Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
exec.c
Go to the documentation of this file.
1 /*
2  * linux/fs/exec.c
3  *
4  * Copyright (C) 1991, 1992 Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19  * current->executable is only used by the procfs. This allows a dispatch
20  * table to check for several different types of binary formats. We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 
63 #include <trace/events/task.h>
64 #include "internal.h"
65 #include "coredump.h"
66 
67 #include <trace/events/sched.h>
68 
69 int suid_dumpable = 0;
70 
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73 
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76  BUG_ON(!fmt);
77  write_lock(&binfmt_lock);
78  insert ? list_add(&fmt->lh, &formats) :
79  list_add_tail(&fmt->lh, &formats);
80  write_unlock(&binfmt_lock);
81 }
82 
84 
86 {
87  write_lock(&binfmt_lock);
88  list_del(&fmt->lh);
89  write_unlock(&binfmt_lock);
90 }
91 
93 
94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96  module_put(fmt->module);
97 }
98 
99 /*
100  * Note that a shared library must be both readable and executable due to
101  * security reasons.
102  *
103  * Also note that we take the address to load from from the file itself.
104  */
105 SYSCALL_DEFINE1(uselib, const char __user *, library)
106 {
107  struct file *file;
108  struct filename *tmp = getname(library);
109  int error = PTR_ERR(tmp);
110  static const struct open_flags uselib_flags = {
112  .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
113  .intent = LOOKUP_OPEN
114  };
115 
116  if (IS_ERR(tmp))
117  goto out;
118 
119  file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
120  putname(tmp);
121  error = PTR_ERR(file);
122  if (IS_ERR(file))
123  goto out;
124 
125  error = -EINVAL;
126  if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
127  goto exit;
128 
129  error = -EACCES;
130  if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
131  goto exit;
132 
133  fsnotify_open(file);
134 
135  error = -ENOEXEC;
136  if(file->f_op) {
137  struct linux_binfmt * fmt;
138 
139  read_lock(&binfmt_lock);
140  list_for_each_entry(fmt, &formats, lh) {
141  if (!fmt->load_shlib)
142  continue;
143  if (!try_module_get(fmt->module))
144  continue;
145  read_unlock(&binfmt_lock);
146  error = fmt->load_shlib(file);
147  read_lock(&binfmt_lock);
148  put_binfmt(fmt);
149  if (error != -ENOEXEC)
150  break;
151  }
152  read_unlock(&binfmt_lock);
153  }
154 exit:
155  fput(file);
156 out:
157  return error;
158 }
159 
160 #ifdef CONFIG_MMU
161 /*
162  * The nascent bprm->mm is not visible until exec_mmap() but it can
163  * use a lot of memory, account these pages in current->mm temporary
164  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
165  * change the counter back via acct_arg_size(0).
166  */
167 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
168 {
169  struct mm_struct *mm = current->mm;
170  long diff = (long)(pages - bprm->vma_pages);
171 
172  if (!mm || !diff)
173  return;
174 
175  bprm->vma_pages = pages;
176  add_mm_counter(mm, MM_ANONPAGES, diff);
177 }
178 
179 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
180  int write)
181 {
182  struct page *page;
183  int ret;
184 
185 #ifdef CONFIG_STACK_GROWSUP
186  if (write) {
187  ret = expand_downwards(bprm->vma, pos);
188  if (ret < 0)
189  return NULL;
190  }
191 #endif
192  ret = get_user_pages(current, bprm->mm, pos,
193  1, write, 1, &page, NULL);
194  if (ret <= 0)
195  return NULL;
196 
197  if (write) {
198  unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
199  struct rlimit *rlim;
200 
201  acct_arg_size(bprm, size / PAGE_SIZE);
202 
203  /*
204  * We've historically supported up to 32 pages (ARG_MAX)
205  * of argument strings even with small stacks
206  */
207  if (size <= ARG_MAX)
208  return page;
209 
210  /*
211  * Limit to 1/4-th the stack size for the argv+env strings.
212  * This ensures that:
213  * - the remaining binfmt code will not run out of stack space,
214  * - the program will have a reasonable amount of stack left
215  * to work from.
216  */
217  rlim = current->signal->rlim;
218  if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
219  put_page(page);
220  return NULL;
221  }
222  }
223 
224  return page;
225 }
226 
227 static void put_arg_page(struct page *page)
228 {
229  put_page(page);
230 }
231 
232 static void free_arg_page(struct linux_binprm *bprm, int i)
233 {
234 }
235 
236 static void free_arg_pages(struct linux_binprm *bprm)
237 {
238 }
239 
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241  struct page *page)
242 {
243  flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244 }
245 
246 static int __bprm_mm_init(struct linux_binprm *bprm)
247 {
248  int err;
249  struct vm_area_struct *vma = NULL;
250  struct mm_struct *mm = bprm->mm;
251 
252  bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
253  if (!vma)
254  return -ENOMEM;
255 
256  down_write(&mm->mmap_sem);
257  vma->vm_mm = mm;
258 
259  /*
260  * Place the stack at the largest stack address the architecture
261  * supports. Later, we'll move this to an appropriate place. We don't
262  * use STACK_TOP because that can depend on attributes which aren't
263  * configured yet.
