Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
caps.c
Go to the documentation of this file.
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10 
11 #include "super.h"
12 #include "mds_client.h"
13 #include <linux/ceph/decode.h>
14 #include <linux/ceph/messenger.h>
15 
16 /*
17  * Capability management
18  *
19  * The Ceph metadata servers control client access to inode metadata
20  * and file data by issuing capabilities, granting clients permission
21  * to read and/or write both inode field and file data to OSDs
22  * (storage nodes). Each capability consists of a set of bits
23  * indicating which operations are allowed.
24  *
25  * If the client holds a *_SHARED cap, the client has a coherent value
26  * that can be safely read from the cached inode.
27  *
28  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
29  * client is allowed to change inode attributes (e.g., file size,
30  * mtime), note its dirty state in the ceph_cap, and asynchronously
31  * flush that metadata change to the MDS.
32  *
33  * In the event of a conflicting operation (perhaps by another
34  * client), the MDS will revoke the conflicting client capabilities.
35  *
36  * In order for a client to cache an inode, it must hold a capability
37  * with at least one MDS server. When inodes are released, release
38  * notifications are batched and periodically sent en masse to the MDS
39  * cluster to release server state.
40  */
41 
42 
43 /*
44  * Generate readable cap strings for debugging output.
45  */
46 #define MAX_CAP_STR 20
47 static char cap_str[MAX_CAP_STR][40];
48 static DEFINE_SPINLOCK(cap_str_lock);
49 static int last_cap_str;
50 
51 static char *gcap_string(char *s, int c)
52 {
53  if (c & CEPH_CAP_GSHARED)
54  *s++ = 's';
55  if (c & CEPH_CAP_GEXCL)
56  *s++ = 'x';
57  if (c & CEPH_CAP_GCACHE)
58  *s++ = 'c';
59  if (c & CEPH_CAP_GRD)
60  *s++ = 'r';
61  if (c & CEPH_CAP_GWR)
62  *s++ = 'w';
63  if (c & CEPH_CAP_GBUFFER)
64  *s++ = 'b';
65  if (c & CEPH_CAP_GLAZYIO)
66  *s++ = 'l';
67  return s;
68 }
69 
70 const char *ceph_cap_string(int caps)
71 {
72  int i;
73  char *s;
74  int c;
75 
76  spin_lock(&cap_str_lock);
77  i = last_cap_str++;
78  if (last_cap_str == MAX_CAP_STR)
79  last_cap_str = 0;
80  spin_unlock(&cap_str_lock);
81 
82  s = cap_str[i];
83 
84  if (caps & CEPH_CAP_PIN)
85  *s++ = 'p';
86 
87  c = (caps >> CEPH_CAP_SAUTH) & 3;
88  if (c) {
89  *s++ = 'A';
90  s = gcap_string(s, c);
91  }
92 
93  c = (caps >> CEPH_CAP_SLINK) & 3;
94  if (c) {
95  *s++ = 'L';
96  s = gcap_string(s, c);
97  }
98 
99  c = (caps >> CEPH_CAP_SXATTR) & 3;
100  if (c) {
101  *s++ = 'X';
102  s = gcap_string(s, c);
103  }
104 
105  c = caps >> CEPH_CAP_SFILE;
106  if (c) {
107  *s++ = 'F';
108  s = gcap_string(s, c);
109  }
110 
111  if (s == cap_str[i])
112  *s++ = '-';
113  *s = 0;
114  return cap_str[i];
115 }
116 
117 void ceph_caps_init(struct ceph_mds_client *mdsc)
118 {
119  INIT_LIST_HEAD(&mdsc->caps_list);
121 }
122 
124 {
125  struct ceph_cap *cap;
126 
127  spin_lock(&mdsc->caps_list_lock);
128  while (!list_empty(&mdsc->caps_list)) {
129  cap = list_first_entry(&mdsc->caps_list,
130  struct ceph_cap, caps_item);
131  list_del(&cap->caps_item);
133  }
134  mdsc->caps_total_count = 0;
135  mdsc->caps_avail_count = 0;
136  mdsc->caps_use_count = 0;
137  mdsc->caps_reserve_count = 0;
138  mdsc->caps_min_count = 0;
139  spin_unlock(&mdsc->caps_list_lock);
140 }
141 
143 {
144  spin_lock(&mdsc->caps_list_lock);
145  mdsc->caps_min_count += delta;
146  BUG_ON(mdsc->caps_min_count < 0);
147  spin_unlock(&mdsc->caps_list_lock);
148 }
149 
151  struct ceph_cap_reservation *ctx, int need)
152 {
153  int i;
154  struct ceph_cap *cap;
155  int have;
156  int alloc = 0;
157  LIST_HEAD(newcaps);
158  int ret = 0;
159 
160  dout("reserve caps ctx=%p need=%d\n", ctx, need);
161 
162  /* first reserve any caps that are already allocated */
163  spin_lock(&mdsc->caps_list_lock);
164  if (mdsc->caps_avail_count >= need)
165  have = need;
166  else
167  have = mdsc->caps_avail_count;
168  mdsc->caps_avail_count -= have;
169  mdsc->caps_reserve_count += have;
170  BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
171  mdsc->caps_reserve_count +
172  mdsc->caps_avail_count);
173  spin_unlock(&mdsc->caps_list_lock);
174 
175  for (i = have; i < need; i++) {
177  if (!cap) {
178  ret = -ENOMEM;
179  goto out_alloc_count;
180  }
181  list_add(&cap->caps_item, &newcaps);
182  alloc++;
183  }
184  BUG_ON(have + alloc != need);
185 
186  spin_lock(&mdsc->caps_list_lock);
187  mdsc->caps_total_count += alloc;
188  mdsc->caps_reserve_count += alloc;
189  list_splice(&newcaps, &mdsc->caps_list);
190 
191  BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
192  mdsc->caps_reserve_count +
193  mdsc->caps_avail_count);
194  spin_unlock(&mdsc->caps_list_lock);
195 
196  ctx->count = need;
197  dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
198  ctx, mdsc->caps_total_count, mdsc->caps_use_count,
199  mdsc->caps_reserve_count, mdsc->caps_avail_count);
200  return 0;
201 
202 out_alloc_count:
203  /* we didn't manage to reserve as much as we needed */
204  pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
205  ctx, need, have);
206  return ret;
207 }
208 
210  struct ceph_cap_reservation *ctx)
211 {
212  dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
213  if (ctx->count) {
214  spin_lock(&mdsc->caps_list_lock);
215  BUG_ON(mdsc->caps_reserve_count < ctx->count);
216  mdsc->caps_reserve_count -= ctx->count;
217  mdsc->caps_avail_count += ctx->count;
218  ctx->count = 0;
219  dout("unreserve caps %d = %d used + %d resv + %d avail\n",
220  mdsc->caps_total_count, mdsc->caps_use_count,
221  mdsc->caps_reserve_count, mdsc->caps_avail_count);
222  BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
223  mdsc->caps_reserve_count +
224  mdsc->caps_avail_count);
225  spin_unlock(&mdsc->caps_list_lock);
226  }
227  return 0;
228 }
229 
230 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
231  struct ceph_cap_reservation *ctx)
232 {
233  struct ceph_cap *cap = NULL;
234 
235  /* temporary, until we do something about cap import/export */
236  if (!ctx) {
238  if (cap) {
239  mdsc->caps_use_count++;
240  mdsc->caps_total_count++;
241  }
242  return cap;
243  }
244 
245  spin_lock(&mdsc->caps_list_lock);
246  dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
247  ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
248  mdsc->caps_reserve_count, mdsc->caps_avail_count);
249  BUG_ON(!ctx->count);
250  BUG_ON(ctx->count > mdsc->caps_reserve_count);
251  BUG_ON(list_empty(&mdsc->caps_list));
252 
253  ctx->count--;
254  mdsc->caps_reserve_count--;
255  mdsc->caps_use_count++;
256 
257  cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
258  list_del(&cap->caps_item);
259 
260  BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
261  mdsc->caps_reserve_count + mdsc->caps_avail_count);
262  spin_unlock(&mdsc->caps_list_lock);
263  return cap;
264 }
265 
266 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
267 {
268  spin_lock(&mdsc->caps_list_lock);
269  dout("put_cap %p %d = %d used + %d resv + %d avail\n",
270  cap, mdsc->caps_total_count, mdsc->caps_use_count,
271  mdsc->caps_reserve_count, mdsc->caps_avail_count);
272  mdsc->caps_use_count--;
273  /*
274  * Keep some preallocated caps around (ceph_min_count), to
275  * avoid lots of free/alloc churn.
276  */
277  if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
278  mdsc->caps_min_count) {
279  mdsc->caps_total_count--;
281  } else {
282  mdsc->caps_avail_count++;
283  list_add(&cap->caps_item, &mdsc->caps_list);
284  }
285 
286  BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
287  mdsc->caps_reserve_count + mdsc->caps_avail_count);
288  spin_unlock(&mdsc->caps_list_lock);
289 }
290 
292  int *total, int *avail, int *used, int *reserved,
293  int *min)
294 {
295  struct ceph_mds_client *mdsc = fsc->mdsc;
296 
297  if (total)
298  *total = mdsc->caps_total_count;
299  if (avail)
300  *avail = mdsc->caps_avail_count;
301  if (used)
302  *used = mdsc->caps_use_count;
303  if (reserved)
304  *reserved = mdsc->caps_reserve_count;
305  if (min)
306  *min = mdsc->caps_min_count;
307 }
308 
309 /*
310  * Find ceph_cap for given mds, if any.
311  *
312  * Called with i_ceph_lock held.
313  */
314 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
315 {
316  struct ceph_cap *cap;
317  struct rb_node *n = ci->i_caps.rb_node;
318 
319  while (n) {
320  cap = rb_entry(n, struct ceph_cap, ci_node);
321  if (mds < cap->mds)
322  n = n->rb_left;
323  else if (mds > cap->mds)
324  n = n->rb_right;
325  else
326  return cap;
327  }
328  return NULL;
329 }
330 
331 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
332 {
333  struct ceph_cap *cap;
334 
335  spin_lock(&ci->i_ceph_lock);
336  cap = __get_cap_for_mds(ci, mds);
337  spin_unlock(&ci->i_ceph_lock);
338  return cap;
339 }
340 
341 /*
342  * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
343  */
344 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
345 {
346  struct ceph_cap *cap;
347  int mds = -1;
348  struct rb_node *p;
349 
350  /* prefer mds with WR|BUFFER|EXCL caps */
351  for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
352  cap = rb_entry(p, struct ceph_cap, ci_node);
353  mds = cap->mds;
354  if (cap->issued & (CEPH_CAP_FILE_WR |
357  break;
358  }
359  return mds;
360 }
361 
363 {
364  struct ceph_inode_info *ci = ceph_inode(inode);
365  int mds;
366  spin_lock(&ci->i_ceph_lock);
367  mds = __ceph_get_cap_mds(ceph_inode(inode));
368  spin_unlock(&ci->i_ceph_lock);
369  return mds;
370 }
371 
372 /*
373  * Called under i_ceph_lock.
374  */
375 static void __insert_cap_node(struct ceph_inode_info *ci,
376  struct ceph_cap *new)
377 {
378  struct rb_node **p = &ci->i_caps.rb_node;
379  struct rb_node *parent = NULL;
380  struct ceph_cap *cap = NULL;
381 
382  while (*p) {
383  parent = *p;
384  cap = rb_entry(parent, struct ceph_cap, ci_node);
385  if (new->mds < cap->mds)
386  p = &(*p)->rb_left;
387  else if (new->mds > cap->mds)
388  p = &(*p)->rb_right;
389  else
390  BUG();
391  }
392 
393  rb_link_node(&new->ci_node, parent, p);
394  rb_insert_color(&new->ci_node, &ci->i_caps);
395 }
396 
397 /*
398  * (re)set cap hold timeouts, which control the delayed release
399  * of unused caps back to the MDS. Should be called on cap use.
400  */
401 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
402  struct ceph_inode_info *ci)
403 {
404  struct ceph_mount_options *ma = mdsc->fsc->mount_options;
405 
406  ci->i_hold_caps_min = round_jiffies(jiffies +
407  ma->caps_wanted_delay_min * HZ);
408  ci->i_hold_caps_max = round_jiffies(jiffies +
409  ma->caps_wanted_delay_max * HZ);
410  dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
411  ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
412 }
413 
414 /*
415  * (Re)queue cap at the end of the delayed cap release list.
416  *
417  * If I_FLUSH is set, leave the inode at the front of the list.
418  *
419  * Caller holds i_ceph_lock
420  * -> we take mdsc->cap_delay_lock
421  */
422 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
423  struct ceph_inode_info *ci)
424 {
425  __cap_set_timeouts(mdsc, ci);
426  dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
427  ci->i_ceph_flags, ci->i_hold_caps_max);
428  if (!mdsc->stopping) {
429  spin_lock(&mdsc->cap_delay_lock);
430  if (!list_empty(&ci->i_cap_delay_list)) {
431  if (ci->i_ceph_flags & CEPH_I_FLUSH)
432  goto no_change;
433  list_del_init(&ci->i_cap_delay_list);
434  }
436 no_change:
437  spin_unlock(&mdsc->cap_delay_lock);
438  }
439 }
440 
441 /*
442  * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
443  * indicating we should send a cap message to flush dirty metadata
444  * asap, and move to the front of the delayed cap list.
