Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
super.c
Go to the documentation of this file.
1 /*
2  * super.c
3  *
4  * Copyright (c) 1999 Al Smith
5  *
6  * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
7  */
8 
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/exportfs.h>
12 #include <linux/slab.h>
13 #include <linux/buffer_head.h>
14 #include <linux/vfs.h>
15 
16 #include "efs.h"
17 #include <linux/efs_vh.h>
18 #include <linux/efs_fs_sb.h>
19 
20 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf);
21 static int efs_fill_super(struct super_block *s, void *d, int silent);
22 
23 static struct dentry *efs_mount(struct file_system_type *fs_type,
24  int flags, const char *dev_name, void *data)
25 {
26  return mount_bdev(fs_type, flags, dev_name, data, efs_fill_super);
27 }
28 
29 static struct file_system_type efs_fs_type = {
30  .owner = THIS_MODULE,
31  .name = "efs",
32  .mount = efs_mount,
33  .kill_sb = kill_block_super,
34  .fs_flags = FS_REQUIRES_DEV,
35 };
36 
37 static struct pt_types sgi_pt_types[] = {
38  {0x00, "SGI vh"},
39  {0x01, "SGI trkrepl"},
40  {0x02, "SGI secrepl"},
41  {0x03, "SGI raw"},
42  {0x04, "SGI bsd"},
43  {SGI_SYSV, "SGI sysv"},
44  {0x06, "SGI vol"},
45  {SGI_EFS, "SGI efs"},
46  {0x08, "SGI lv"},
47  {0x09, "SGI rlv"},
48  {0x0A, "SGI xfs"},
49  {0x0B, "SGI xfslog"},
50  {0x0C, "SGI xlv"},
51  {0x82, "Linux swap"},
52  {0x83, "Linux native"},
53  {0, NULL}
54 };
55 
56 
57 static struct kmem_cache * efs_inode_cachep;
58 
59 static struct inode *efs_alloc_inode(struct super_block *sb)
60 {
61  struct efs_inode_info *ei;
62  ei = (struct efs_inode_info *)kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL);
63  if (!ei)
64  return NULL;
65  return &ei->vfs_inode;
66 }
67 
68 static void efs_i_callback(struct rcu_head *head)
69 {
70  struct inode *inode = container_of(head, struct inode, i_rcu);
71  kmem_cache_free(efs_inode_cachep, INODE_INFO(inode));
72 }
73 
74 static void efs_destroy_inode(struct inode *inode)
75 {
76  call_rcu(&inode->i_rcu, efs_i_callback);
77 }
78 
79 static void init_once(void *foo)
80 {
81  struct efs_inode_info *ei = (struct efs_inode_info *) foo;
82 
84 }
85 
86 static int init_inodecache(void)
87 {
88  efs_inode_cachep = kmem_cache_create("efs_inode_cache",
89  sizeof(struct efs_inode_info),
91  init_once);
92  if (efs_inode_cachep == NULL)
93  return -ENOMEM;
94  return 0;
95 }
96 
97 static void destroy_inodecache(void)
98 {
99  /*
100  * Make sure all delayed rcu free inodes are flushed before we
101  * destroy cache.