264  */
265  BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266  vma->vm_end = STACK_TOP_MAX;
267  vma->vm_start = vma->vm_end - PAGE_SIZE;
268  vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
270  INIT_LIST_HEAD(&vma->anon_vma_chain);
271 
272  err = insert_vm_struct(mm, vma);
273  if (err)
274  goto err;
275 
276  mm->stack_vm = mm->total_vm = 1;
277  up_write(&mm->mmap_sem);
278  bprm->p = vma->vm_end - sizeof(void *);
279  return 0;
280 err:
281  up_write(&mm->mmap_sem);
282  bprm->vma = NULL;
284  return err;
285 }
286 
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
288 {
289  return len <= MAX_ARG_STRLEN;
290 }
291 
292 #else
293 
294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
295 {
296 }
297 
298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
299  int write)
300 {
301  struct page *page;
302 
303  page = bprm->page[pos / PAGE_SIZE];
304  if (!page && write) {
306  if (!page)
307  return NULL;
308  bprm->page[pos / PAGE_SIZE] = page;
309  }
310 
311  return page;
312 }
313 
314 static void put_arg_page(struct page *page)
315 {
316 }
317 
318 static void free_arg_page(struct linux_binprm *bprm, int i)
319 {
320  if (bprm->page[i]) {
321  __free_page(bprm->page[i]);
322  bprm->page[i] = NULL;
323  }
324 }
325 
326 static void free_arg_pages(struct linux_binprm *bprm)
327 {
328  int i;
329 
330  for (i = 0; i < MAX_ARG_PAGES; i++)
331  free_arg_page(bprm, i);
332 }
333 
334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
335  struct page *page)
336 {
337 }
338 
339 static int __bprm_mm_init(struct linux_binprm *bprm)
340 {
341  bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
342  return 0;
343 }
344 
345 static bool valid_arg_len(struct linux_binprm *bprm, long len)
346 {
347  return len <= bprm->p;
348 }
349 
350 #endif /* CONFIG_MMU */
351 
352 /*
353  * Create a new mm_struct and populate it with a temporary stack
354  * vm_area_struct. We don't have enough context at this point to set the stack
355  * flags, permissions, and offset, so we use temporary values. We'll update
356  * them later in setup_arg_pages().
357  */
358 int bprm_mm_init(struct linux_binprm *bprm)
359 {
360  int err;
361  struct mm_struct *mm = NULL;
362 
363  bprm->mm = mm = mm_alloc();
364  err = -ENOMEM;
365  if (!mm)
366  goto err;
367 
368  err = init_new_context(current, mm);
369  if (err)
370  goto err;
371 
372  err = __bprm_mm_init(bprm);
373  if (err)
374  goto err;
375 
376  return 0;
377 
378 err:
379  if (mm) {
380  bprm->mm = NULL;
381  mmdrop(mm);
382  }
383 
384  return err;
385 }
386 
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389  bool is_compat;
390 #endif
391  union {
392  const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394  const compat_uptr_t __user *compat;
395 #endif
396  } ptr;
397 };
398 
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401  const char __user *native;
402 
403 #ifdef CONFIG_COMPAT
404  if (unlikely(argv.is_compat)) {
405  compat_uptr_t compat;
406 
407  if (get_user(compat, argv.ptr.compat + nr))
408  return ERR_PTR(-EFAULT);
409 
410  return compat_ptr(compat);
411  }
412 #endif
413 
414  if (get_user(native, argv.ptr.native + nr))
415  return ERR_PTR(-EFAULT);
416 
417  return native;
418 }
419 
420 /*
421  * count() counts the number of strings in array ARGV.
422  */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425  int i = 0;
426 
427  if (argv.ptr.native != NULL) {
428  for (;;) {
429  const char __user *p = get_user_arg_ptr(argv, i);
430 
431  if (!p)
432  break;
433 
434  if (IS_ERR(p))
435  return -EFAULT;
436 
437  if (i++ >= max)
438  return -E2BIG;
439 
440  if (fatal_signal_pending(current))
441  return -ERESTARTNOHAND;
442  cond_resched();
443  }
444  }
445  return i;
446 }
447 
448 /*
449  * 'copy_strings()' copies argument/environment strings from the old
450  * processes's memory to the new process's stack. The call to get_user_pages()
451  * ensures the destination page is created and not swapped out.
452  */
453 static int copy_strings(int argc, struct user_arg_ptr argv,
454  struct linux_binprm *bprm)
455 {
456  struct page *kmapped_page = NULL;
457  char *kaddr = NULL;
458  unsigned long kpos = 0;
459  int ret;
460 
461  while (argc-- > 0) {
462  const char __user *str;
463  int len;
464  unsigned long pos;
465 
466  ret = -EFAULT;
467  str = get_user_arg_ptr(argv, argc);
468  if (IS_ERR(str))
469  goto out;
470 
471  len = strnlen_user(str, MAX_ARG_STRLEN);
472  if (!len)
473  goto out;
474 
475  ret = -E2BIG;
476  if (!valid_arg_len(bprm, len))
477  goto out;
478 
479  /* We're going to work our way backwords. */
480  pos = bprm->p;
481  str += len;
482  bprm->p -= len;
483 
484  while (len > 0) {
485  int offset, bytes_to_copy;
486 
487  if (fatal_signal_pending(current)) {
488  ret = -ERESTARTNOHAND;
489  goto out;
490  }
491  cond_resched();
492 
493  offset = pos % PAGE_SIZE;
494  if (offset == 0)
495  offset = PAGE_SIZE;
496 
497  bytes_to_copy = offset;
498  if (bytes_to_copy > len)
499  bytes_to_copy = len;
500 
501  offset -= bytes_to_copy;
502  pos -= bytes_to_copy;
503  str -= bytes_to_copy;
504  len -= bytes_to_copy;
505 
506  if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
507  struct page *page;
508 
509  page = get_arg_page(bprm, pos, 1);
510  if (!page) {
511  ret = -E2BIG;
512  goto out;
513  }
514 
515  if (kmapped_page) {
516  flush_kernel_dcache_page(kmapped_page);
517  kunmap(kmapped_page);
518  put_arg_page(kmapped_page);
519  }
520  kmapped_page = page;
521  kaddr = kmap(kmapped_page);
522  kpos = pos & PAGE_MASK;
523  flush_arg_page(bprm, kpos, kmapped_page);
524  }
525  if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
526  ret = -EFAULT;
527  goto out;
528  }
529  }
530  }
531  ret = 0;
532 out:
533  if (kmapped_page) {
534  flush_kernel_dcache_page(kmapped_page);
535  kunmap(kmapped_page);
536  put_arg_page(kmapped_page);
537  }
538  return ret;
539 }
540 
541 /*
542  * Like copy_strings, but get argv and its values from kernel memory.