445  */
446 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
447  struct ceph_inode_info *ci)
448 {
449  dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
450  spin_lock(&mdsc->cap_delay_lock);
451  ci->i_ceph_flags |= CEPH_I_FLUSH;
452  if (!list_empty(&ci->i_cap_delay_list))
453  list_del_init(&ci->i_cap_delay_list);
454  list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
455  spin_unlock(&mdsc->cap_delay_lock);
456 }
457 
458 /*
459  * Cancel delayed work on cap.
460  *
461  * Caller must hold i_ceph_lock.
462  */
463 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
464  struct ceph_inode_info *ci)
465 {
466  dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
467  if (list_empty(&ci->i_cap_delay_list))
468  return;
469  spin_lock(&mdsc->cap_delay_lock);
470  list_del_init(&ci->i_cap_delay_list);
471  spin_unlock(&mdsc->cap_delay_lock);
472 }
473 
474 /*
475  * Common issue checks for add_cap, handle_cap_grant.
476  */
477 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
478  unsigned issued)
479 {
480  unsigned had = __ceph_caps_issued(ci, NULL);
481 
482  /*
483  * Each time we receive FILE_CACHE anew, we increment
484  * i_rdcache_gen.
485  */
486  if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
488  ci->i_rdcache_gen++;
489 
490  /*
491  * if we are newly issued FILE_SHARED, clear D_COMPLETE; we
492  * don't know what happened to this directory while we didn't
493  * have the cap.
494  */
495  if ((issued & CEPH_CAP_FILE_SHARED) &&
496  (had & CEPH_CAP_FILE_SHARED) == 0) {
497  ci->i_shared_gen++;
498  if (S_ISDIR(ci->vfs_inode.i_mode))
500  }
501 }
502 
503 /*
504  * Add a capability under the given MDS session.
505  *
506  * Caller should hold session snap_rwsem (read) and s_mutex.
507  *
508  * @fmode is the open file mode, if we are opening a file, otherwise
509  * it is < 0. (This is so we can atomically add the cap and add an
510  * open file reference to it.)
511  */
513  struct ceph_mds_session *session, u64 cap_id,
514  int fmode, unsigned issued, unsigned wanted,
515  unsigned seq, unsigned mseq, u64 realmino, int flags,
516  struct ceph_cap_reservation *caps_reservation)
517 {
518  struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
519  struct ceph_inode_info *ci = ceph_inode(inode);
520  struct ceph_cap *new_cap = NULL;
521  struct ceph_cap *cap;
522  int mds = session->s_mds;
523  int actual_wanted;
524 
525  dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
526  session->s_mds, cap_id, ceph_cap_string(issued), seq);
527 
528  /*
529  * If we are opening the file, include file mode wanted bits
530  * in wanted.
531  */
532  if (fmode >= 0)
533  wanted |= ceph_caps_for_mode(fmode);
534 
535 retry:
536  spin_lock(&ci->i_ceph_lock);
537  cap = __get_cap_for_mds(ci, mds);
538  if (!cap) {
539  if (new_cap) {
540  cap = new_cap;
541  new_cap = NULL;
542  } else {
543  spin_unlock(&ci->i_ceph_lock);
544  new_cap = get_cap(mdsc, caps_reservation);
545  if (new_cap == NULL)
546  return -ENOMEM;
547  goto retry;
548  }
549 
550  cap->issued = 0;
551  cap->implemented = 0;
552  cap->mds = mds;
553  cap->mds_wanted = 0;
554 
555  cap->ci = ci;
556  __insert_cap_node(ci, cap);
557 
558  /* clear out old exporting info? (i.e. on cap import) */
559  if (ci->i_cap_exporting_mds == mds) {
560  ci->i_cap_exporting_issued = 0;
561  ci->i_cap_exporting_mseq = 0;
562  ci->i_cap_exporting_mds = -1;
563  }
564 
565  /* add to session cap list */
566  cap->session = session;
567  spin_lock(&session->s_cap_lock);
568  list_add_tail(&cap->session_caps, &session->s_caps);
569  session->s_nr_caps++;
570  spin_unlock(&session->s_cap_lock);
571  } else if (new_cap)
572  ceph_put_cap(mdsc, new_cap);
573 
574  if (!ci->i_snap_realm) {
575  /*
576  * add this inode to the appropriate snap realm
577  */
579  realmino);
580  if (realm) {
581  ceph_get_snap_realm(mdsc, realm);
582  spin_lock(&realm->inodes_with_caps_lock);
583  ci->i_snap_realm = realm;
584  list_add(&ci->i_snap_realm_item,
585  &realm->inodes_with_caps);
586  spin_unlock(&realm->inodes_with_caps_lock);
587  } else {
588  pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
589  realmino);
590  WARN_ON(!realm);
591  }
592  }
593 
594  __check_cap_issue(ci, cap, issued);
595 
596  /*
597  * If we are issued caps we don't want, or the mds' wanted
598  * value appears to be off, queue a check so we'll release
599  * later and/or update the mds wanted value.
600  */
601  actual_wanted = __ceph_caps_wanted(ci);
602  if ((wanted & ~actual_wanted) ||
603  (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
604  dout(" issued %s, mds wanted %s, actual %s, queueing\n",
605  ceph_cap_string(issued), ceph_cap_string(wanted),
606  ceph_cap_string(actual_wanted));
607  __cap_delay_requeue(mdsc, ci);
608  }
609 
610  if (flags & CEPH_CAP_FLAG_AUTH)
611  ci->i_auth_cap = cap;
612  else if (ci->i_auth_cap == cap)
613  ci->i_auth_cap = NULL;
614 
615  dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
616  inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
617  ceph_cap_string(issued|cap->issued), seq, mds);
618  cap->cap_id = cap_id;
619  cap->issued = issued;
620  cap->implemented |= issued;
621  cap->mds_wanted |= wanted;
622  cap->seq = seq;
623  cap->issue_seq = seq;
624  cap->mseq = mseq;
625  cap->cap_gen = session->s_cap_gen;
626 
627  if (fmode >= 0)
628  __ceph_get_fmode(ci, fmode);
629  spin_unlock(&ci->i_ceph_lock);
630  wake_up_all(&ci->i_cap_wq);
631  return 0;
632 }
633 
634 /*
635  * Return true if cap has not timed out and belongs to the current
636  * generation of the MDS session (i.e. has not gone 'stale' due to
637  * us losing touch with the mds).
638  */
639 static int __cap_is_valid(struct ceph_cap *cap)
640 {
641  unsigned long ttl;
642  u32 gen;
643 
644  spin_lock(&cap->session->s_gen_ttl_lock);
645  gen = cap->session->s_cap_gen;
646  ttl = cap->session->s_cap_ttl;
647  spin_unlock(&cap->session->s_gen_ttl_lock);
648 
649  if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
650  dout("__cap_is_valid %p cap %p issued %s "
651  "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
652  cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
653  return 0;
654  }
655 
656  return 1;
657 }
658 
659 /*
660  * Return set of valid cap bits issued to us. Note that caps time
661  * out, and may be invalidated in bulk if the client session times out
662  * and session->s_cap_gen is bumped.
663  */
664 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
665 {
666  int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
667  struct ceph_cap *cap;
668  struct rb_node *p;
669 
670  if (implemented)
671  *implemented = 0;
672  for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
673  cap = rb_entry(p, struct ceph_cap, ci_node);
674  if (!__cap_is_valid(cap))
675  continue;
676  dout("__ceph_caps_issued %p cap %p issued %s\n",
677  &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
678  have |= cap->issued;
679  if (implemented)
680  *implemented |= cap->implemented;
681  }
682  return have;
683 }
684 
685 /*
686  * Get cap bits issued by caps other than @ocap
687  */
688 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
689 {
690  int have = ci->i_snap_caps;
691  struct ceph_cap *cap;
692  struct rb_node *p;
693 
694  for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
695  cap = rb_entry(p, struct ceph_cap, ci_node);
696  if (cap == ocap)
697  continue;
698  if (!__cap_is_valid(cap))
699  continue;
700  have |= cap->issued;
701  }
702  return have;
703 }
704 
705 /*
706  * Move a cap to the end of the LRU (oldest caps at list head, newest
707  * at list tail).
708  */
709 static void __touch_cap(struct ceph_cap *cap)
710 {
711  struct ceph_mds_session *s = cap->session;
712 
713  spin_lock(&s->s_cap_lock);
714  if (s->s_cap_iterator == NULL) {
715  dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
716  s->s_mds);
717  list_move_tail(&cap->session_caps, &s->s_caps);
718  } else {
719  dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
720  &cap->ci->vfs_inode, cap, s->s_mds);
721  }
722  spin_unlock(&s->s_cap_lock);
723 }
724 
725 /*
726  * Check if we hold the given mask. If so, move the cap(s) to the
727  * front of their respective LRUs. (This is the preferred way for
728  * callers to check for caps they want.)
729  */
730 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
731 {
732  struct ceph_cap *cap;
733  struct rb_node *p;
734  int have = ci->i_snap_caps;
735 
736  if ((have & mask) == mask) {
737  dout("__ceph_caps_issued_mask %p snap issued %s"
738  " (mask %s)\n", &ci->vfs_inode,
739  ceph_cap_string(have),
740  ceph_cap_string(mask));
741  return 1;
742  }
743 
744  for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
745  cap = rb_entry(p, struct ceph_cap, ci_node);
746  if (!__cap_is_valid(cap))
747  continue;
748  if ((cap->issued & mask) == mask) {
749  dout("__ceph_caps_issued_mask %p cap %p issued %s"
750  " (mask %s)\n", &ci->vfs_inode, cap,
751  ceph_cap_string(cap->issued),
752  ceph_cap_string(mask));
753  if (touch)
754  __touch_cap(cap);
755  return 1;
756  }
757 
758  /* does a combination of caps satisfy mask? */
759  have |= cap->issued;
760  if ((have & mask) == mask) {
761  dout("__ceph_caps_issued_mask %p combo issued %s"
762  " (mask %s)\n", &ci->vfs_inode,
763  ceph_cap_string(cap->issued),
764  ceph_cap_string(mask));
765  if (touch) {
766  struct rb_node *q;
767 
768  /* touch this + preceding caps */
769  __touch_cap(cap);
770  for (q = rb_first(&ci->i_caps); q != p;
771  q = rb_next(q)) {
772  cap = rb_entry(q, struct ceph_cap,
773  ci_node);
774  if (!__cap_is_valid(cap))
775  continue;
776  __touch_cap(cap);
777  }
778  }
779  return 1;
780  }
781  }
782 
783  return 0;
784 }
785 
786 /*
787  * Return true if mask caps are currently being revoked by an MDS.
788  */
790 {
791  struct inode *inode = &ci->vfs_inode;
792  struct ceph_cap *cap;
793  struct rb_node *p;
794  int ret = 0;
795 
796  spin_lock(&ci->i_ceph_lock);
797  for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
798  cap = rb_entry(p, struct ceph_cap, ci_node);
799  if (__cap_is_valid(cap) &&
800  (cap->implemented & ~cap->issued & mask)) {
801  ret = 1;
802  break;
803  }
804  }
805  spin_unlock(&ci->i_ceph_lock);
806  dout("ceph_caps_revoking %p %s = %d\n", inode,
807  ceph_cap_string(mask), ret);
808  return ret;
809 }
810 
812 {
813  int used = 0;
814  if (ci->i_pin_ref)
815  used |= CEPH_CAP_PIN;
816  if (ci->i_rd_ref)
817  used |= CEPH_CAP_FILE_RD;
818  if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
819  used |= CEPH_CAP_FILE_CACHE;
820  if (ci->i_wr_ref)
821  used |= CEPH_CAP_FILE_WR;
822  if (ci->i_wb_ref || ci->i_wrbuffer_ref)
823  used |= CEPH_CAP_FILE_BUFFER;
824  return used;
825 }
826 
827 /*
828  * wanted, by virtue of open file modes
829  */
831 {
832  int want = 0;
833  int mode;
834  for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
835  if (ci->i_nr_by_mode[mode])
836  want |= ceph_caps_for_mode(mode);
837  return want;
838 }
839 
840 /*
841  * Return caps we have registered with the MDS(s) as 'wanted'.
842  */
844 {
845  struct ceph_cap *cap;
846  struct rb_node *p;
847  int mds_wanted = 0;
848 
849  for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
850  cap = rb_entry(p, struct ceph_cap, ci_node);
851  if (!__cap_is_valid(cap))
852  continue;
853  mds_wanted |= cap->mds_wanted;
854  }
855  return mds_wanted;
856 }
857 
858 /*
859  * called under i_ceph_lock
860  */
861 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
862 {
863  return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
864 }
865 
866 /*
867  * Remove a cap. Take steps to deal with a racing iterate_session_caps.
