
4456 
4457  eb = path->nodes[0];
4458  slot = path->slots[0];
4459  btrfs_item_key_to_cpu(eb, &found_key, slot);
4460 
4461  ret = changed_cb(send_root, NULL, path, NULL,
4462  &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
4463  if (ret < 0)
4464  goto out;
4465 
4466  key.objectid = found_key.objectid;
4467  key.type = found_key.type;
4468  key.offset = found_key.offset + 1;
4469 
4470  ret = btrfs_next_item(send_root, path);
4471  if (ret < 0)
4472  goto out;
4473  if (ret) {
4474  ret = 0;
4475  break;
4476  }
4477  }
4478 
4479 out_finish:
4480  ret = finish_inode_if_needed(sctx, 1);
4481 
4482 out:
4483  btrfs_free_path(path);
4484  if (trans) {
4485  if (!ret)
4486  ret = btrfs_end_transaction(trans, send_root);
4487  else
4488  btrfs_end_transaction(trans, send_root);
4489  }
4490  return ret;
4491 }
4492 
4493 static int send_subvol(struct send_ctx *sctx)
4494 {
4495  int ret;
4496 
4497  ret = send_header(sctx);
4498  if (ret < 0)
4499  goto out;
4500 
4501  ret = send_subvol_begin(sctx);
4502  if (ret < 0)
4503  goto out;
4504 
4505  if (sctx->parent_root) {
4506  ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
4507  changed_cb, sctx);
4508  if (ret < 0)
4509  goto out;
4510  ret = finish_inode_if_needed(sctx, 1);
4511  if (ret < 0)
4512  goto out;
4513  } else {
4514  ret = full_send_tree(sctx);
4515  if (ret < 0)
4516  goto out;
4517  }
4518 
4519 out:
4520  if (!ret)
4521  ret = close_cur_inode_file(sctx);
4522  else
4523  close_cur_inode_file(sctx);
4524 
4525  free_recorded_refs(sctx);
4526  return ret;
4527 }
4528 
4529 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
4530 {
4531  int ret = 0;
4532  struct btrfs_root *send_root;
4533  struct btrfs_root *clone_root;
4534  struct btrfs_fs_info *fs_info;
4535  struct btrfs_ioctl_send_args *arg = NULL;
4536  struct btrfs_key key;
4537  struct file *filp = NULL;
4538  struct send_ctx *sctx = NULL;
4539  u32 i;
4540  u64 *clone_sources_tmp = NULL;
4541 
4542  if (!capable(CAP_SYS_ADMIN))
4543  return -EPERM;
4544 
4545  send_root = BTRFS_I(fdentry(mnt_file)->d_inode)->root;
4546  fs_info = send_root->fs_info;
4547 
4548  arg = memdup_user(arg_, sizeof(*arg));
4549  if (IS_ERR(arg)) {
4550  ret = PTR_ERR(arg);
4551  arg = NULL;
4552  goto out;
4553  }
4554 
4555  if (!access_ok(VERIFY_READ, arg->clone_sources,
4556  sizeof(*arg->clone_sources *
4557  arg->clone_sources_count))) {
4558  ret = -EFAULT;
4559  goto out;
4560  }
4561 
4562  sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
4563  if (!sctx) {
4564  ret = -ENOMEM;
4565  goto out;
4566  }
4567 
4568  INIT_LIST_HEAD(&sctx->new_refs);
4569  INIT_LIST_HEAD(&sctx->deleted_refs);
4571  INIT_LIST_HEAD(&sctx->name_cache_list);
4572 
4573  sctx->send_filp = fget(arg->send_fd);
4574  if (IS_ERR(sctx->send_filp)) {
4575  ret = PTR_ERR(sctx->send_filp);
4576  goto out;
4577  }
4578 
4579  sctx->mnt = mnt_file->f_path.mnt;
4580 
4581  sctx->send_root = send_root;
4582  sctx->clone_roots_cnt = arg->clone_sources_count;
4583 
4585  sctx->send_buf = vmalloc(sctx->send_max_size);
4586  if (!sctx->send_buf) {
4587  ret = -ENOMEM;
4588  goto out;
4589  }
4590 
4592  if (!sctx->read_buf) {
4593  ret = -ENOMEM;
4594  goto out;
4595  }
4596 
4597  sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
4598  (arg->clone_sources_count + 1));
4599  if (!sctx->clone_roots) {
4600  ret = -ENOMEM;
4601  goto out;
4602  }
4603 
4604  if (arg->clone_sources_count) {
4605  clone_sources_tmp = vmalloc(arg->clone_sources_count *
4606  sizeof(*arg->clone_sources));
4607  if (!clone_sources_tmp) {
4608  ret = -ENOMEM;
4609  goto out;
4610  }
4611 
4612  ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
4613  arg->clone_sources_count *
4614  sizeof(*arg->clone_sources));
4615  if (ret) {
4616  ret = -EFAULT;
4617  goto out;
4618  }
4619 
4620  for (i = 0; i < arg->clone_sources_count; i++) {
4621  key.objectid = clone_sources_tmp[i];
4622  key.type = BTRFS_ROOT_ITEM_KEY;
4623  key.offset = (u64)-1;
4624  clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
4625  if (!clone_root) {
4626  ret = -EINVAL;
4627  goto out;
4628  }
4629  if (IS_ERR(clone_root)) {
4630  ret = PTR_ERR(clone_root);
4631  goto out;
4632  }
4633  sctx->clone_roots[i].root = clone_root;
4634  }
4635  vfree(clone_sources_tmp);
4636  clone_sources_tmp = NULL;
4637  }
4638 
4639  if (arg->parent_root) {
4640  key.objectid = arg->parent_root;
4641  key.type = BTRFS_ROOT_ITEM_KEY;
4642  key.offset = (u64)-1;
4643  sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
4644  if (!sctx->parent_root) {
4645  ret = -EINVAL;
4646  goto out;
4647  }
4648  }
4649 
4650  /*
4651  * Clones from send_root are allowed, but only if the clone source
4652  * is behind the current send position. This is checked while searching
4653  * for possible clone sources.
4654  */
4655  sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
4656 
4657  /* We do a bsearch later */
4658  sort(sctx->clone_roots, sctx->clone_roots_cnt,
4659  sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
4660  NULL);
4661 
4662  ret = send_subvol(sctx);
4663  if (ret < 0)
4664  goto out;
4665 
4666  ret = begin_cmd(sctx, BTRFS_SEND_C_END);
4667  if (ret < 0)
4668  goto out;
4669  ret = send_cmd(sctx);
4670  if (ret < 0)
4671  goto out;
4672 
4673 out:
4674  if (filp)
4675  fput(filp);
4676  kfree(arg);
4677  vfree(clone_sources_tmp);
4678 
4679  if (sctx) {
4680  if (sctx->send_filp)
4681  fput(sctx->send_filp);
4682 
4683  vfree(sctx->clone_roots);
4684  vfree(sctx->send_buf);
4685  vfree(sctx->read_buf);
4686 
4687  name_cache_free(sctx);
4688 
4689  kfree(sctx);
4690  }
4691 
4692  return ret;
4693 }