543  */
544 int copy_strings_kernel(int argc, const char *const *__argv,
545  struct linux_binprm *bprm)
546 {
547  int r;
548  mm_segment_t oldfs = get_fs();
549  struct user_arg_ptr argv = {
550  .ptr.native = (const char __user *const __user *)__argv,
551  };
552 
553  set_fs(KERNEL_DS);
554  r = copy_strings(argc, argv, bprm);
555  set_fs(oldfs);
556 
557  return r;
558 }
560 
561 #ifdef CONFIG_MMU
562 
563 /*
564  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
565  * the binfmt code determines where the new stack should reside, we shift it to
566  * its final location. The process proceeds as follows:
567  *
568  * 1) Use shift to calculate the new vma endpoints.
569  * 2) Extend vma to cover both the old and new ranges. This ensures the
570  * arguments passed to subsequent functions are consistent.
571  * 3) Move vma's page tables to the new range.
572  * 4) Free up any cleared pgd range.
573  * 5) Shrink the vma to cover only the new range.
574  */
575 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
576 {
577  struct mm_struct *mm = vma->vm_mm;
578  unsigned long old_start = vma->vm_start;
579  unsigned long old_end = vma->vm_end;
580  unsigned long length = old_end - old_start;
581  unsigned long new_start = old_start - shift;
582  unsigned long new_end = old_end - shift;
583  struct mmu_gather tlb;
584 
585  BUG_ON(new_start > new_end);
586 
587  /*
588  * ensure there are no vmas between where we want to go
589  * and where we are
590  */
591  if (vma != find_vma(mm, new_start))
592  return -EFAULT;
593 
594  /*
595  * cover the whole range: [new_start, old_end)
596  */
597  if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
598  return -ENOMEM;
599 
600  /*
601  * move the page tables downwards, on failure we rely on
602  * process cleanup to remove whatever mess we made.
603  */
604  if (length != move_page_tables(vma, old_start,
605  vma, new_start, length, false))
606  return -ENOMEM;
607 
608  lru_add_drain();
609  tlb_gather_mmu(&tlb, mm, 0);
610  if (new_end > old_start) {
611  /*
612  * when the old and new regions overlap clear from new_end.
613  */
614  free_pgd_range(&tlb, new_end, old_end, new_end,
615  vma->vm_next ? vma->vm_next->vm_start : 0);
616  } else {
617  /*
618  * otherwise, clean from old_start; this is done to not touch
619  * the address space in [new_end, old_start) some architectures
620  * have constraints on va-space that make this illegal (IA64) -
621  * for the others its just a little faster.
622  */
623  free_pgd_range(&tlb, old_start, old_end, new_end,
624  vma->vm_next ? vma->vm_next->vm_start : 0);
625  }
626  tlb_finish_mmu(&tlb, new_end, old_end);
627 
628  /*
629  * Shrink the vma to just the new range. Always succeeds.
630  */
631  vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
632 
633  return 0;
634 }
635 
636 /*
637  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
638  * the stack is optionally relocated, and some extra space is added.
639  */
640 int setup_arg_pages(struct linux_binprm *bprm,
641  unsigned long stack_top,
642  int executable_stack)
643 {
644  unsigned long ret;
645  unsigned long stack_shift;
646  struct mm_struct *mm = current->mm;
647  struct vm_area_struct *vma = bprm->vma;
648  struct vm_area_struct *prev = NULL;
649  unsigned long vm_flags;
650  unsigned long stack_base;
651  unsigned long stack_size;
652  unsigned long stack_expand;
653  unsigned long rlim_stack;
654 
655 #ifdef CONFIG_STACK_GROWSUP
656  /* Limit stack size to 1GB */
657  stack_base = rlimit_max(RLIMIT_STACK);
658  if (stack_base > (1 << 30))
659  stack_base = 1 << 30;
660 
661  /* Make sure we didn't let the argument array grow too large. */
662  if (vma->vm_end - vma->vm_start > stack_base)
663  return -ENOMEM;
664 
665  stack_base = PAGE_ALIGN(stack_top - stack_base);
666 
667  stack_shift = vma->vm_start - stack_base;
668  mm->arg_start = bprm->p - stack_shift;
669  bprm->p = vma->vm_end - stack_shift;
670 #else
671  stack_top = arch_align_stack(stack_top);
672  stack_top = PAGE_ALIGN(stack_top);
673 
674  if (unlikely(stack_top < mmap_min_addr) ||
675  unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
676  return -ENOMEM;
677 
678  stack_shift = vma->vm_end - stack_top;
679 
680  bprm->p -= stack_shift;
681  mm->arg_start = bprm->p;
682 #endif
683 
684  if (bprm->loader)
685  bprm->loader -= stack_shift;
686  bprm->exec -= stack_shift;
687 
688  down_write(&mm->mmap_sem);
689  vm_flags = VM_STACK_FLAGS;
690 
691  /*
692  * Adjust stack execute permissions; explicitly enable for
693  * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
694  * (arch default) otherwise.
695  */
696  if (unlikely(executable_stack == EXSTACK_ENABLE_X))
697  vm_flags |= VM_EXEC;
698  else if (executable_stack == EXSTACK_DISABLE_X)
699  vm_flags &= ~VM_EXEC;
700  vm_flags |= mm->def_flags;
701  vm_flags |= VM_STACK_INCOMPLETE_SETUP;
702 
703  ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
704  vm_flags);
705  if (ret)
706  goto out_unlock;
707  BUG_ON(prev != vma);
708 
709  /* Move stack pages down in memory. */
710  if (stack_shift) {
711  ret = shift_arg_pages(vma, stack_shift);
712  if (ret)
713  goto out_unlock;
714  }
715 
716  /* mprotect_fixup is overkill to remove the temporary stack flags */
717  vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
718 
719  stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
720  stack_size = vma->vm_end - vma->vm_start;
721  /*
722  * Align this down to a page boundary as expand_stack
723  * will align it up.