868  *
869  * caller should hold i_ceph_lock.
870  * caller will not hold session s_mutex if called from destroy_inode.
871  */
872 void __ceph_remove_cap(struct ceph_cap *cap)
873 {
874  struct ceph_mds_session *session = cap->session;
875  struct ceph_inode_info *ci = cap->ci;
876  struct ceph_mds_client *mdsc =
877  ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
878  int removed = 0;
879 
880  dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
881 
882  /* remove from session list */
883  spin_lock(&session->s_cap_lock);
884  if (session->s_cap_iterator == cap) {
885  /* not yet, we are iterating over this very cap */
886  dout("__ceph_remove_cap delaying %p removal from session %p\n",
887  cap, cap->session);
888  } else {
889  list_del_init(&cap->session_caps);
890  session->s_nr_caps--;
891  cap->session = NULL;
892  removed = 1;
893  }
894  /* protect backpointer with s_cap_lock: see iterate_session_caps */
895  cap->ci = NULL;
896  spin_unlock(&session->s_cap_lock);
897 
898  /* remove from inode list */
899  rb_erase(&cap->ci_node, &ci->i_caps);
900  if (ci->i_auth_cap == cap)
901  ci->i_auth_cap = NULL;
902 
903  if (removed)
904  ceph_put_cap(mdsc, cap);
905 
906  if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
907  struct ceph_snap_realm *realm = ci->i_snap_realm;
908  spin_lock(&realm->inodes_with_caps_lock);
909  list_del_init(&ci->i_snap_realm_item);
910  ci->i_snap_realm_counter++;
911  ci->i_snap_realm = NULL;
912  spin_unlock(&realm->inodes_with_caps_lock);
913  ceph_put_snap_realm(mdsc, realm);
914  }
915  if (!__ceph_is_any_real_caps(ci))
916  __cap_delay_cancel(mdsc, ci);
917 }
918 
919 /*
920  * Build and send a cap message to the given MDS.
921  *
922  * Caller should be holding s_mutex.
923  */
924 static int send_cap_msg(struct ceph_mds_session *session,
925  u64 ino, u64 cid, int op,
926  int caps, int wanted, int dirty,
927  u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
928  u64 size, u64 max_size,
929  struct timespec *mtime, struct timespec *atime,
933  struct ceph_buffer *xattrs_buf,
934  u64 follows)
935 {
936  struct ceph_mds_caps *fc;
937  struct ceph_msg *msg;
938 
939  dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
940  " seq %u/%u mseq %u follows %lld size %llu/%llu"
941  " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
942  cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
943  ceph_cap_string(dirty),
944  seq, issue_seq, mseq, follows, size, max_size,
945  xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
946 
947  msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
948  if (!msg)
949  return -ENOMEM;
950 
951  msg->hdr.tid = cpu_to_le64(flush_tid);
952 
953  fc = msg->front.iov_base;
954  memset(fc, 0, sizeof(*fc));
955 
956  fc->cap_id = cpu_to_le64(cid);
957  fc->op = cpu_to_le32(op);
958  fc->seq = cpu_to_le32(seq);
959  fc->issue_seq = cpu_to_le32(issue_seq);
960  fc->migrate_seq = cpu_to_le32(mseq);
961  fc->caps = cpu_to_le32(caps);
962  fc->wanted = cpu_to_le32(wanted);
963  fc->dirty = cpu_to_le32(dirty);
964  fc->ino = cpu_to_le64(ino);
965  fc->snap_follows = cpu_to_le64(follows);
966 
967  fc->size = cpu_to_le64(size);
968  fc->max_size = cpu_to_le64(max_size);
969  if (mtime)
970  ceph_encode_timespec(&fc->mtime, mtime);
971  if (atime)
972  ceph_encode_timespec(&fc->atime, atime);
973  fc->time_warp_seq = cpu_to_le32(time_warp_seq);
974 
975  fc->uid = cpu_to_le32(uid);
976  fc->gid = cpu_to_le32(gid);
977  fc->mode = cpu_to_le32(mode);
978 
979  fc->xattr_version = cpu_to_le64(xattr_version);
980  if (xattrs_buf) {
981  msg->middle = ceph_buffer_get(xattrs_buf);
982  fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
983  msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
984  }
985 
986  ceph_con_send(&session->s_con, msg);
987  return 0;
988 }
989 
990 static void __queue_cap_release(struct ceph_mds_session *session,
991  u64 ino, u64 cap_id, u32 migrate_seq,
992  u32 issue_seq)
993 {
994  struct ceph_msg *msg;
995  struct ceph_mds_cap_release *head;
996  struct ceph_mds_cap_item *item;
997 
998  spin_lock(&session->s_cap_lock);
999  BUG_ON(!session->s_num_cap_releases);
1000  msg = list_first_entry(&session->s_cap_releases,
1001  struct ceph_msg, list_head);
1002 
1003  dout(" adding %llx release to mds%d msg %p (%d left)\n",
1004  ino, session->s_mds, msg, session->s_num_cap_releases);
1005 
1006  BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1007  head = msg->front.iov_base;
1008  le32_add_cpu(&head->num, 1);
1009  item = msg->front.iov_base + msg->front.iov_len;
1010  item->ino = cpu_to_le64(ino);
1011  item->cap_id = cpu_to_le64(cap_id);
1012  item->migrate_seq = cpu_to_le32(migrate_seq);
1013  item->seq = cpu_to_le32(issue_seq);
1014 
1015  session->s_num_cap_releases--;
1016 
1017  msg->front.iov_len += sizeof(*item);
1018  if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1019  dout(" release msg %p full\n", msg);
1020  list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1021  } else {
1022  dout(" release msg %p at %d/%d (%d)\n", msg,
1023  (int)le32_to_cpu(head->num),
1024  (int)CEPH_CAPS_PER_RELEASE,
1025  (int)msg->front.iov_len);
1026  }
1027  spin_unlock(&session->s_cap_lock);
1028 }
1029 
1030 /*
1031  * Queue cap releases when an inode is dropped from our cache. Since
1032  * inode is about to be destroyed, there is no need for i_ceph_lock.
1033  */
1035 {
1036  struct ceph_inode_info *ci = ceph_inode(inode);
1037  struct rb_node *p;
1038 
1039  p = rb_first(&ci->i_caps);
1040  while (p) {
1041  struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1042  struct ceph_mds_session *session = cap->session;
1043 
1044  __queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1045  cap->mseq, cap->issue_seq);
1046  p = rb_next(p);
1047  __ceph_remove_cap(cap);
1048  }
1049 }
1050 
1051 /*
1052  * Send a cap msg on the given inode. Update our caps state, then
1053  * drop i_ceph_lock and send the message.
1054  *
1055  * Make note of max_size reported/requested from mds, revoked caps
1056  * that have now been implemented.
1057  *
1058  * Make half-hearted attempt ot to invalidate page cache if we are
1059  * dropping RDCACHE. Note that this will leave behind locked pages
1060  * that we'll then need to deal with elsewhere.
1061  *
1062  * Return non-zero if delayed release, or we experienced an error
1063  * such that the caller should requeue + retry later.
1064  *
1065  * called with i_ceph_lock, then drops it.
1066  * caller should hold snap_rwsem (read), s_mutex.
1067  */
1068 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1069  int op, int used, int want, int retain, int flushing,
1070  unsigned *pflush_tid)
1071  __releases(cap->ci->i_ceph_lock)
1072 {
1073  struct ceph_inode_info *ci = cap->ci;
1074  struct inode *inode = &ci->vfs_inode;
1075  u64 cap_id = cap->cap_id;
1076  int held, revoking, dropping, keep;
1077  u64 seq, issue_seq, mseq, time_warp_seq, follows;
1078  u64 size, max_size;
1079  struct timespec mtime, atime;
1080  int wake = 0;
1081  umode_t mode;
1082  uid_t uid;
1083  gid_t gid;
1084  struct ceph_mds_session *session;
1085  u64 xattr_version = 0;
1086  struct ceph_buffer *xattr_blob = NULL;
1087  int delayed = 0;
1088  u64 flush_tid = 0;
1089  int i;
1090  int ret;
1091 
1092  held = cap->issued | cap->implemented;
1093  revoking = cap->implemented & ~cap->issued;
1094  retain &= ~revoking;
1095  dropping = cap->issued & ~retain;
1096 
1097  dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1098  inode, cap, cap->session,
1099  ceph_cap_string(held), ceph_cap_string(held & retain),
1100  ceph_cap_string(revoking));
1101  BUG_ON((retain & CEPH_CAP_PIN) == 0);
1102 
1103  session = cap->session;
1104 
1105  /* don't release wanted unless we've waited a bit. */
1106  if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1107  time_before(jiffies, ci->i_hold_caps_min)) {
1108  dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1109  ceph_cap_string(cap->issued),
1110  ceph_cap_string(cap->issued & retain),
1112  ceph_cap_string(want));
1113  want |= cap->mds_wanted;
1114  retain |= cap->issued;
1115  delayed = 1;
1116  }
1118 
1119  cap->issued &= retain; /* drop bits we don't want */
1120  if (cap->implemented & ~cap->issued) {
1121  /*
1122  * Wake up any waiters on wanted -> needed transition.
1123  * This is due to the weird transition from buffered
1124  * to sync IO... we need to flush dirty pages _before_
1125  * allowing sync writes to avoid reordering.
1126  */
1127  wake = 1;
1128  }
1129  cap->implemented &= cap->issued | used;
1130  cap->mds_wanted = want;
1131 
1132  if (flushing) {
1133  /*
1134  * assign a tid for flush operations so we can avoid
1135  * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1136  * clean type races. track latest tid for every bit
1137  * so we can handle flush AxFw, flush Fw, and have the
1138  * first ack clean Ax.
1139  */
1140  flush_tid = ++ci->i_cap_flush_last_tid;
1141  if (pflush_tid)
1142  *pflush_tid = flush_tid;
1143  dout(" cap_flush_tid %d\n", (int)flush_tid);
1144  for (i = 0; i < CEPH_CAP_BITS; i++)
1145  if (flushing & (1 << i))
1146  ci->i_cap_flush_tid[i] = flush_tid;
1147 
1148  follows = ci->i_head_snapc->seq;
1149  } else {
1150  follows = 0;
1151  }
1152 
1153  keep = cap->implemented;
1154  seq = cap->seq;
1155  issue_seq = cap->issue_seq;
1156  mseq = cap->mseq;
1157  size = inode->i_size;
1158  ci->i_reported_size = size;
1159  max_size = ci->i_wanted_max_size;
1161  mtime = inode->i_mtime;
1162  atime = inode->i_atime;
1163  time_warp_seq = ci->i_time_warp_seq;
1164  uid = inode->i_uid;
1165  gid = inode->i_gid;
1166  mode = inode->i_mode;
1167 
1168  if (flushing & CEPH_CAP_XATTR_EXCL) {
1170  xattr_blob = ci->i_xattrs.blob;
1171  xattr_version = ci->i_xattrs.version;
1172  }
1173 
1174  spin_unlock(&ci->i_ceph_lock);
1175 
1176  ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1177  op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1178  size, max_size, &mtime, &atime, time_warp_seq,
1179  uid, gid, mode, xattr_version, xattr_blob,
1180  follows);
1181  if (ret < 0) {
1182  dout("error sending cap msg, must requeue %p\n", inode);
1183  delayed = 1;
1184  }
1185 
1186  if (wake)
1187  wake_up_all(&ci->i_cap_wq);
1188 
1189  return delayed;
1190 }
1191 
1192 /*
1193  * When a snapshot is taken, clients accumulate dirty metadata on
1194  * inodes with capabilities in ceph_cap_snaps to describe the file
1195  * state at the time the snapshot was taken. This must be flushed
1196  * asynchronously back to the MDS once sync writes complete and dirty
1197  * data is written out.
1198  *
1199  * Unless @again is true, skip cap_snaps that were already sent to
1200  * the MDS (i.e., during this session).
1201  *
1202  * Called under i_ceph_lock. Takes s_mutex as needed.
1203  */
1205  struct ceph_mds_session **psession,
1206  int again)
1207  __releases(ci->i_ceph_lock)
1208  __acquires(ci->i_ceph_lock)
1209 {
1210  struct inode *inode = &ci->vfs_inode;
1211  int mds;
1212  struct ceph_cap_snap *capsnap;
1213  u32 mseq;
1214  struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1215  struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1216  session->s_mutex */
1217  u64 next_follows = 0; /* keep track of how far we've gotten through the
1218  i_cap_snaps list, and skip these entries next time
1219  around to avoid an infinite loop */
1220 
1221  if (psession)
1222  session = *psession;
1223 
1224  dout("__flush_snaps %p\n", inode);
1225 retry:
1226  list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1227  /* avoid an infiniute loop after retry */
1228  if (capsnap->follows < next_follows)
1229  continue;
1230  /*
1231  * we need to wait for sync writes to complete and for dirty
1232  * pages to be written out.