102  */
103  rcu_barrier();
104  kmem_cache_destroy(efs_inode_cachep);
105 }
106 
107 static void efs_put_super(struct super_block *s)
108 {
109  kfree(s->s_fs_info);
110  s->s_fs_info = NULL;
111 }
112 
113 static int efs_remount(struct super_block *sb, int *flags, char *data)
114 {
115  *flags |= MS_RDONLY;
116  return 0;
117 }
118 
119 static const struct super_operations efs_superblock_operations = {
120  .alloc_inode = efs_alloc_inode,
121  .destroy_inode = efs_destroy_inode,
122  .put_super = efs_put_super,
123  .statfs = efs_statfs,
124  .remount_fs = efs_remount,
125 };
126 
127 static const struct export_operations efs_export_ops = {
128  .fh_to_dentry = efs_fh_to_dentry,
129  .fh_to_parent = efs_fh_to_parent,
130  .get_parent = efs_get_parent,
131 };
132 
133 static int __init init_efs_fs(void) {
134  int err;
135  printk("EFS: "EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
136  err = init_inodecache();
137  if (err)
138  goto out1;
139  err = register_filesystem(&efs_fs_type);
140  if (err)
141  goto out;
142  return 0;
143 out:
144  destroy_inodecache();
145 out1:
146  return err;
147 }
148 
149 static void __exit exit_efs_fs(void) {
150  unregister_filesystem(&efs_fs_type);
151  destroy_inodecache();
152 }
153 
154 module_init(init_efs_fs)
155 module_exit(exit_efs_fs)
156 
157 static efs_block_t efs_validate_vh(struct volume_header *vh) {
158  int i;
159  __be32 cs, *ui;
160  int csum;
161  efs_block_t sblock = 0; /* shuts up gcc */
162  struct pt_types *pt_entry;
163  int pt_type, slice = -1;
164 
165  if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
166  /*
167  * assume that we're dealing with a partition and allow
168  * read_super() to try and detect a valid superblock
169  * on the next block.
170  */
171  return 0;
172  }
173 
174  ui = ((__be32 *) (vh + 1)) - 1;
175  for(csum = 0; ui >= ((__be32 *) vh);) {
176  cs = *ui--;
177  csum += be32_to_cpu(cs);
178  }
179  if (csum) {
180  printk(KERN_INFO "EFS: SGI disklabel: checksum bad, label corrupted\n");
181  return 0;
182  }
183 
184 #ifdef DEBUG
185  printk(KERN_DEBUG "EFS: bf: \"%16s\"\n", vh->vh_bootfile);
186 
187  for(i = 0; i < NVDIR; i++) {
188  int j;
189  char name[VDNAMESIZE+1];
190 
191  for(j = 0; j < VDNAMESIZE; j++) {
192  name[j] = vh->vh_vd[i].vd_name[j];
193  }
194  name[j] = (char) 0;
195 
196  if (name[0]) {
197  printk(KERN_DEBUG "EFS: vh: %8s block: 0x%08x size: 0x%08x\n",
198  name,
199  (int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
200  (int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
201  }
202  }
203 #endif
204 
205  for(i = 0; i < NPARTAB; i++) {
206  pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
207  for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
208  if (pt_type == pt_entry->pt_type) break;
209  }
210 #ifdef DEBUG
211  if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
212  printk(KERN_DEBUG "EFS: pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
213  i,
214  (int) be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
215  (int) be32_to_cpu(vh->vh_pt[i].pt_nblks),
216  pt_type,
217  (pt_entry->pt_name) ? pt_entry->pt_name : "unknown");
218  }
219 #endif
220  if (IS_EFS(pt_type)) {
221  sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
222  slice = i;
223  }
224  }
225 
226  if (slice == -1) {
227  printk(KERN_NOTICE "EFS: partition table contained no EFS partitions\n");
228 #ifdef DEBUG
229  } else {
230  printk(KERN_INFO "EFS: using slice %d (type %s, offset 0x%x)\n",
231  slice,
232  (pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
233  sblock);
234 #endif
235  }
236  return sblock;
237 }
238 
239 static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
240 
241  if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic)))
242  return -1;
243 
244  sb->fs_magic = be32_to_cpu(super->fs_magic);
245  sb->total_blocks = be32_to_cpu(super->fs_size);
246  sb->first_block = be32_to_cpu(super->fs_firstcg);
247  sb->group_size = be32_to_cpu(super->fs_cgfsize);
248  sb->data_free = be32_to_cpu(super->fs_tfree);
249  sb->inode_free = be32_to_cpu(super->fs_tinode);
250  sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
251  sb->total_groups = be16_to_cpu(super->fs_ncg);
252 
253  return 0;
254 }
255 
256 static int efs_fill_super(struct super_block *s, void *d, int silent)
257 {
258  struct efs_sb_info *sb;
259  struct buffer_head *bh;
260  struct inode *root;
261  int ret = -EINVAL;
262 
263  sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL);
264  if (!sb)
265  return -ENOMEM;
266  s->s_fs_info = sb;
267 
269  if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) {
270  printk(KERN_ERR "EFS: device does not support %d byte blocks\n",
271  EFS_BLOCKSIZE);
272  goto out_no_fs_ul;
273  }
274 
275  /* read the vh (volume header) block */
276  bh = sb_bread(s, 0);
277 
278  if (!bh) {
279  printk(KERN_ERR "EFS: cannot read volume header\n");
280  goto out_no_fs_ul;
281  }
282 
283  /*
284  * if this returns zero then we didn't find any partition table.