724  */
725  rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
726 #ifdef CONFIG_STACK_GROWSUP
727  if (stack_size + stack_expand > rlim_stack)
728  stack_base = vma->vm_start + rlim_stack;
729  else
730  stack_base = vma->vm_end + stack_expand;
731 #else
732  if (stack_size + stack_expand > rlim_stack)
733  stack_base = vma->vm_end - rlim_stack;
734  else
735  stack_base = vma->vm_start - stack_expand;
736 #endif
737  current->mm->start_stack = bprm->p;
738  ret = expand_stack(vma, stack_base);
739  if (ret)
740  ret = -EFAULT;
741 
742 out_unlock:
743  up_write(&mm->mmap_sem);
744  return ret;
745 }
747 
748 #endif /* CONFIG_MMU */
749 
750 struct file *open_exec(const char *name)
751 {
752  struct file *file;
753  int err;
754  struct filename tmp = { .name = name };
755  static const struct open_flags open_exec_flags = {
757  .acc_mode = MAY_EXEC | MAY_OPEN,
758  .intent = LOOKUP_OPEN
759  };
760 
761  file = do_filp_open(AT_FDCWD, &tmp, &open_exec_flags, LOOKUP_FOLLOW);
762  if (IS_ERR(file))
763  goto out;
764 
765  err = -EACCES;
766  if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
767  goto exit;
768 
769  if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
770  goto exit;
771 
772  fsnotify_open(file);
773 
774  err = deny_write_access(file);
775  if (err)
776  goto exit;
777 
778 out:
779  return file;
780 
781 exit:
782  fput(file);
783  return ERR_PTR(err);
784 }
786 
787 int kernel_read(struct file *file, loff_t offset,
788  char *addr, unsigned long count)
789 {
790  mm_segment_t old_fs;
791  loff_t pos = offset;
792  int result;
793 
794  old_fs = get_fs();
795  set_fs(get_ds());
796  /* The cast to a user pointer is valid due to the set_fs() */
797  result = vfs_read(file, (void __user *)addr, count, &pos);
798  set_fs(old_fs);
799  return result;
800 }
801 
803 
804 static int exec_mmap(struct mm_struct *mm)
805 {
806  struct task_struct *tsk;
807  struct mm_struct * old_mm, *active_mm;
808 
809  /* Notify parent that we're no longer interested in the old VM */
810  tsk = current;
811  old_mm = current->mm;
812  mm_release(tsk, old_mm);
813 
814  if (old_mm) {
815  sync_mm_rss(old_mm);
816  /*
817  * Make sure that if there is a core dump in progress
818  * for the old mm, we get out and die instead of going
819  * through with the exec. We must hold mmap_sem around
820  * checking core_state and changing tsk->mm.
821  */
822  down_read(&old_mm->mmap_sem);
823  if (unlikely(old_mm->core_state)) {
824  up_read(&old_mm->mmap_sem);
825  return -EINTR;
826  }
827  }
828  task_lock(tsk);
829  active_mm = tsk->active_mm;
830  tsk->mm = mm;
831  tsk->active_mm = mm;
832  activate_mm(active_mm, mm);
833  task_unlock(tsk);
835  if (old_mm) {
836  up_read(&old_mm->mmap_sem);
837  BUG_ON(active_mm != old_mm);
838  setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
839  mm_update_next_owner(old_mm);
840  mmput(old_mm);
841  return 0;
842  }
843  mmdrop(active_mm);
844  return 0;
845 }
846 
847 /*
848  * This function makes sure the current process has its own signal table,
849  * so that flush_signal_handlers can later reset the handlers without
850  * disturbing other processes. (Other processes might share the signal
851  * table via the CLONE_SIGHAND option to clone().)
852  */
853 static int de_thread(struct task_struct *tsk)
854 {
855  struct signal_struct *sig = tsk->signal;
856  struct sighand_struct *oldsighand = tsk->sighand;
857  spinlock_t *lock = &oldsighand->siglock;
858 
859  if (thread_group_empty(tsk))
860  goto no_thread_group;
861 
862  /*
863  * Kill all other threads in the thread group.
864  */
865  spin_lock_irq(lock);
866  if (signal_group_exit(sig)) {
867  /*
868  * Another group action in progress, just
869  * return so that the signal is processed.
870  */
871  spin_unlock_irq(lock);
872  return -EAGAIN;
873  }
874 
875  sig->group_exit_task = tsk;
876  sig->notify_count = zap_other_threads(tsk);
877  if (!thread_group_leader(tsk))
878  sig->notify_count--;
879 
880  while (sig->notify_count) {
882  spin_unlock_irq(lock);
883  schedule();
884  if (unlikely(__fatal_signal_pending(tsk)))
885  goto killed;
886  spin_lock_irq(lock);
887  }
888  spin_unlock_irq(lock);
889 
890  /*
891  * At this point all other threads have exited, all we have to
892  * do is to wait for the thread group leader to become inactive,
893  * and to assume its PID:
894  */
895  if (!thread_group_leader(tsk)) {
896  struct task_struct *leader = tsk->group_leader;
897 
898  sig->notify_count = -1; /* for exit_notify() */
899  for (;;) {
900  write_lock_irq(&tasklist_lock);
901  if (likely(leader->exit_state))
902  break;
904  write_unlock_irq(&tasklist_lock);
905  schedule();
906  if (unlikely(__fatal_signal_pending(tsk)))
907  goto killed;
908  }
909 
910  /*
911  * The only record we have of the real-time age of a
912  * process, regardless of execs it's done, is start_time.
913  * All the past CPU time is accumulated in signal_struct
914  * from sister threads now dead. But in this non-leader
915  * exec, nothing survives from the original leader thread,
916  * whose birth marks the true age of this process now.
917  * When we take on its identity by switching to its PID, we
918  * also take its birthdate (always earlier than our own).