1233  */
1234  if (capsnap->dirty_pages || capsnap->writing)
1235  break;
1236 
1237  /*
1238  * if cap writeback already occurred, we should have dropped
1239  * the capsnap in ceph_put_wrbuffer_cap_refs.
1240  */
1241  BUG_ON(capsnap->dirty == 0);
1242 
1243  /* pick mds, take s_mutex */
1244  if (ci->i_auth_cap == NULL) {
1245  dout("no auth cap (migrating?), doing nothing\n");
1246  goto out;
1247  }
1248 
1249  /* only flush each capsnap once */
1250  if (!again && !list_empty(&capsnap->flushing_item)) {
1251  dout("already flushed %p, skipping\n", capsnap);
1252  continue;
1253  }
1254 
1255  mds = ci->i_auth_cap->session->s_mds;
1256  mseq = ci->i_auth_cap->mseq;
1257 
1258  if (session && session->s_mds != mds) {
1259  dout("oops, wrong session %p mutex\n", session);
1260  mutex_unlock(&session->s_mutex);
1261  ceph_put_mds_session(session);
1262  session = NULL;
1263  }
1264  if (!session) {
1265  spin_unlock(&ci->i_ceph_lock);
1266  mutex_lock(&mdsc->mutex);
1267  session = __ceph_lookup_mds_session(mdsc, mds);
1268  mutex_unlock(&mdsc->mutex);
1269  if (session) {
1270  dout("inverting session/ino locks on %p\n",
1271  session);
1272  mutex_lock(&session->s_mutex);
1273  }
1274  /*
1275  * if session == NULL, we raced against a cap
1276  * deletion or migration. retry, and we'll
1277  * get a better @mds value next time.
1278  */
1279  spin_lock(&ci->i_ceph_lock);
1280  goto retry;
1281  }
1282 
1283  capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1284  atomic_inc(&capsnap->nref);
1285  if (!list_empty(&capsnap->flushing_item))
1286  list_del_init(&capsnap->flushing_item);
1287  list_add_tail(&capsnap->flushing_item,
1288  &session->s_cap_snaps_flushing);
1289  spin_unlock(&ci->i_ceph_lock);
1290 
1291  dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1292  inode, capsnap, capsnap->follows, capsnap->flush_tid);
1293  send_cap_msg(session, ceph_vino(inode).ino, 0,
1294  CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1295  capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1296  capsnap->size, 0,
1297  &capsnap->mtime, &capsnap->atime,
1298  capsnap->time_warp_seq,
1299  capsnap->uid, capsnap->gid, capsnap->mode,
1300  capsnap->xattr_version, capsnap->xattr_blob,
1301  capsnap->follows);
1302 
1303  next_follows = capsnap->follows + 1;
1304  ceph_put_cap_snap(capsnap);
1305 
1306  spin_lock(&ci->i_ceph_lock);
1307  goto retry;
1308  }
1309 
1310  /* we flushed them all; remove this inode from the queue */
1311  spin_lock(&mdsc->snap_flush_lock);
1312  list_del_init(&ci->i_snap_flush_item);
1313  spin_unlock(&mdsc->snap_flush_lock);
1314 
1315 out:
1316  if (psession)
1317  *psession = session;
1318  else if (session) {
1319  mutex_unlock(&session->s_mutex);
1320  ceph_put_mds_session(session);
1321  }
1322 }
1323 
1324 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1325 {
1326  spin_lock(&ci->i_ceph_lock);
1327  __ceph_flush_snaps(ci, NULL, 0);
1328  spin_unlock(&ci->i_ceph_lock);
1329 }
1330 
1331 /*
1332  * Mark caps dirty. If inode is newly dirty, return the dirty flags.
1333  * Caller is then responsible for calling __mark_inode_dirty with the
1334  * returned flags value.
1335  */
1337 {
1338  struct ceph_mds_client *mdsc =
1339  ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1340  struct inode *inode = &ci->vfs_inode;
1341  int was = ci->i_dirty_caps;
1342  int dirty = 0;
1343 
1344  dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1345  ceph_cap_string(mask), ceph_cap_string(was),
1346  ceph_cap_string(was | mask));
1347  ci->i_dirty_caps |= mask;
1348  if (was == 0) {
1349  if (!ci->i_head_snapc)
1350  ci->i_head_snapc = ceph_get_snap_context(
1351  ci->i_snap_realm->cached_context);
1352  dout(" inode %p now dirty snapc %p\n", &ci->vfs_inode,
1353  ci->i_head_snapc);
1354  BUG_ON(!list_empty(&ci->i_dirty_item));
1355  spin_lock(&mdsc->cap_dirty_lock);
1356  list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1357  spin_unlock(&mdsc->cap_dirty_lock);
1358  if (ci->i_flushing_caps == 0) {
1359  ihold(inode);
1360  dirty |= I_DIRTY_SYNC;
1361  }
1362  }
1363  BUG_ON(list_empty(&ci->i_dirty_item));
1364  if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1365  (mask & CEPH_CAP_FILE_BUFFER))
1366  dirty |= I_DIRTY_DATASYNC;
1367  __cap_delay_requeue(mdsc, ci);
1368  return dirty;
1369 }
1370 
1371 /*
1372  * Add dirty inode to the flushing list. Assigned a seq number so we
1373  * can wait for caps to flush without starving.
1374  *
1375  * Called under i_ceph_lock.
1376  */
1377 static int __mark_caps_flushing(struct inode *inode,
1378  struct ceph_mds_session *session)
1379 {
1380  struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1381  struct ceph_inode_info *ci = ceph_inode(inode);
1382  int flushing;
1383 
1384  BUG_ON(ci->i_dirty_caps == 0);
1385  BUG_ON(list_empty(&ci->i_dirty_item));
1386 
1387  flushing = ci->i_dirty_caps;
1388  dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1389  ceph_cap_string(flushing),
1391  ceph_cap_string(ci->i_flushing_caps | flushing));
1392  ci->i_flushing_caps |= flushing;
1393  ci->i_dirty_caps = 0;
1394  dout(" inode %p now !dirty\n", inode);
1395 
1396  spin_lock(&mdsc->cap_dirty_lock);
1397  list_del_init(&ci->i_dirty_item);
1398 
1399  ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1400  if (list_empty(&ci->i_flushing_item)) {
1401  list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1402  mdsc->num_cap_flushing++;
1403  dout(" inode %p now flushing seq %lld\n", inode,
1404  ci->i_cap_flush_seq);
1405  } else {
1406  list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1407  dout(" inode %p now flushing (more) seq %lld\n", inode,
1408  ci->i_cap_flush_seq);
1409  }
1410  spin_unlock(&mdsc->cap_dirty_lock);
1411 
1412  return flushing;
1413 }
1414 
1415 /*
1416  * try to invalidate mapping pages without blocking.
1417  */
1418 static int try_nonblocking_invalidate(struct inode *inode)
1419 {
1420  struct ceph_inode_info *ci = ceph_inode(inode);
1421  u32 invalidating_gen = ci->i_rdcache_gen;
1422 
1423  spin_unlock(&ci->i_ceph_lock);
1424  invalidate_mapping_pages(&inode->i_data, 0, -1);
1425  spin_lock(&ci->i_ceph_lock);
1426 
1427  if (inode->i_data.nrpages == 0 &&
1428  invalidating_gen == ci->i_rdcache_gen) {
1429  /* success. */
1430  dout("try_nonblocking_invalidate %p success\n", inode);
1431  /* save any racing async invalidate some trouble */
1432  ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1433  return 0;
1434  }
1435  dout("try_nonblocking_invalidate %p failed\n", inode);
1436  return -1;
1437 }
1438 
1439 /*
1440  * Swiss army knife function to examine currently used and wanted
1441  * versus held caps. Release, flush, ack revoked caps to mds as
1442  * appropriate.
1443  *
1444  * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1445  * cap release further.
1446  * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1447  * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1448  * further delay.
1449  */
1451  struct ceph_mds_session *session)
1452 {
1453  struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1454  struct ceph_mds_client *mdsc = fsc->mdsc;
1455  struct inode *inode = &ci->vfs_inode;
1456  struct ceph_cap *cap;
1457  int file_wanted, used;
1458  int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
1459  int issued, implemented, want, retain, revoking, flushing = 0;
1460  int mds = -1; /* keep track of how far we've gone through i_caps list
1461  to avoid an infinite loop on retry */
1462  struct rb_node *p;
1463  int tried_invalidate = 0;
1464  int delayed = 0, sent = 0, force_requeue = 0, num;
1465  int queue_invalidate = 0;
1466  int is_delayed = flags & CHECK_CAPS_NODELAY;
1467 
1468  /* if we are unmounting, flush any unused caps immediately. */
1469  if (mdsc->stopping)
1470  is_delayed = 1;
1471 
1472  spin_lock(&ci->i_ceph_lock);
1473 
1474  if (ci->i_ceph_flags & CEPH_I_FLUSH)
1475  flags |= CHECK_CAPS_FLUSH;
1476 
1477  /* flush snaps first time around only */
1478  if (!list_empty(&ci->i_cap_snaps))
1479  __ceph_flush_snaps(ci, &session, 0);
1480  goto retry_locked;
1481 retry:
1482  spin_lock(&ci->i_ceph_lock);
1483 retry_locked:
1484  file_wanted = __ceph_caps_file_wanted(ci);
1485  used = __ceph_caps_used(ci);
1486  want = file_wanted | used;
1487  issued = __ceph_caps_issued(ci, &implemented);
1488  revoking = implemented & ~issued;
1489 
1490  retain = want | CEPH_CAP_PIN;
1491  if (!mdsc->stopping && inode->i_nlink > 0) {
1492  if (want) {
1493  retain |= CEPH_CAP_ANY; /* be greedy */
1494  } else {
1495  retain |= CEPH_CAP_ANY_SHARED;
1496  /*
1497  * keep RD only if we didn't have the file open RW,
1498  * because then the mds would revoke it anyway to
1499  * journal max_size=0.
1500  */
1501  if (ci->i_max_size == 0)
1502  retain |= CEPH_CAP_ANY_RD;
1503  }
1504  }
1505 
1506  dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1507  " issued %s revoking %s retain %s %s%s%s\n", inode,
1508  ceph_cap_string(file_wanted),
1511  ceph_cap_string(issued), ceph_cap_string(revoking),
1512  ceph_cap_string(retain),
1513  (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1514  (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1515  (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1516 
1517  /*
1518  * If we no longer need to hold onto old our caps, and we may
1519  * have cached pages, but don't want them, then try to invalidate.
1520  * If we fail, it's because pages are locked.... try again later.