285  * this isn't (yet) an error - just assume for the moment that
286  * the device is valid and go on to search for a superblock.
287  */
288  sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
289  brelse(bh);
290 
291  if (sb->fs_start == -1) {
292  goto out_no_fs_ul;
293  }
294 
295  bh = sb_bread(s, sb->fs_start + EFS_SUPER);
296  if (!bh) {
297  printk(KERN_ERR "EFS: cannot read superblock\n");
298  goto out_no_fs_ul;
299  }
300 
301  if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
302 #ifdef DEBUG
303  printk(KERN_WARNING "EFS: invalid superblock at block %u\n", sb->fs_start + EFS_SUPER);
304 #endif
305  brelse(bh);
306  goto out_no_fs_ul;
307  }
308  brelse(bh);
309 
310  if (!(s->s_flags & MS_RDONLY)) {
311 #ifdef DEBUG
312  printk(KERN_INFO "EFS: forcing read-only mode\n");
313 #endif
314  s->s_flags |= MS_RDONLY;
315  }
316  s->s_op = &efs_superblock_operations;
317  s->s_export_op = &efs_export_ops;
318  root = efs_iget(s, EFS_ROOTINODE);
319  if (IS_ERR(root)) {
320  printk(KERN_ERR "EFS: get root inode failed\n");
321  ret = PTR_ERR(root);
322  goto out_no_fs;
323  }
324 
325  s->s_root = d_make_root(root);
326  if (!(s->s_root)) {
327  printk(KERN_ERR "EFS: get root dentry failed\n");
328  ret = -ENOMEM;
329  goto out_no_fs;
330  }
331 
332  return 0;
333 
334 out_no_fs_ul:
335 out_no_fs:
336  s->s_fs_info = NULL;
337  kfree(sb);
338  return ret;
339 }
340 
341 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) {
342  struct super_block *sb = dentry->d_sb;
343  struct efs_sb_info *sbi = SUPER_INFO(sb);
344  u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
345 
346  buf->f_type = EFS_SUPER_MAGIC; /* efs magic number */
347  buf->f_bsize = EFS_BLOCKSIZE; /* blocksize */
348  buf->f_blocks = sbi->total_groups * /* total data blocks */
349  (sbi->group_size - sbi->inode_blocks);
350  buf->f_bfree = sbi->data_free; /* free data blocks */
351  buf->f_bavail = sbi->data_free; /* free blocks for non-root */
352  buf->f_files = sbi->total_groups * /* total inodes */
353  sbi->inode_blocks *
354  (EFS_BLOCKSIZE / sizeof(struct efs_dinode));
355  buf->f_ffree = sbi->inode_free; /* free inodes */
356  buf->f_fsid.val[0] = (u32)id;
357  buf->f_fsid.val[1] = (u32)(id >> 32);
358  buf->f_namelen = EFS_MAXNAMELEN; /* max filename length */
359 
360  return 0;
361 }
362