919  */
920  tsk->start_time = leader->start_time;
921 
922  BUG_ON(!same_thread_group(leader, tsk));
923  BUG_ON(has_group_leader_pid(tsk));
924  /*
925  * An exec() starts a new thread group with the
926  * TGID of the previous thread group. Rehash the
927  * two threads with a switched PID, and release
928  * the former thread group leader:
929  */
930 
931  /* Become a process group leader with the old leader's pid.
932  * The old leader becomes a thread of the this thread group.
933  * Note: The old leader also uses this pid until release_task
934  * is called. Odd but simple and correct.
935  */
936  detach_pid(tsk, PIDTYPE_PID);
937  tsk->pid = leader->pid;
938  attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
939  transfer_pid(leader, tsk, PIDTYPE_PGID);
940  transfer_pid(leader, tsk, PIDTYPE_SID);
941 
942  list_replace_rcu(&leader->tasks, &tsk->tasks);
943  list_replace_init(&leader->sibling, &tsk->sibling);
944 
945  tsk->group_leader = tsk;
946  leader->group_leader = tsk;
947 
948  tsk->exit_signal = SIGCHLD;
949  leader->exit_signal = -1;
950 
951  BUG_ON(leader->exit_state != EXIT_ZOMBIE);
952  leader->exit_state = EXIT_DEAD;
953 
954  /*
955  * We are going to release_task()->ptrace_unlink() silently,
956  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
957  * the tracer wont't block again waiting for this thread.
958  */
959  if (unlikely(leader->ptrace))
960  __wake_up_parent(leader, leader->parent);
961  write_unlock_irq(&tasklist_lock);
962 
963  release_task(leader);
964  }
965 
966  sig->group_exit_task = NULL;
967  sig->notify_count = 0;
968 
969 no_thread_group:
970  /* we have changed execution domain */
971  tsk->exit_signal = SIGCHLD;
972 
973  exit_itimers(sig);
975 
976  if (atomic_read(&oldsighand->count) != 1) {
977  struct sighand_struct *newsighand;
978  /*
979  * This ->sighand is shared with the CLONE_SIGHAND
980  * but not CLONE_THREAD task, switch to the new one.
981  */
983  if (!newsighand)
984  return -ENOMEM;
985 
986  atomic_set(&newsighand->count, 1);
987  memcpy(newsighand->action, oldsighand->action,
988  sizeof(newsighand->action));
989 
990  write_lock_irq(&tasklist_lock);
991  spin_lock(&oldsighand->siglock);
992  rcu_assign_pointer(tsk->sighand, newsighand);
993  spin_unlock(&oldsighand->siglock);
994  write_unlock_irq(&tasklist_lock);
995 
996  __cleanup_sighand(oldsighand);
997  }
998 
999  BUG_ON(!thread_group_leader(tsk));
1000  return 0;
1001 
1002 killed:
1003  /* protects against exit_notify() and __exit_signal() */
1004  read_lock(&tasklist_lock);
1005  sig->group_exit_task = NULL;
1006  sig->notify_count = 0;
1007  read_unlock(&tasklist_lock);
1008  return -EAGAIN;
1009 }
1010 
1011 char *get_task_comm(char *buf, struct task_struct *tsk)
1012 {
1013  /* buf must be at least sizeof(tsk->comm) in size */
1014  task_lock(tsk);
1015  strncpy(buf, tsk->comm, sizeof(tsk->comm));
1016  task_unlock(tsk);
1017  return buf;
1018 }
1020 
1021 /*
1022  * These functions flushes out all traces of the currently running executable
1023  * so that a new one can be started
1024  */
1025 
1026 void set_task_comm(struct task_struct *tsk, char *buf)
1027 {
1028  task_lock(tsk);
1029 
1030  trace_task_rename(tsk, buf);
1031 
1032  /*
1033  * Threads may access current->comm without holding
1034  * the task lock, so write the string carefully.
1035  * Readers without a lock may see incomplete new
1036  * names but are safe from non-terminating string reads.
1037  */
1038  memset(tsk->comm, 0, TASK_COMM_LEN);
1039  wmb();
1040  strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1041  task_unlock(tsk);
1042  perf_event_comm(tsk);
1043 }
1044 
1045 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1046 {
1047  int i, ch;
1048 
1049  /* Copies the binary name from after last slash */
1050  for (i = 0; (ch = *(fn++)) != '\0';) {
1051  if (ch == '/')
1052  i = 0; /* overwrite what we wrote */
1053  else
1054  if (i < len - 1)
1055  tcomm[i++] = ch;
1056  }
1057  tcomm[i] = '\0';
1058 }
1059 
1060 int flush_old_exec(struct linux_binprm * bprm)
1061 {
1062  int retval;
1063 
1064  /*
1065  * Make sure we have a private signal table and that
1066  * we are unassociated from the previous thread group.
1067  */
1068  retval = de_thread(current);
1069  if (retval)
1070  goto out;
1071 
1072  set_mm_exe_file(bprm->mm, bprm->file);
1073 
1074  filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1075  /*
1076  * Release all of the old mmap stuff
1077  */
1078  acct_arg_size(bprm, 0);
1079  retval = exec_mmap(bprm->mm);
1080  if (retval)
1081  goto out;
1082 
1083  bprm->mm = NULL; /* We're using it now */
1084 
1085  set_fs(USER_DS);
1086  current->flags &=
1088  flush_thread();
1089  current->personality &= ~bprm->per_clear;
1090 
1091  return 0;
1092 
1093 out:
1094  return retval;
1095 }
1097 
1098 void would_dump(struct linux_binprm *bprm, struct file *file)
1099 {
1100  if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1102 }
1104 
1105 void setup_new_exec(struct linux_binprm * bprm)
1106 {
1108 
1109  /* This is the point of no return */
1110  current->sas_ss_sp = current->sas_ss_size = 0;
1111 
1112  if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1114  else
1116 
1117  set_task_comm(current, bprm->tcomm);
1118 
1119  /* Set the new mm task size. We have to do that late because it may
1120  * depend on TIF_32BIT which is only updated in flush_thread() on
1121  * some architectures like powerpc
1122  */
1123  current->mm->task_size = TASK_SIZE;
1124 
1125  /* install the new credentials */
1126  if (!uid_eq(bprm->cred->uid, current_euid()) ||
1127  !gid_eq(bprm->cred->gid, current_egid())) {
1128  current->pdeath_signal = 0;
1129  } else {
1130  would_dump(bprm, bprm->file);
1133  }
1134 
1135  /*
1136  * Flush performance counters when crossing a
1137  * security domain:
1138  */
1139  if (!get_dumpable(current->mm))
1141 
1142  /* An exec changes our domain. We are no longer part of the thread
1143  group */
1144 
1145  current->self_exec_id++;
1146 
1148  do_close_on_exec(current->files);
1149 }
1151 
1152 /*
1153  * Prepare credentials and lock ->cred_guard_mutex.