1521  */
1522  if ((!is_delayed || mdsc->stopping) &&
1523  ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
1524  inode->i_data.nrpages && /* have cached pages */
1525  (file_wanted == 0 || /* no open files */
1526  (revoking & (CEPH_CAP_FILE_CACHE|
1527  CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */
1528  !tried_invalidate) {
1529  dout("check_caps trying to invalidate on %p\n", inode);
1530  if (try_nonblocking_invalidate(inode) < 0) {
1531  if (revoking & (CEPH_CAP_FILE_CACHE|
1533  dout("check_caps queuing invalidate\n");
1534  queue_invalidate = 1;
1536  } else {
1537  dout("check_caps failed to invalidate pages\n");
1538  /* we failed to invalidate pages. check these
1539  caps again later. */
1540  force_requeue = 1;
1541  __cap_set_timeouts(mdsc, ci);
1542  }
1543  }
1544  tried_invalidate = 1;
1545  goto retry_locked;
1546  }
1547 
1548  num = 0;
1549  for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1550  cap = rb_entry(p, struct ceph_cap, ci_node);
1551  num++;
1552 
1553  /* avoid looping forever */
1554  if (mds >= cap->mds ||
1555  ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1556  continue;
1557 
1558  /* NOTE: no side-effects allowed, until we take s_mutex */
1559 
1560  revoking = cap->implemented & ~cap->issued;
1561  dout(" mds%d cap %p issued %s implemented %s revoking %s\n",
1562  cap->mds, cap, ceph_cap_string(cap->issued),
1564  ceph_cap_string(revoking));
1565 
1566  if (cap == ci->i_auth_cap &&
1567  (cap->issued & CEPH_CAP_FILE_WR)) {
1568  /* request larger max_size from MDS? */
1569  if (ci->i_wanted_max_size > ci->i_max_size &&
1571  dout("requesting new max_size\n");
1572  goto ack;
1573  }
1574 
1575  /* approaching file_max? */
1576  if ((inode->i_size << 1) >= ci->i_max_size &&
1577  (ci->i_reported_size << 1) < ci->i_max_size) {
1578  dout("i_size approaching max_size\n");
1579  goto ack;
1580  }
1581  }
1582  /* flush anything dirty? */
1583  if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1584  ci->i_dirty_caps) {
1585  dout("flushing dirty caps\n");
1586  goto ack;
1587  }
1588 
1589  /* completed revocation? going down and there are no caps? */
1590  if (revoking && (revoking & used) == 0) {
1591  dout("completed revocation of %s\n",
1592  ceph_cap_string(cap->implemented & ~cap->issued));
1593  goto ack;
1594  }
1595 
1596  /* want more caps from mds? */
1597  if (want & ~(cap->mds_wanted | cap->issued))
1598  goto ack;
1599 
1600  /* things we might delay */
1601  if ((cap->issued & ~retain) == 0 &&
1602  cap->mds_wanted == want)
1603  continue; /* nope, all good */
1604 
1605  if (is_delayed)
1606  goto ack;
1607 
1608  /* delay? */
1609  if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1611  dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1612  ceph_cap_string(cap->issued),
1613  ceph_cap_string(cap->issued & retain),
1615  ceph_cap_string(want));
1616  delayed++;
1617  continue;
1618  }
1619 
1620 ack:
1621  if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1622  dout(" skipping %p I_NOFLUSH set\n", inode);
1623  continue;
1624  }
1625 
1626  if (session && session != cap->session) {
1627  dout("oops, wrong session %p mutex\n", session);
1628  mutex_unlock(&session->s_mutex);
1629  session = NULL;
1630  }
1631  if (!session) {
1632  session = cap->session;
1633  if (mutex_trylock(&session->s_mutex) == 0) {
1634  dout("inverting session/ino locks on %p\n",
1635  session);
1636  spin_unlock(&ci->i_ceph_lock);
1637  if (took_snap_rwsem) {
1638  up_read(&mdsc->snap_rwsem);
1639  took_snap_rwsem = 0;
1640  }
1641  mutex_lock(&session->s_mutex);
1642  goto retry;
1643  }
1644  }
1645  /* take snap_rwsem after session mutex */
1646  if (!took_snap_rwsem) {
1647  if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1648  dout("inverting snap/in locks on %p\n",
1649  inode);
1650  spin_unlock(&ci->i_ceph_lock);
1651  down_read(&mdsc->snap_rwsem);
1652  took_snap_rwsem = 1;
1653  goto retry;
1654  }
1655  took_snap_rwsem = 1;
1656  }
1657 
1658  if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1659  flushing = __mark_caps_flushing(inode, session);
1660  else
1661  flushing = 0;
1662 
1663  mds = cap->mds; /* remember mds, so we don't repeat */
1664  sent++;
1665 
1666  /* __send_cap drops i_ceph_lock */
1667  delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1668  retain, flushing, NULL);
1669  goto retry; /* retake i_ceph_lock and restart our cap scan. */
1670  }
1671 
1672  /*
1673  * Reschedule delayed caps release if we delayed anything,
1674  * otherwise cancel.
1675  */
1676  if (delayed && is_delayed)
1677  force_requeue = 1; /* __send_cap delayed release; requeue */
1678  if (!delayed && !is_delayed)
1679  __cap_delay_cancel(mdsc, ci);
1680  else if (!is_delayed || force_requeue)
1681  __cap_delay_requeue(mdsc, ci);
1682 
1683  spin_unlock(&ci->i_ceph_lock);
1684 
1685  if (queue_invalidate)
1686  ceph_queue_invalidate(inode);
1687 
1688  if (session)
1689  mutex_unlock(&session->s_mutex);
1690  if (took_snap_rwsem)
1691  up_read(&mdsc->snap_rwsem);
1692 }
1693 
1694 /*
1695  * Try to flush dirty caps back to the auth mds.
1696  */
1697 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1698  unsigned *flush_tid)
1699 {
1700  struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1701  struct ceph_inode_info *ci = ceph_inode(inode);
1702  int unlock_session = session ? 0 : 1;
1703  int flushing = 0;
1704 
1705 retry:
1706  spin_lock(&ci->i_ceph_lock);
1707  if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1708  dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1709  goto out;
1710  }
1711  if (ci->i_dirty_caps && ci->i_auth_cap) {
1712  struct ceph_cap *cap = ci->i_auth_cap;
1713  int used = __ceph_caps_used(ci);
1714  int want = __ceph_caps_wanted(ci);
1715  int delayed;
1716 
1717  if (!session) {
1718  spin_unlock(&ci->i_ceph_lock);
1719  session = cap->session;
1720  mutex_lock(&session->s_mutex);
1721  goto retry;
1722  }
1723  BUG_ON(session != cap->session);
1724  if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1725  goto out;
1726 
1727  flushing = __mark_caps_flushing(inode, session);
1728 
1729  /* __send_cap drops i_ceph_lock */
1730  delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1731  cap->issued | cap->implemented, flushing,
1732  flush_tid);
1733  if (!delayed)
1734  goto out_unlocked;
1735 
1736  spin_lock(&ci->i_ceph_lock);
1737  __cap_delay_requeue(mdsc, ci);
1738  }
1739 out:
1740  spin_unlock(&ci->i_ceph_lock);
1741 out_unlocked:
1742  if (session && unlock_session)
1743  mutex_unlock(&session->s_mutex);
1744  return flushing;
1745 }
1746 
1747 /*
1748  * Return true if we've flushed caps through the given flush_tid.
1749  */
1750 static int caps_are_flushed(struct inode *inode, unsigned tid)
1751 {
1752  struct ceph_inode_info *ci = ceph_inode(inode);
1753  int i, ret = 1;
1754 
1755  spin_lock(&ci->i_ceph_lock);
1756  for (i = 0; i < CEPH_CAP_BITS; i++)
1757  if ((ci->i_flushing_caps & (1 << i)) &&
1758  ci->i_cap_flush_tid[i] <= tid) {
1759  /* still flushing this bit */
1760  ret = 0;
1761  break;
1762  }
1763  spin_unlock(&ci->i_ceph_lock);
1764  return ret;
1765 }
1766 
1767 /*
1768  * Wait on any unsafe replies for the given inode. First wait on the
1769  * newest request, and make that the upper bound. Then, if there are
1770  * more requests, keep waiting on the oldest as long as it is still older
1771  * than the original request.
1772  */
1773 static void sync_write_wait(struct inode *inode)
1774 {
1775  struct ceph_inode_info *ci = ceph_inode(inode);
1776  struct list_head *head = &ci->i_unsafe_writes;
1777  struct ceph_osd_request *req;
1778  u64 last_tid;
1779 
1780  spin_lock(&ci->i_unsafe_lock);
1781  if (list_empty(head))
1782  goto out;
1783 
1784  /* set upper bound as _last_ entry in chain */
1785  req = list_entry(head->prev, struct ceph_osd_request,
1786  r_unsafe_item);
1787  last_tid = req->r_tid;
1788 
1789  do {
1790  ceph_osdc_get_request(req);
1791  spin_unlock(&ci->i_unsafe_lock);
1792  dout("sync_write_wait on tid %llu (until %llu)\n",
1793  req->r_tid, last_tid);
1795  spin_lock(&ci->i_unsafe_lock);
1796  ceph_osdc_put_request(req);
1797 
1798  /*
1799  * from here on look at first entry in chain, since we
1800  * only want to wait for anything older than last_tid
1801  */
1802  if (list_empty(head))
1803  break;
1804  req = list_entry(head->next, struct ceph_osd_request,
1805  r_unsafe_item);
1806  } while (req->r_tid < last_tid);
1807 out:
1808  spin_unlock(&ci->i_unsafe_lock);
1809 }
1810 
1811 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1812 {
1813  struct inode *inode = file->f_mapping->host;
1814  struct ceph_inode_info *ci = ceph_inode(inode);
1815  unsigned flush_tid;
1816  int ret;
1817  int dirty;
1818 
1819  dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1820  sync_write_wait(inode);
1821 
1822  ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1823  if (ret < 0)
1824  return ret;
1825  mutex_lock(&inode->i_mutex);
1826 
1827  dirty = try_flush_caps(inode, NULL, &flush_tid);
1828  dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1829 
1830  /*
1831  * only wait on non-file metadata writeback (the mds
1832  * can recover size and mtime, so we don't need to
1833  * wait for that)
1834  */
1835  if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1836  dout("fsync waiting for flush_tid %u\n", flush_tid);
1838  caps_are_flushed(inode, flush_tid));
1839  }
1840 
1841  dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1842  mutex_unlock(&inode->i_mutex);
1843  return ret;
1844 }
1845 
1846 /*
1847  * Flush any dirty caps back to the mds. If we aren't asked to wait,
1848  * queue inode for flush but don't do so immediately, because we can
1849  * get by with fewer MDS messages if we wait for data writeback to
1850  * complete first.
1851  */
1852 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1853 {
1854  struct ceph_inode_info *ci = ceph_inode(inode);
1855  unsigned flush_tid;
1856  int err = 0;
1857  int dirty;
1858  int wait = wbc->sync_mode == WB_SYNC_ALL;
1859 
1860  dout("write_inode %p wait=%d\n", inode, wait);
1861  if (wait) {
1862  dirty = try_flush_caps(inode, NULL, &flush_tid);
1863  if (dirty)
1865  caps_are_flushed(inode, flush_tid));
1866  } else {
1867  struct ceph_mds_client *mdsc =
1868  ceph_sb_to_client(inode->i_sb)->mdsc;
1869 
1870  spin_lock(&ci->i_ceph_lock);
1871  if (__ceph_caps_dirty(ci))
1872  __cap_delay_requeue_front(mdsc, ci);
1873  spin_unlock(&ci->i_ceph_lock);
1874  }
1875  return err;
1876 }
1877 
1878 /*
1879  * After a recovering MDS goes active, we need to resend any caps
1880  * we were flushing.
1881  *
1882  * Caller holds session->s_mutex.
1883  */
1884 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1885  struct ceph_mds_session *session)
1886 {
1887  struct ceph_cap_snap *capsnap;
1888 
1889  dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1890  list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1891  flushing_item) {
1892  struct ceph_inode_info *ci = capsnap->ci;
1893  struct inode *inode = &ci->vfs_inode;
1894  struct ceph_cap *cap;
1895 
1896  spin_lock(&ci->i_ceph_lock);
1897  cap = ci->i_auth_cap;
1898  if (cap && cap->session == session) {
1899  dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1900  cap, capsnap);
1901  __ceph_flush_snaps(ci, &session, 1);
1902  } else {
1903  pr_err("%p auth cap %p not mds%d ???\n", inode,
1904  cap, session->s_mds);
1905  }
1906  spin_unlock(&ci->i_ceph_lock);
1907  }
1908 }
1909 
1911  struct ceph_mds_session *session)
1912 {
1913  struct ceph_inode_info *ci;
1914 
1915  kick_flushing_capsnaps(mdsc, session);
1916 
1917  dout("kick_flushing_caps mds%d\n", session->s_mds);
1919  struct inode *inode = &ci->vfs_inode;
1920  struct ceph_cap *cap;
1921  int delayed = 0;
1922 
1923  spin_lock(&ci->i_ceph_lock);
1924  cap = ci->i_auth_cap;
1925  if (cap && cap->session == session) {
1926  dout("kick_flushing_caps %p cap %p %s\n", inode,
1927  cap, ceph_cap_string(ci->i_flushing_caps));
1928  delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1929  __ceph_caps_used(ci),
1930  __ceph_caps_wanted(ci),
1931  cap->issued | cap->implemented,
1932  ci->i_flushing_caps, NULL);
1933  if (delayed) {
1934  spin_lock(&ci->i_ceph_lock);
1935  __cap_delay_requeue(mdsc, ci);
1936  spin_unlock(&ci->i_ceph_lock);
1937  }
1938  } else {
1939  pr_err("%p auth cap %p not mds%d ???\n", inode,
1940  cap, session->s_mds);
1941  spin_unlock(&ci->i_ceph_lock);
1942  }
1943  }
1944 }
1945 
1946 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
1947  struct ceph_mds_session *session,
1948  struct inode *inode)
1949 {
1950  struct ceph_inode_info *ci = ceph_inode(inode);
1951  struct ceph_cap *cap;
1952  int delayed = 0;
1953 
1954  spin_lock(&ci->i_ceph_lock);
1955  cap = ci->i_auth_cap;
1956  dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
1958  __ceph_flush_snaps(ci, &session, 1);
1959  if (ci->i_flushing_caps) {
1960  delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1961  __ceph_caps_used(ci),
1962  __ceph_caps_wanted(ci),
1963  cap->issued | cap->implemented,
1964  ci->i_flushing_caps, NULL);
1965  if (delayed) {
1966  spin_lock(&ci->i_ceph_lock);
1967  __cap_delay_requeue(mdsc, ci);
1968  spin_unlock(&ci->i_ceph_lock);
1969  }
1970  } else {
1971  spin_unlock(&ci->i_ceph_lock);
1972  }
1973 }
1974 
1975 
1976 /*
1977  * Take references to capabilities we hold, so that we don't release
1978  * them to the MDS prematurely.
1979  *
1980  * Protected by i_ceph_lock.
1981  */
1982 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1983 {
1984  if (got & CEPH_CAP_PIN)
1985  ci->i_pin_ref++;
1986  if (got & CEPH_CAP_FILE_RD)
1987  ci->i_rd_ref++;
1988  if (got & CEPH_CAP_FILE_CACHE)
1989  ci->i_rdcache_ref++;
1990  if (got & CEPH_CAP_FILE_WR)
1991  ci->i_wr_ref++;
1992  if (got & CEPH_CAP_FILE_BUFFER) {
1993  if (ci->i_wb_ref == 0)
1994  ihold(&ci->vfs_inode);
1995  ci->i_wb_ref++;
1996  dout("__take_cap_refs %p wb %d -> %d (?)\n",
1997  &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
1998  }
1999 }
2000 
2001 /*
2002  * Try to grab cap references. Specify those refs we @want, and the
2003  * minimal set we @need. Also include the larger offset we are writing
2004  * to (when applicable), and check against max_size here as well.
2005  * Note that caller is responsible for ensuring max_size increases are
2006  * requested from the MDS.
2007  */
2008 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2009  int *got, loff_t endoff, int *check_max, int *err)
2010 {
2011  struct inode *inode = &ci->vfs_inode;
2012  int ret = 0;
2013  int have, implemented;
2014  int file_wanted;
2015 
2016  dout("get_cap_refs %p need %s want %s\n", inode,
2017  ceph_cap_string(need), ceph_cap_string(want));
2018  spin_lock(&ci->i_ceph_lock);
2019 
2020  /* make sure file is actually open */
2021  file_wanted = __ceph_caps_file_wanted(ci);
2022  if ((file_wanted & need) == 0) {
2023  dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2024  ceph_cap_string(need), ceph_cap_string(file_wanted));
2025  *err = -EBADF;
2026  ret = 1;
2027  goto out;
2028  }
2029 
2030  if (need & CEPH_CAP_FILE_WR) {
2031  if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2032  dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2033  inode, endoff, ci->i_max_size);
2034  if (endoff > ci->i_wanted_max_size) {
2035  *check_max = 1;
2036  ret = 1;
2037  }
2038  goto out;
2039  }
2040  /*
2041  * If a sync write is in progress, we must wait, so that we
2042  * can get a final snapshot value for size+mtime.
2043  */
2044  if (__ceph_have_pending_cap_snap(ci)) {
2045  dout("get_cap_refs %p cap_snap_pending\n", inode);
2046  goto out;
2047  }
2048  }
2049  have = __ceph_caps_issued(ci, &implemented);
2050 
2051  /*
2052  * disallow writes while a truncate is pending
2053  */
2054  if (ci->i_truncate_pending)
2055  have &= ~CEPH_CAP_FILE_WR;
2056 
2057  if ((have & need) == need) {
2058  /*
2059  * Look at (implemented & ~have & not) so that we keep waiting
2060  * on transition from wanted -> needed caps. This is needed
2061  * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2062  * going before a prior buffered writeback happens.
2063  */
2064  int not = want & ~(have & need);
2065  int revoking = implemented & ~have;
2066  dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2067  inode, ceph_cap_string(have), ceph_cap_string(not),
2068  ceph_cap_string(revoking));
2069  if ((revoking & not) == 0) {
2070  *got = need | (have & want);
2071  __take_cap_refs(ci, *got);
2072  ret = 1;
2073  }
2074  } else {
2075  dout("get_cap_refs %p have %s needed %s\n", inode,
2076  ceph_cap_string(have), ceph_cap_string(need));
2077  }
2078 out:
2079  spin_unlock(&ci->i_ceph_lock);
2080  dout("get_cap_refs %p ret %d got %s\n", inode,
2081  ret, ceph_cap_string(*got));
2082  return ret;
2083 }
2084 
2085 /*
2086  * Check the offset we are writing up to against our current
2087  * max_size. If necessary, tell the MDS we want to write to
2088  * a larger offset.
2089  */
2090 static void check_max_size(struct inode *inode, loff_t endoff)
2091 {
2092  struct ceph_inode_info *ci = ceph_inode(inode);
2093  int check = 0;
2094 
2095  /* do we need to explicitly request a larger max_size? */
2096  spin_lock(&ci->i_ceph_lock);
2097  if ((endoff >= ci->i_max_size ||
2098  endoff > (inode->i_size << 1)) &&
2099  endoff > ci->i_wanted_max_size) {
2100  dout("write %p at large endoff %llu, req max_size\n",
2101  inode, endoff);
2102  ci->i_wanted_max_size = endoff;
2103  check = 1;
2104  }
2105  spin_unlock(&ci->i_ceph_lock);
2106  if (check)
2108 }
2109 
2110 /*
2111  * Wait for caps, and take cap references. If we can't get a WR cap
2112  * due to a small max_size, make sure we check_max_size (and possibly
2113  * ask the mds) so we don't get hung up indefinitely.
2114  */
2115 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2116  loff_t endoff)
2117 {
2118  int check_max, ret, err;
2119 
2120 retry:
2121  if (endoff > 0)
2122  check_max_size(&ci->vfs_inode, endoff);
2123  check_max = 0;
2124  err = 0;
2126  try_get_cap_refs(ci, need, want,
2127  got, endoff,
2128  &check_max, &err));
2129  if (err)
2130  ret = err;
2131  if (check_max)
2132  goto retry;
2133  return ret;
2134 }
2135 
2136 /*
2137  * Take cap refs. Caller must already know we hold at least one ref
2138  * on the caps in question or we don't know this is safe.
2139  */
2140 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2141 {
2142  spin_lock(&ci->i_ceph_lock);
2143  __take_cap_refs(ci, caps);
2144  spin_unlock(&ci->i_ceph_lock);
2145 }
2146 
2147 /*
2148  * Release cap refs.
2149  *
2150  * If we released the last ref on any given cap, call ceph_check_caps
2151  * to release (or schedule a release).
2152  *
2153  * If we are releasing a WR cap (from a sync write), finalize any affected
2154  * cap_snap, and wake up any waiters.
2155  */
2156 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2157 {
2158  struct inode *inode = &ci->vfs_inode;
2159  int last = 0, put = 0, flushsnaps = 0, wake = 0;
2160  struct ceph_cap_snap *capsnap;
2161 
2162  spin_lock(&ci->i_ceph_lock);
2163  if (had & CEPH_CAP_PIN)
2164  --ci->i_pin_ref;
2165  if (had & CEPH_CAP_FILE_RD)
2166  if (--ci->i_rd_ref == 0)
2167  last++;
2168  if (had & CEPH_CAP_FILE_CACHE)
2169  if (--ci->i_rdcache_ref == 0)
2170  last++;
2171  if (had & CEPH_CAP_FILE_BUFFER) {
2172  if (--ci->i_wb_ref == 0) {
2173  last++;
2174  put++;
2175  }
2176  dout("put_cap_refs %p wb %d -> %d (?)\n",
2177  inode, ci->i_wb_ref+1, ci->i_wb_ref);
2178  }
2179  if (had & CEPH_CAP_FILE_WR)
2180  if (--ci->i_wr_ref == 0) {
2181  last++;
2182  if (!list_empty(&ci->i_cap_snaps)) {
2183  capsnap = list_first_entry(&ci->i_cap_snaps,
2184  struct ceph_cap_snap,
2185  ci_item);
2186  if (capsnap->writing) {
2187  capsnap->writing = 0;
2188  flushsnaps =
2190  capsnap);
2191  wake = 1;
2192  }
2193  }
2194  }
2195  spin_unlock(&ci->i_ceph_lock);
2196 
2197  dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2198  last ? " last" : "", put ? " put" : "");
2199 
2200  if (last && !flushsnaps)
2201  ceph_check_caps(ci, 0, NULL);
2202  else if (flushsnaps)
2203  ceph_flush_snaps(ci);
2204  if (wake)
2205  wake_up_all(&ci->i_cap_wq);
2206  if (put)
2207  iput(inode);
2208 }
2209 
2210 /*
2211  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2212  * context. Adjust per-snap dirty page accounting as appropriate.
2213  * Once all dirty data for a cap_snap is flushed, flush snapped file
2214  * metadata back to the MDS. If we dropped the last ref, call
2215  * ceph_check_caps.
2216  */
2218  struct ceph_snap_context *snapc)
2219 {
2220  struct inode *inode = &ci->vfs_inode;
2221  int last = 0;
2222  int complete_capsnap = 0;
2223  int drop_capsnap = 0;
2224  int found = 0;
2225  struct ceph_cap_snap *capsnap = NULL;
2226 
2227  spin_lock(&ci->i_ceph_lock);
2228  ci->i_wrbuffer_ref -= nr;
2229  last = !ci->i_wrbuffer_ref;
2230 
2231  if (ci->i_head_snapc == snapc) {
2232  ci->i_wrbuffer_ref_head -= nr;
2233  if (ci->i_wrbuffer_ref_head == 0 &&
2234  ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2235  BUG_ON(!ci->i_head_snapc);
2236  ceph_put_snap_context(ci->i_head_snapc);
2237  ci->i_head_snapc = NULL;
2238  }
2239  dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2240  inode,
2241  ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2243  last ? " LAST" : "");
2244  } else {
2245  list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2246  if (capsnap->context == snapc) {
2247  found = 1;
2248  break;
2249  }
2250  }
2251  BUG_ON(!found);
2252  capsnap->dirty_pages -= nr;
2253  if (capsnap->dirty_pages == 0) {
2254  complete_capsnap = 1;
2255  if (capsnap->dirty == 0)
2256  /* cap writeback completed before we created
2257  * the cap_snap; no FLUSHSNAP is needed */
2258  drop_capsnap = 1;
2259  }
2260  dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2261  " snap %lld %d/%d -> %d/%d %s%s%s\n",
2262  inode, capsnap, capsnap->context->seq,
2263  ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2264  ci->i_wrbuffer_ref, capsnap->dirty_pages,
2265  last ? " (wrbuffer last)" : "",
2266  complete_capsnap ? " (complete capsnap)" : "",
2267  drop_capsnap ? " (drop capsnap)" : "");
2268  if (drop_capsnap) {
2269  ceph_put_snap_context(capsnap->context);
2270  list_del(&capsnap->ci_item);
2271  list_del(&capsnap->flushing_item);
2272  ceph_put_cap_snap(capsnap);
2273  }
2274  }
2275 
2276  spin_unlock(&ci->i_ceph_lock);
2277 
2278  if (last) {
2280  iput(inode);
2281  } else if (complete_capsnap) {
2282  ceph_flush_snaps(ci);
2283  wake_up_all(&ci->i_cap_wq);
2284  }
2285  if (drop_capsnap)
2286  iput(inode);
2287 }
2288 
2289 /*
2290  * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2291  * actually be a revocation if it specifies a smaller cap set.)
2292  *
2293  * caller holds s_mutex and i_ceph_lock, we drop both.
2294  *
2295  * return value:
2296  * 0 - ok
2297  * 1 - check_caps on auth cap only (writeback)
2298  * 2 - check_caps (ack revoke)
2299  */
2300 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2301  struct ceph_mds_session *session,
2302  struct ceph_cap *cap,
2303  struct ceph_buffer *xattr_buf)
2304  __releases(ci->i_ceph_lock)
2305 {
2306  struct ceph_inode_info *ci = ceph_inode(inode);
2307  int mds = session->s_mds;
2308  int seq = le32_to_cpu(grant->seq);
2309  int newcaps = le32_to_cpu(grant->caps);
2310  int issued, implemented, used, wanted, dirty;
2311  u64 size = le64_to_cpu(grant->size);
2312  u64 max_size = le64_to_cpu(grant->max_size);
2313  struct timespec mtime, atime, ctime;
2314  int check_caps = 0;
2315  int wake = 0;
2316  int writeback = 0;
2317  int revoked_rdcache = 0;
2318  int queue_invalidate = 0;
2319 
2320  dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2321  inode, cap, mds, seq, ceph_cap_string(newcaps));
2322  dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2323  inode->i_size);
2324 
2325  /*
2326  * If CACHE is being revoked, and we have no dirty buffers,
2327  * try to invalidate (once). (If there are dirty buffers, we
2328  * will invalidate _after_ writeback.)