1154  * install_exec_creds() commits the new creds and drops the lock.
1155  * Or, if exec fails before, free_bprm() should release ->cred and
1156  * and unlock.
1157  */
1159 {
1160  if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1161  return -ERESTARTNOINTR;
1162 
1163  bprm->cred = prepare_exec_creds();
1164  if (likely(bprm->cred))
1165  return 0;
1166 
1167  mutex_unlock(&current->signal->cred_guard_mutex);
1168  return -ENOMEM;
1169 }
1170 
1171 void free_bprm(struct linux_binprm *bprm)
1172 {
1173  free_arg_pages(bprm);
1174  if (bprm->cred) {
1175  mutex_unlock(&current->signal->cred_guard_mutex);
1176  abort_creds(bprm->cred);
1177  }
1178  kfree(bprm);
1179 }
1180 
1181 /*
1182  * install the new credentials for this executable
1183  */
1185 {
1187 
1188  commit_creds(bprm->cred);
1189  bprm->cred = NULL;
1190  /*
1191  * cred_guard_mutex must be held at least to this point to prevent
1192  * ptrace_attach() from altering our determination of the task's
1193  * credentials; any time after this it may be unlocked.
1194  */
1196  mutex_unlock(&current->signal->cred_guard_mutex);
1197 }
1199 
1200 /*
1201  * determine how safe it is to execute the proposed program
1202  * - the caller must hold ->cred_guard_mutex to protect against
1203  * PTRACE_ATTACH
1204  */
1205 static int check_unsafe_exec(struct linux_binprm *bprm)
1206 {
1207  struct task_struct *p = current, *t;
1208  unsigned n_fs;
1209  int res = 0;
1210 
1211  if (p->ptrace) {
1212  if (p->ptrace & PT_PTRACE_CAP)
1213  bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1214  else
1215  bprm->unsafe |= LSM_UNSAFE_PTRACE;
1216  }
1217 
1218  /*
1219  * This isn't strictly necessary, but it makes it harder for LSMs to
1220  * mess up.
1221  */
1222  if (current->no_new_privs)
1224 
1225  n_fs = 1;
1226  spin_lock(&p->fs->lock);
1227  rcu_read_lock();
1228  for (t = next_thread(p); t != p; t = next_thread(t)) {
1229  if (t->fs == p->fs)
1230  n_fs++;
1231  }
1232  rcu_read_unlock();
1233 
1234  if (p->fs->users > n_fs) {
1235  bprm->unsafe |= LSM_UNSAFE_SHARE;
1236  } else {
1237  res = -EAGAIN;
1238  if (!p->fs->in_exec) {
1239  p->fs->in_exec = 1;
1240  res = 1;
1241  }
1242  }
1243  spin_unlock(&p->fs->lock);
1244 
1245  return res;
1246 }
1247 
1248 /*
1249  * Fill the binprm structure from the inode.
1250  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1251  *
1252  * This may be called multiple times for binary chains (scripts for example).
1253  */
1254 int prepare_binprm(struct linux_binprm *bprm)
1255 {
1256  umode_t mode;
1257  struct inode * inode = bprm->file->f_path.dentry->d_inode;
1258  int retval;
1259 
1260  mode = inode->i_mode;
1261  if (bprm->file->f_op == NULL)
1262  return -EACCES;
1263 
1264  /* clear any previous set[ug]id data from a previous binary */
1265  bprm->cred->euid = current_euid();
1266  bprm->cred->egid = current_egid();
1267 
1268  if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1269  !current->no_new_privs) {
1270  /* Set-uid? */
1271  if (mode & S_ISUID) {
1272  if (!kuid_has_mapping(bprm->cred->user_ns, inode->i_uid))
1273  return -EPERM;
1274  bprm->per_clear |= PER_CLEAR_ON_SETID;
1275  bprm->cred->euid = inode->i_uid;
1276 
1277  }
1278 
1279  /* Set-gid? */
1280  /*
1281  * If setgid is set but no group execute bit then this
1282  * is a candidate for mandatory locking, not a setgid
1283  * executable.
1284  */
1285  if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1286  if (!kgid_has_mapping(bprm->cred->user_ns, inode->i_gid))
1287  return -EPERM;
1288  bprm->per_clear |= PER_CLEAR_ON_SETID;
1289  bprm->cred->egid = inode->i_gid;
1290  }
1291  }
1292 
1293  /* fill in binprm security blob */
1294  retval = security_bprm_set_creds(bprm);
1295  if (retval)
1296  return retval;
1297  bprm->cred_prepared = 1;
1298 
1299  memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1300  return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1301 }
1302 
1304 
1305 /*
1306  * Arguments are '\0' separated strings found at the location bprm->p
1307  * points to; chop off the first by relocating brpm->p to right after
1308  * the first '\0' encountered.
1309  */
1311 {
1312  int ret = 0;
1313  unsigned long offset;
1314  char *kaddr;
1315  struct page *page;
1316 
1317  if (!bprm->argc)
1318  return 0;
1319 
1320  do {
1321  offset = bprm->p & ~PAGE_MASK;
1322  page = get_arg_page(bprm, bprm->p, 0);
1323  if (!page) {
1324  ret = -EFAULT;
1325  goto out;
1326  }
1327  kaddr = kmap_atomic(page);
1328 
1329  for (; offset < PAGE_SIZE && kaddr[offset];
1330  offset++, bprm->p++)
1331  ;
1332 
1333  kunmap_atomic(kaddr);
1334  put_arg_page(page);
1335 
1336  if (offset == PAGE_SIZE)
1337  free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1338  } while (offset == PAGE_SIZE);
1339 
1340  bprm->p++;
1341  bprm->argc--;
1342  ret = 0;
1343 
1344 out:
1345  return ret;
1346 }
1348 
1349 /*
1350  * cycle the list of binary formats handler, until one recognizes the image
1351  */
1353 {
1354  unsigned int depth = bprm->recursion_depth;
1355  int try,retval;
1356  struct linux_binfmt *fmt;
1357  pid_t old_pid, old_vpid;
1358 
1359  retval = security_bprm_check(bprm);
1360  if (retval)
1361  return retval;
1362 
1363  retval = audit_bprm(bprm);
1364  if (retval)
1365  return retval;
1366 
1367  /* Need to fetch pid before load_binary changes it */
1368  old_pid = current->pid;
1369  rcu_read_lock();
1370  old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1371  rcu_read_unlock();
1372 
1373  retval = -ENOENT;
1374  for (try=0; try<2; try++) {
1375  read_lock(&binfmt_lock);
1376  list_for_each_entry(fmt, &formats, lh) {
1377  int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1378  if (!fn)
1379  continue;
1380  if (!try_module_get(fmt->module))
1381  continue;
1382  read_unlock(&binfmt_lock);
1383  retval = fn(bprm, regs);
1384  /*
1385  * Restore the depth counter to its starting value
1386  * in this call, so we don't have to rely on every
1387  * load_binary function to restore it on return.
1388  */
1389  bprm->recursion_depth = depth;
1390  if (retval >= 0) {
1391  if (depth == 0) {
1392  trace_sched_process_exec(current, old_pid, bprm);
1393  ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1394  }
1395  put_binfmt(fmt);
1396  allow_write_access(bprm->file);
1397  if (bprm->file)
1398  fput(bprm->file);
1399  bprm->file = NULL;
1400  current->did_exec = 1;
1402  return retval;
1403  }
1404  read_lock(&binfmt_lock);
1405  put_binfmt(fmt);
1406  if (retval != -ENOEXEC || bprm->mm == NULL)
1407  break;
1408  if (!bprm->file) {
1409  read_unlock(&binfmt_lock);
1410  return retval;
1411  }
1412  }
1413  read_unlock(&binfmt_lock);
1414 #ifdef CONFIG_MODULES
1415  if (retval != -ENOEXEC || bprm->mm == NULL) {
1416  break;
1417  } else {
1418 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1419  if (printable(bprm->buf[0]) &&
1420  printable(bprm->buf[1]) &&
1421  printable(bprm->buf[2]) &&
1422  printable(bprm->buf[3]))
1423  break; /* -ENOEXEC */
1424  if (try)
1425  break; /* -ENOEXEC */
1426  request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1427  }
1428 #else
1429  break;
1430 #endif
1431  }
1432  return retval;
1433 }
1434 
1436 
1437 /*
1438  * sys_execve() executes a new program.
1439  */
1440 static int do_execve_common(const char *filename,
1441  struct user_arg_ptr argv,
1442  struct user_arg_ptr envp,
1443  struct pt_regs *regs)
1444 {
1445  struct linux_binprm *bprm;
1446  struct file *file;
1447  struct files_struct *displaced;
1448  bool clear_in_exec;
1449  int retval;
1450  const struct cred *cred = current_cred();
1451 
1452  /*
1453  * We move the actual failure in case of RLIMIT_NPROC excess from
1454  * set*uid() to execve() because too many poorly written programs
1455  * don't check setuid() return code. Here we additionally recheck
1456  * whether NPROC limit is still exceeded.
1457  */
1458  if ((current->flags & PF_NPROC_EXCEEDED) &&
1459  atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1460  retval = -EAGAIN;
1461  goto out_ret;
1462  }
1463 
1464  /* We're below the limit (still or again), so we don't want to make
1465  * further execve() calls fail. */
1466  current->flags &= ~PF_NPROC_EXCEEDED;
1467 
1468  retval = unshare_files(&displaced);
1469  if (retval)
1470  goto out_ret;
1471 
1472  retval = -ENOMEM;
1473  bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1474  if (!bprm)
1475  goto out_files;
1476 
1477  retval = prepare_bprm_creds(bprm);
1478  if (retval)
1479  goto out_free;
1480 
1481  retval = check_unsafe_exec(bprm);
1482  if (retval < 0)
1483  goto out_free;
1484  clear_in_exec = retval;
1485  current->in_execve = 1;
1486 
1487  file = open_exec(filename);
1488  retval = PTR_ERR(file);
1489  if (IS_ERR(file))
1490  goto out_unmark;
1491 
1492  sched_exec();
1493 
1494  bprm->file = file;
1495  bprm->filename = filename;
1496  bprm->interp = filename;
1497 
1498  retval = bprm_mm_init(bprm);
1499  if (retval)
1500  goto out_file;
1501 
1502  bprm->argc = count(argv, MAX_ARG_STRINGS);
1503  if ((retval = bprm->argc) < 0)
1504  goto out;
1505 
1506  bprm->envc = count(envp, MAX_ARG_STRINGS);
1507  if ((retval = bprm->envc) < 0)
1508  goto out;
1509 
1510  retval = prepare_binprm(bprm);
1511  if (retval < 0)
1512  goto out;