2329  */
2330  if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2331  (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2332  !ci->i_wrbuffer_ref) {
2333  if (try_nonblocking_invalidate(inode) == 0) {
2334  revoked_rdcache = 1;
2335  } else {
2336  /* there were locked pages.. invalidate later
2337  in a separate thread. */
2338  if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2339  queue_invalidate = 1;
2341  }
2342  }
2343  }
2344 
2345  /* side effects now are allowed */
2346 
2347  issued = __ceph_caps_issued(ci, &implemented);
2348  issued |= implemented | __ceph_caps_dirty(ci);
2349 
2350  cap->cap_gen = session->s_cap_gen;
2351 
2352  __check_cap_issue(ci, cap, newcaps);
2353 
2354  if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2355  inode->i_mode = le32_to_cpu(grant->mode);
2356  inode->i_uid = le32_to_cpu(grant->uid);
2357  inode->i_gid = le32_to_cpu(grant->gid);
2358  dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2359  inode->i_uid, inode->i_gid);
2360  }
2361 
2362  if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2363  set_nlink(inode, le32_to_cpu(grant->nlink));
2364 
2365  if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2366  int len = le32_to_cpu(grant->xattr_len);
2367  u64 version = le64_to_cpu(grant->xattr_version);
2368 
2369  if (version > ci->i_xattrs.version) {
2370  dout(" got new xattrs v%llu on %p len %d\n",
2371  version, inode, len);
2372  if (ci->i_xattrs.blob)
2373  ceph_buffer_put(ci->i_xattrs.blob);
2374  ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2375  ci->i_xattrs.version = version;
2376  }
2377  }
2378 
2379  /* size/ctime/mtime/atime? */
2380  ceph_fill_file_size(inode, issued,
2381  le32_to_cpu(grant->truncate_seq),
2382  le64_to_cpu(grant->truncate_size), size);
2383  ceph_decode_timespec(&mtime, &grant->mtime);
2384  ceph_decode_timespec(&atime, &grant->atime);
2385  ceph_decode_timespec(&ctime, &grant->ctime);
2386  ceph_fill_file_time(inode, issued,
2387  le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2388  &atime);
2389 
2390  /* max size increase? */
2391  if (max_size != ci->i_max_size) {
2392  dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2393  ci->i_max_size = max_size;
2394  if (max_size >= ci->i_wanted_max_size) {
2395  ci->i_wanted_max_size = 0; /* reset */
2396  ci->i_requested_max_size = 0;
2397  }
2398  wake = 1;
2399  }
2400 
2401  /* check cap bits */
2402  wanted = __ceph_caps_wanted(ci);
2403  used = __ceph_caps_used(ci);
2404  dirty = __ceph_caps_dirty(ci);
2405  dout(" my wanted = %s, used = %s, dirty %s\n",
2406  ceph_cap_string(wanted),
2407  ceph_cap_string(used),
2408  ceph_cap_string(dirty));
2409  if (wanted != le32_to_cpu(grant->wanted)) {
2410  dout("mds wanted %s -> %s\n",
2411  ceph_cap_string(le32_to_cpu(grant->wanted)),
2412  ceph_cap_string(wanted));
2413  grant->wanted = cpu_to_le32(wanted);
2414  }
2415 
2416  cap->seq = seq;
2417 
2418  /* file layout may have changed */
2419  ci->i_layout = grant->layout;
2420 
2421  /* revocation, grant, or no-op? */
2422  if (cap->issued & ~newcaps) {
2423  int revoking = cap->issued & ~newcaps;
2424 
2425  dout("revocation: %s -> %s (revoking %s)\n",
2426  ceph_cap_string(cap->issued),
2427  ceph_cap_string(newcaps),
2428  ceph_cap_string(revoking));
2429  if (revoking & used & CEPH_CAP_FILE_BUFFER)
2430  writeback = 1; /* initiate writeback; will delay ack */
2431  else if (revoking == CEPH_CAP_FILE_CACHE &&
2432  (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2433  queue_invalidate)
2434  ; /* do nothing yet, invalidation will be queued */
2435  else if (cap == ci->i_auth_cap)
2436  check_caps = 1; /* check auth cap only */
2437  else
2438  check_caps = 2; /* check all caps */
2439  cap->issued = newcaps;
2440  cap->implemented |= newcaps;
2441  } else if (cap->issued == newcaps) {
2442  dout("caps unchanged: %s -> %s\n",
2443  ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2444  } else {
2445  dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2446  ceph_cap_string(newcaps));
2447  cap->issued = newcaps;
2448  cap->implemented |= newcaps; /* add bits only, to
2449  * avoid stepping on a
2450  * pending revocation */
2451  wake = 1;
2452  }
2453  BUG_ON(cap->issued & ~cap->implemented);
2454 
2455  spin_unlock(&ci->i_ceph_lock);
2456  if (writeback)
2457  /*
2458  * queue inode for writeback: we can't actually call
2459  * filemap_write_and_wait, etc. from message handler
2460  * context.
2461  */
2462  ceph_queue_writeback(inode);
2463  if (queue_invalidate)
2464  ceph_queue_invalidate(inode);
2465  if (wake)
2466  wake_up_all(&ci->i_cap_wq);
2467 
2468  if (check_caps == 1)
2470  session);
2471  else if (check_caps == 2)
2472  ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2473  else
2474  mutex_unlock(&session->s_mutex);
2475 }
2476 
2477 /*
2478  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2479  * MDS has been safely committed.
2480  */
2481 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2482  struct ceph_mds_caps *m,
2483  struct ceph_mds_session *session,
2484  struct ceph_cap *cap)
2485  __releases(ci->i_ceph_lock)
2486 {
2487  struct ceph_inode_info *ci = ceph_inode(inode);
2488  struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2489  unsigned seq = le32_to_cpu(m->seq);
2490  int dirty = le32_to_cpu(m->dirty);
2491  int cleaned = 0;
2492  int drop = 0;
2493  int i;
2494 
2495  for (i = 0; i < CEPH_CAP_BITS; i++)
2496  if ((dirty & (1 << i)) &&
2497  flush_tid == ci->i_cap_flush_tid[i])
2498  cleaned |= 1 << i;
2499 
2500  dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2501  " flushing %s -> %s\n",
2502  inode, session->s_mds, seq, ceph_cap_string(dirty),
2504  ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2505 
2506  if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2507  goto out;
2508 
2509  ci->i_flushing_caps &= ~cleaned;
2510 
2511  spin_lock(&mdsc->cap_dirty_lock);
2512  if (ci->i_flushing_caps == 0) {
2513  list_del_init(&ci->i_flushing_item);
2514  if (!list_empty(&session->s_cap_flushing))
2515  dout(" mds%d still flushing cap on %p\n",
2516  session->s_mds,
2517  &list_entry(session->s_cap_flushing.next,
2518  struct ceph_inode_info,
2519  i_flushing_item)->vfs_inode);
2520  mdsc->num_cap_flushing--;
2521  wake_up_all(&mdsc->cap_flushing_wq);
2522  dout(" inode %p now !flushing\n", inode);
2523 
2524  if (ci->i_dirty_caps == 0) {
2525  dout(" inode %p now clean\n", inode);
2526  BUG_ON(!list_empty(&ci->i_dirty_item));
2527  drop = 1;
2528  if (ci->i_wrbuffer_ref_head == 0) {
2529  BUG_ON(!ci->i_head_snapc);
2530  ceph_put_snap_context(ci->i_head_snapc);
2531  ci->i_head_snapc = NULL;
2532  }
2533  } else {
2534  BUG_ON(list_empty(&ci->i_dirty_item));
2535  }
2536  }
2537  spin_unlock(&mdsc->cap_dirty_lock);
2538  wake_up_all(&ci->i_cap_wq);
2539 
2540 out:
2541  spin_unlock(&ci->i_ceph_lock);
2542  if (drop)
2543  iput(inode);
2544 }
2545 
2546 /*
2547  * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2548  * throw away our cap_snap.
2549  *
2550  * Caller hold s_mutex.
2551  */
2552 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2553  struct ceph_mds_caps *m,
2554  struct ceph_mds_session *session)
2555 {
2556  struct ceph_inode_info *ci = ceph_inode(inode);
2557  u64 follows = le64_to_cpu(m->snap_follows);
2558  struct ceph_cap_snap *capsnap;
2559  int drop = 0;
2560 
2561  dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2562  inode, ci, session->s_mds, follows);
2563 
2564  spin_lock(&ci->i_ceph_lock);
2565  list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2566  if (capsnap->follows == follows) {
2567  if (capsnap->flush_tid != flush_tid) {
2568  dout(" cap_snap %p follows %lld tid %lld !="
2569  " %lld\n", capsnap, follows,
2570  flush_tid, capsnap->flush_tid);
2571  break;
2572  }
2573  WARN_ON(capsnap->dirty_pages || capsnap->writing);
2574  dout(" removing %p cap_snap %p follows %lld\n",
2575  inode, capsnap, follows);
2576  ceph_put_snap_context(capsnap->context);
2577  list_del(&capsnap->ci_item);
2578  list_del(&capsnap->flushing_item);
2579  ceph_put_cap_snap(capsnap);
2580  drop = 1;
2581  break;
2582  } else {
2583  dout(" skipping cap_snap %p follows %lld\n",
2584  capsnap, capsnap->follows);
2585  }
2586  }
2587  spin_unlock(&ci->i_ceph_lock);
2588  if (drop)
2589  iput(inode);
2590 }
2591 
2592 /*
2593  * Handle TRUNC from MDS, indicating file truncation.
2594  *
2595  * caller hold s_mutex.
2596  */
2597 static void handle_cap_trunc(struct inode *inode,
2598  struct ceph_mds_caps *trunc,
2599  struct ceph_mds_session *session)
2600  __releases(ci->i_ceph_lock)
2601 {
2602  struct ceph_inode_info *ci = ceph_inode(inode);
2603  int mds = session->s_mds;
2604  int seq = le32_to_cpu(trunc->seq);
2605  u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2606  u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2607  u64 size = le64_to_cpu(trunc->size);
2608  int implemented = 0;
2609  int dirty = __ceph_caps_dirty(ci);
2610  int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2611  int queue_trunc = 0;
2612 
2613  issued |= implemented | dirty;
2614 
2615  dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2616  inode, mds, seq, truncate_size, truncate_seq);
2617  queue_trunc = ceph_fill_file_size(inode, issued,
2618  truncate_seq, truncate_size, size);
2619  spin_unlock(&ci->i_ceph_lock);
2620 
2621  if (queue_trunc)
2622  ceph_queue_vmtruncate(inode);
2623 }
2624 
2625 /*
2626  * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2627  * different one. If we are the most recent migration we've seen (as
2628  * indicated by mseq), make note of the migrating cap bits for the
2629  * duration (until we see the corresponding IMPORT).
2630  *
2631  * caller holds s_mutex
2632  */
2633 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2634  struct ceph_mds_session *session,
2635  int *open_target_sessions)
2636 {
2637  struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2638  struct ceph_inode_info *ci = ceph_inode(inode);
2639  int mds = session->s_mds;
2640  unsigned mseq = le32_to_cpu(ex->migrate_seq);
2641  struct ceph_cap *cap = NULL, *t;
2642  struct rb_node *p;
2643  int remember = 1;
2644 
2645  dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2646  inode, ci, mds, mseq);
2647 
2648  spin_lock(&ci->i_ceph_lock);
2649 
2650  /* make sure we haven't seen a higher mseq */
2651  for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2652  t = rb_entry(p, struct ceph_cap, ci_node);
2653  if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2654  dout(" higher mseq on cap from mds%d\n",
2655  t->session->s_mds);
2656  remember = 0;
2657  }
2658  if (t->session->s_mds == mds)
2659  cap = t;
2660  }
2661 
2662  if (cap) {
2663  if (remember) {
2664  /* make note */
2665  ci->i_cap_exporting_mds = mds;
2666  ci->i_cap_exporting_mseq = mseq;
2667  ci->i_cap_exporting_issued = cap->issued;
2668 
2669  /*
2670  * make sure we have open sessions with all possible
2671  * export targets, so that we get the matching IMPORT
2672  */
2673  *open_target_sessions = 1;
2674 
2675  /*
2676  * we can't flush dirty caps that we've seen the
2677  * EXPORT but no IMPORT for
2678  */
2679  spin_lock(&mdsc->cap_dirty_lock);
2680  if (!list_empty(&ci->i_dirty_item)) {
2681  dout(" moving %p to cap_dirty_migrating\n",
2682  inode);
2683  list_move(&ci->i_dirty_item,
2684  &mdsc->cap_dirty_migrating);
2685  }
2686  spin_unlock(&mdsc->cap_dirty_lock);
2687  }
2688  __ceph_remove_cap(cap);
2689  }
2690  /* else, we already released it */
2691 
2692  spin_unlock(&ci->i_ceph_lock);
2693 }
2694 
2695 /*
2696  * Handle cap IMPORT. If there are temp bits from an older EXPORT,
2697  * clean them up.
2698  *
2699  * caller holds s_mutex.
2700  */
2701 static void handle_cap_import(struct ceph_mds_client *mdsc,
2702  struct inode *inode, struct ceph_mds_caps *im,
2703  struct ceph_mds_session *session,
2704  void *snaptrace, int snaptrace_len)
2705 {
2706  struct ceph_inode_info *ci = ceph_inode(inode);
2707  int mds = session->s_mds;
2708  unsigned issued = le32_to_cpu(im->caps);
2709  unsigned wanted = le32_to_cpu(im->wanted);
2710  unsigned seq = le32_to_cpu(im->seq);
2711  unsigned mseq = le32_to_cpu(im->migrate_seq);
2712  u64 realmino = le64_to_cpu(im->realm);
2713  u64 cap_id = le64_to_cpu(im->cap_id);
2714 
2715  if (ci->i_cap_exporting_mds >= 0 &&
2716  ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2717  dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2718  " - cleared exporting from mds%d\n",
2719  inode, ci, mds, mseq,
2720  ci->i_cap_exporting_mds);
2721  ci->i_cap_exporting_issued = 0;
2722  ci->i_cap_exporting_mseq = 0;
2723  ci->i_cap_exporting_mds = -1;
2724 
2725  spin_lock(&mdsc->cap_dirty_lock);
2726  if (!list_empty(&ci->i_dirty_item)) {
2727  dout(" moving %p back to cap_dirty\n", inode);
2728  list_move(&ci->i_dirty_item, &mdsc->cap_dirty);
2729  }
2730  spin_unlock(&mdsc->cap_dirty_lock);
2731  } else {
2732  dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2733  inode, ci, mds, mseq);
2734  }
2735 
2736  down_write(&mdsc->snap_rwsem);
2737  ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2738  false);
2739  downgrade_write(&mdsc->snap_rwsem);
2740  ceph_add_cap(inode, session, cap_id, -1,
2741  issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2742  NULL /* no caps context */);
2743  kick_flushing_inode_caps(mdsc, session, inode);
2744  up_read(&mdsc->snap_rwsem);
2745 
2746  /* make sure we re-request max_size, if necessary */
2747  spin_lock(&ci->i_ceph_lock);
2748  ci->i_requested_max_size = 0;
2749  spin_unlock(&ci->i_ceph_lock);
2750 }
2751 
2752 /*
2753  * Handle a caps message from the MDS.
2754  *
2755  * Identify the appropriate session, inode, and call the right handler
2756  * based on the cap op.
2757  */
2758 void ceph_handle_caps(struct ceph_mds_session *session,
2759  struct ceph_msg *msg)
2760 {
2761  struct ceph_mds_client *mdsc = session->s_mdsc;
2762  struct super_block *sb = mdsc->fsc->sb;
2763  struct inode *inode;
2764  struct ceph_inode_info *ci;
2765  struct ceph_cap *cap;
2766  struct ceph_mds_caps *h;
2767  int mds = session->s_mds;
2768  int op;
2769  u32 seq, mseq;
2770  struct ceph_vino vino;
2771  u64 cap_id;
2772  u64 size, max_size;
2773  u64 tid;
2774  void *snaptrace;
2775  size_t snaptrace_len;
2776  void *flock;
2777  u32 flock_len;
2778  int open_target_sessions = 0;
2779 
2780  dout("handle_caps from mds%d\n", mds);
2781 
2782  /* decode */
2783  tid = le64_to_cpu(msg->hdr.tid);
2784  if (msg->front.iov_len < sizeof(*h))
2785  goto bad;
2786  h = msg->front.iov_base;
2787  op = le32_to_cpu(h->op);
2788  vino.ino = le64_to_cpu(h->ino);
2789  vino.snap = CEPH_NOSNAP;
2790  cap_id = le64_to_cpu(h->cap_id);
2791  seq = le32_to_cpu(h->seq);
2792  mseq = le32_to_cpu(h->migrate_seq);
2793  size = le64_to_cpu(h->size);
2794  max_size = le64_to_cpu(h->max_size);
2795 
2796  snaptrace = h + 1;
2797  snaptrace_len = le32_to_cpu(h->snap_trace_len);
2798 
2799  if (le16_to_cpu(msg->hdr.version) >= 2) {
2800  void *p, *end;
2801 
2802  p = snaptrace + snaptrace_len;
2803  end = msg->front.iov_base + msg->front.iov_len;
2804  ceph_decode_32_safe(&p, end, flock_len, bad);
2805  flock = p;
2806  } else {
2807  flock = NULL;
2808  flock_len = 0;
2809  }
2810 
2811  mutex_lock(&session->s_mutex);
2812  session->s_seq++;
2813  dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2814  (unsigned)seq);
2815 
2816  /* lookup ino */
2817  inode = ceph_find_inode(sb, vino);
2818  ci = ceph_inode(inode);
2819  dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2820  vino.snap, inode);
2821  if (!inode) {
2822  dout(" i don't have ino %llx\n", vino.ino);
2823 
2824  if (op == CEPH_CAP_OP_IMPORT)
2825  __queue_cap_release(session, vino.ino, cap_id,
2826  mseq, seq);
2827  goto flush_cap_releases;
2828  }
2829 
2830  /* these will work even if we don't have a cap yet */
2831  switch (op) {
2833  handle_cap_flushsnap_ack(inode, tid, h, session);
2834  goto done;
2835 
2836  case CEPH_CAP_OP_EXPORT:
2837  handle_cap_export(inode, h, session, &open_target_sessions);
2838  goto done;
2839 
2840  case CEPH_CAP_OP_IMPORT:
2841  handle_cap_import(mdsc, inode, h, session,
2842  snaptrace, snaptrace_len);
2843  ceph_check_caps(ceph_inode(inode), 0, session);
2844  goto done_unlocked;
2845  }
2846 
2847  /* the rest require a cap */
2848  spin_lock(&ci->i_ceph_lock);
2849  cap = __get_cap_for_mds(ceph_inode(inode), mds);
2850  if (!cap) {
2851  dout(" no cap on %p ino %llx.%llx from mds%d\n",
2852  inode, ceph_ino(inode), ceph_snap(inode), mds);
2853  spin_unlock(&ci->i_ceph_lock);
2854  goto flush_cap_releases;
2855  }
2856 
2857  /* note that each of these drops i_ceph_lock for us */
2858  switch (op) {
2859  case CEPH_CAP_OP_REVOKE:
2860  case CEPH_CAP_OP_GRANT:
2861  handle_cap_grant(inode, h, session, cap, msg->middle);
2862  goto done_unlocked;
2863 
2864  case CEPH_CAP_OP_FLUSH_ACK:
2865  handle_cap_flush_ack(inode, tid, h, session, cap);
2866  break;
2867 
2868  case CEPH_CAP_OP_TRUNC:
2869  handle_cap_trunc(inode, h, session);
2870  break;
2871 
2872  default:
2873  spin_unlock(&ci->i_ceph_lock);
2874  pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2875  ceph_cap_op_name(op));
2876  }
2877 
2878  goto done;
2879 
2880 flush_cap_releases:
2881  /*
2882  * send any full release message to try to move things
2883  * along for the mds (who clearly thinks we still have this
2884  * cap).
2885  */
2886  ceph_add_cap_releases(mdsc, session);
2887  ceph_send_cap_releases(mdsc, session);
2888 
2889 done:
2890  mutex_unlock(&session->s_mutex);
2891 done_unlocked:
2892  if (inode)
2893  iput(inode);
2894  if (open_target_sessions)
2896  return;
2897 
2898 bad:
2899  pr_err("ceph_handle_caps: corrupt message\n");
2900  ceph_msg_dump(msg);
2901  return;
2902 }
2903 
2904 /*
2905  * Delayed work handler to process end of delayed cap release LRU list.
2906  */
2908 {
2909  struct ceph_inode_info *ci;
2910  int flags = CHECK_CAPS_NODELAY;
2911 
2912  dout("check_delayed_caps\n");
2913  while (1) {
2914  spin_lock(&mdsc->cap_delay_lock);
2915  if (list_empty(&mdsc->cap_delay_list))
2916  break;
2917  ci = list_first_entry(&mdsc->cap_delay_list,
2918  struct ceph_inode_info,
2920  if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2922  break;
2923  list_del_init(&ci->i_cap_delay_list);
2924  spin_unlock(&mdsc->cap_delay_lock);
2925  dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2926  ceph_check_caps(ci, flags, NULL);
2927  }
2928  spin_unlock(&mdsc->cap_delay_lock);
2929 }
2930 
2931 /*
2932  * Flush all dirty caps to the mds
2933  */
2935 {
2936  struct ceph_inode_info *ci;
2937  struct inode *inode;
2938 
2939  dout("flush_dirty_caps\n");
2940  spin_lock(&mdsc->cap_dirty_lock);
2941  while (!list_empty(&mdsc->cap_dirty)) {
2942  ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
2943  i_dirty_item);
2944  inode = &ci->vfs_inode;
2945  ihold(inode);
2946  dout("flush_dirty_caps %p\n", inode);
2947  spin_unlock(&mdsc->cap_dirty_lock);
2949  iput(inode);
2950  spin_lock(&mdsc->cap_dirty_lock);
2951  }
2952  spin_unlock(&mdsc->cap_dirty_lock);
2953  dout("flush_dirty_caps done\n");
2954 }
2955 
2956 /*
2957  * Drop open file reference. If we were the last open file,
2958  * we may need to release capabilities to the MDS (or schedule
2959  * their delayed release).
2960  */
2961 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2962 {
2963  struct inode *inode = &ci->vfs_inode;
2964  int last = 0;
2965 
2966  spin_lock(&ci->i_ceph_lock);
2967  dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2968  ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2969  BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2970  if (--ci->i_nr_by_mode[fmode] == 0)
2971  last++;
2972  spin_unlock(&ci->i_ceph_lock);
2973 
2974  if (last && ci->i_vino.snap == CEPH_NOSNAP)
2975  ceph_check_caps(ci, 0, NULL);
2976 }
2977 
2978 /*
2979  * Helpers for embedding cap and dentry lease releases into mds
2980  * requests.
2981  *
2982  * @force is used by dentry_release (below) to force inclusion of a
2983  * record for the directory inode, even when there aren't any caps to
2984  * drop.
2985  */
2986 int ceph_encode_inode_release(void **p, struct inode *inode,
2987  int mds, int drop, int unless, int force)
2988 {
2989  struct ceph_inode_info *ci = ceph_inode(inode);
2990  struct ceph_cap *cap;
2991  struct ceph_mds_request_release *rel = *p;
2992  int used, dirty;
2993  int ret = 0;
2994 
2995  spin_lock(&ci->i_ceph_lock);
2996  used = __ceph_caps_used(ci);
2997  dirty = __ceph_caps_dirty(ci);
2998 
2999  dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3000  inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3001  ceph_cap_string(unless));
3002 
3003  /* only drop unused, clean caps */
3004  drop &= ~(used | dirty);
3005 
3006  cap = __get_cap_for_mds(ci, mds);
3007  if (cap && __cap_is_valid(cap)) {
3008  if (force ||
3009  ((cap->issued & drop) &&
3010  (cap->issued & unless) == 0)) {
3011  if ((cap->issued & drop) &&
3012  (cap->issued & unless) == 0) {
3013  dout("encode_inode_release %p cap %p %s -> "
3014  "%s\n", inode, cap,
3015  ceph_cap_string(cap->issued),
3016  ceph_cap_string(cap->issued & ~drop));
3017  cap->issued &= ~drop;
3018  cap->implemented &= ~drop;
3019  if (ci->i_ceph_flags & CEPH_I_NODELAY) {
3020  int wanted = __ceph_caps_wanted(ci);
3021  dout(" wanted %s -> %s (act %s)\n",
3024  ~wanted),
3025  ceph_cap_string(wanted));
3026  cap->mds_wanted &= wanted;
3027  }
3028  } else {
3029  dout("encode_inode_release %p cap %p %s"
3030  " (force)\n", inode, cap,
3031  ceph_cap_string(cap->issued));
3032  }
3033 
3034  rel->ino = cpu_to_le64(ceph_ino(inode));
3035  rel->cap_id = cpu_to_le64(cap->cap_id);
3036  rel->seq = cpu_to_le32(cap->seq);
3037  rel->issue_seq = cpu_to_le32(cap->issue_seq),
3038  rel->mseq = cpu_to_le32(cap->mseq);
3039  rel->caps = cpu_to_le32(cap->issued);
3040  rel->wanted = cpu_to_le32(cap->mds_wanted);
3041  rel->dname_len = 0;
3042  rel->dname_seq = 0;
3043  *p += sizeof(*rel);
3044  ret = 1;
3045  } else {
3046  dout("encode_inode_release %p cap %p %s\n",
3047  inode, cap, ceph_cap_string(cap->issued));
3048  }
3049  }
3050  spin_unlock(&ci->i_ceph_lock);
3051  return ret;
3052 }
3053 
3055  int mds, int drop, int unless)
3056 {
3057  struct inode *dir = dentry->d_parent->d_inode;
3058  struct ceph_mds_request_release *rel = *p;
3059  struct ceph_dentry_info *di = ceph_dentry(dentry);
3060  int force = 0;
3061  int ret;
3062 
3063  /*
3064  * force an record for the directory caps if we have a dentry lease.
3065  * this is racy (can't take i_ceph_lock and d_lock together), but it
3066  * doesn't have to be perfect; the mds will revoke anything we don't
3067  * release.
3068  */
3069  spin_lock(&dentry->d_lock);
3070  if (di->lease_session && di->lease_session->s_mds == mds)
3071  force = 1;
3072  spin_unlock(&dentry->d_lock);
3073 
3074  ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3075 
3076  spin_lock(&dentry->d_lock);
3077  if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3078  dout("encode_dentry_release %p mds%d seq %d\n",
3079  dentry, mds, (int)di->lease_seq);
3080  rel->dname_len = cpu_to_le32(dentry->d_name.len);
3081  memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3082  *p += dentry->d_name.len;
3083  rel->dname_seq = cpu_to_le32(di->lease_seq);
3085  }
3086  spin_unlock(&dentry->d_lock);
3087  return ret;
3088 }