1513 
1514  retval = copy_strings_kernel(1, &bprm->filename, bprm);
1515  if (retval < 0)
1516  goto out;
1517 
1518  bprm->exec = bprm->p;
1519  retval = copy_strings(bprm->envc, envp, bprm);
1520  if (retval < 0)
1521  goto out;
1522 
1523  retval = copy_strings(bprm->argc, argv, bprm);
1524  if (retval < 0)
1525  goto out;
1526 
1527  retval = search_binary_handler(bprm,regs);
1528  if (retval < 0)
1529  goto out;
1530 
1531  /* execve succeeded */
1532  current->fs->in_exec = 0;
1533  current->in_execve = 0;
1534  acct_update_integrals(current);
1535  free_bprm(bprm);
1536  if (displaced)
1537  put_files_struct(displaced);
1538  return retval;
1539 
1540 out:
1541  if (bprm->mm) {
1542  acct_arg_size(bprm, 0);
1543  mmput(bprm->mm);
1544  }
1545 
1546 out_file:
1547  if (bprm->file) {
1548  allow_write_access(bprm->file);
1549  fput(bprm->file);
1550  }
1551 
1552 out_unmark:
1553  if (clear_in_exec)
1554  current->fs->in_exec = 0;
1555  current->in_execve = 0;
1556 
1557 out_free:
1558  free_bprm(bprm);
1559 
1560 out_files:
1561  if (displaced)
1562  reset_files_struct(displaced);
1563 out_ret:
1564  return retval;
1565 }
1566 
1567 int do_execve(const char *filename,
1568  const char __user *const __user *__argv,
1569  const char __user *const __user *__envp,
1570  struct pt_regs *regs)
1571 {
1572  struct user_arg_ptr argv = { .ptr.native = __argv };
1573  struct user_arg_ptr envp = { .ptr.native = __envp };
1574  return do_execve_common(filename, argv, envp, regs);
1575 }
1576 
1577 #ifdef CONFIG_COMPAT
1578 int compat_do_execve(const char *filename,
1579  const compat_uptr_t __user *__argv,
1580  const compat_uptr_t __user *__envp,
1581  struct pt_regs *regs)
1582 {
1583  struct user_arg_ptr argv = {
1584  .is_compat = true,
1585  .ptr.compat = __argv,
1586  };
1587  struct user_arg_ptr envp = {
1588  .is_compat = true,
1589  .ptr.compat = __envp,
1590  };
1591  return do_execve_common(filename, argv, envp, regs);
1592 }
1593 #endif
1594 
1595 void set_binfmt(struct linux_binfmt *new)
1596 {
1597  struct mm_struct *mm = current->mm;
1598 
1599  if (mm->binfmt)
1600  module_put(mm->binfmt->module);
1601 
1602  mm->binfmt = new;
1603  if (new)
1604  __module_get(new->module);
1605 }
1606 
1608 
1609 /*
1610  * set_dumpable converts traditional three-value dumpable to two flags and
1611  * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1612  * these bits are not changed atomically. So get_dumpable can observe the
1613  * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1614  * return either old dumpable or new one by paying attention to the order of
1615  * modifying the bits.
1616  *
1617  * dumpable | mm->flags (binary)
1618  * old new | initial interim final
1619  * ---------+-----------------------
1620  * 0 1 | 00 01 01
1621  * 0 2 | 00 10(*) 11
1622  * 1 0 | 01 00 00
1623  * 1 2 | 01 11 11
1624  * 2 0 | 11 10(*) 00
1625  * 2 1 | 11 11 01
1626  *
1627  * (*) get_dumpable regards interim value of 10 as 11.
1628  */
1629 void set_dumpable(struct mm_struct *mm, int value)
1630 {
1631  switch (value) {
1633  clear_bit(MMF_DUMPABLE, &mm->flags);
1634  smp_wmb();
1636  break;
1637  case SUID_DUMPABLE_ENABLED:
1638  set_bit(MMF_DUMPABLE, &mm->flags);
1639  smp_wmb();
1641  break;
1642  case SUID_DUMPABLE_SAFE:
1644  smp_wmb();
1645  set_bit(MMF_DUMPABLE, &mm->flags);
1646  break;
1647  }
1648 }
1649 
1650 int __get_dumpable(unsigned long mm_flags)
1651 {
1652  int ret;
1653 
1654  ret = mm_flags & MMF_DUMPABLE_MASK;
1655  return (ret > SUID_DUMPABLE_ENABLED) ? SUID_DUMPABLE_SAFE : ret;
1656 }
1657 
1658 int get_dumpable(struct mm_struct *mm)
1659 {
1660  return __get_dumpable(mm->flags);
1661 }
1662 
1663 #ifdef __ARCH_WANT_SYS_EXECVE
1664 SYSCALL_DEFINE3(execve,
1665  const char __user *, filename,
1666  const char __user *const __user *, argv,
1667  const char __user *const __user *, envp)
1668 {
1669  struct filename *path = getname(filename);
1670  int error = PTR_ERR(path);
1671  if (!IS_ERR(path)) {
1672  error = do_execve(path->name, argv, envp, current_pt_regs());
1673  putname(path);
1674  }
1675  return error;
1676 }
1677 #ifdef CONFIG_COMPAT
1678 asmlinkage long compat_sys_execve(const char __user * filename,
1679  const compat_uptr_t __user * argv,
1680  const compat_uptr_t __user * envp)
1681 {
1682  struct filename *path = getname(filename);
1683  int error = PTR_ERR(path);
1684  if (!IS_ERR(path)) {
1685  error = compat_do_execve(path->name, argv, envp,
1686  current_pt_regs());
1687  putname(path);
1688  }
1689  return error;
1690 }
1691 #endif
1692 #endif
1693 
1694 #ifdef __ARCH_WANT_KERNEL_EXECVE
1695 int kernel_execve(const char *filename,
1696  const char *const argv[],
1697  const char *const envp[])
1698 {
1699  struct pt_regs *p = current_pt_regs();
1700  int ret;
1701 
1702  ret = do_execve(filename,
1703  (const char __user *const __user *)argv,
1704  (const char __user *const __user *)envp, p);
1705  if (ret < 0)
1706  return ret;
1707 
1708  /*
1709  * We were successful. We won't be returning to our caller, but
1710  * instead to user space by manipulating the kernel stack.
1711  */
1713 }
1714 #endif