Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
inode.c
Go to the documentation of this file.
1 /*
2  * linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card ([email protected])
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  * from
10  *
11  * linux/fs/minix/inode.c
12  *
13  * Copyright (C) 1991, 1992 Linus Torvalds
14  *
15  * Goal-directed block allocation by Stephen Tweedie
16  * ([email protected]), 1993, 1998
17  * Big-endian to little-endian byte-swapping/bitmaps by
18  * David S. Miller ([email protected]), 1995
19  * 64-bit file support on 64-bit platforms by Jakub Jelinek
21  *
22  * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/writeback.h>
30 #include <linux/buffer_head.h>
31 #include <linux/mpage.h>
32 #include <linux/fiemap.h>
33 #include <linux/namei.h>
34 #include "ext2.h"
35 #include "acl.h"
36 #include "xip.h"
37 
38 static int __ext2_write_inode(struct inode *inode, int do_sync);
39 
40 /*
41  * Test whether an inode is a fast symlink.
42  */
43 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
44 {
45  int ea_blocks = EXT2_I(inode)->i_file_acl ?
46  (inode->i_sb->s_blocksize >> 9) : 0;
47 
48  return (S_ISLNK(inode->i_mode) &&
49  inode->i_blocks - ea_blocks == 0);
50 }
51 
52 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
53 
54 static void ext2_write_failed(struct address_space *mapping, loff_t to)
55 {
56  struct inode *inode = mapping->host;
57 
58  if (to > inode->i_size) {
59  truncate_pagecache(inode, to, inode->i_size);
60  ext2_truncate_blocks(inode, inode->i_size);
61  }
62 }
63 
64 /*
65  * Called at the last iput() if i_nlink is zero.
66  */
67 void ext2_evict_inode(struct inode * inode)
68 {
69  struct ext2_block_alloc_info *rsv;
70  int want_delete = 0;
71 
72  if (!inode->i_nlink && !is_bad_inode(inode)) {
73  want_delete = 1;
74  dquot_initialize(inode);
75  } else {
76  dquot_drop(inode);
77  }
78 
79  truncate_inode_pages(&inode->i_data, 0);
80 
81  if (want_delete) {
82  sb_start_intwrite(inode->i_sb);
83  /* set dtime */
84  EXT2_I(inode)->i_dtime = get_seconds();
85  mark_inode_dirty(inode);
86  __ext2_write_inode(inode, inode_needs_sync(inode));
87  /* truncate to 0 */
88  inode->i_size = 0;
89  if (inode->i_blocks)
90  ext2_truncate_blocks(inode, 0);
91  }
92 
94  clear_inode(inode);
95 
97  rsv = EXT2_I(inode)->i_block_alloc_info;
98  EXT2_I(inode)->i_block_alloc_info = NULL;
99  if (unlikely(rsv))
100  kfree(rsv);
101 
102  if (want_delete) {
103  ext2_free_inode(inode);
104  sb_end_intwrite(inode->i_sb);
105  }
106 }
107 
108 typedef struct {
111  struct buffer_head *bh;
112 } Indirect;
113 
114 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
115 {
116  p->key = *(p->p = v);
117  p->bh = bh;
118 }
119 
120 static inline int verify_chain(Indirect *from, Indirect *to)
121 {
122  while (from <= to && from->key == *from->p)
123  from++;
124  return (from > to);
125 }
126 
147 /*
148  * Portability note: the last comparison (check that we fit into triple
149  * indirect block) is spelled differently, because otherwise on an
150  * architecture with 32-bit longs and 8Kb pages we might get into trouble
151  * if our filesystem had 8Kb blocks. We might use long long, but that would
152  * kill us on x86. Oh, well, at least the sign propagation does not matter -
153  * i_block would have to be negative in the very beginning, so we would not
154  * get there at all.
155  */
156 
157 static int ext2_block_to_path(struct inode *inode,
158  long i_block, int offsets[4], int *boundary)
159 {
160  int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
161  int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
162  const long direct_blocks = EXT2_NDIR_BLOCKS,
163  indirect_blocks = ptrs,
164  double_blocks = (1 << (ptrs_bits * 2));
165  int n = 0;
166  int final = 0;
167 
168  if (i_block < 0) {
169  ext2_msg(inode->i_sb, KERN_WARNING,
170  "warning: %s: block < 0", __func__);
171  } else if (i_block < direct_blocks) {
172  offsets[n++] = i_block;
173  final = direct_blocks;
174  } else if ( (i_block -= direct_blocks) < indirect_blocks) {
175  offsets[n++] = EXT2_IND_BLOCK;
176  offsets[n++] = i_block;
177  final = ptrs;
178  } else if ((i_block -= indirect_blocks) < double_blocks) {
179  offsets[n++] = EXT2_DIND_BLOCK;
180  offsets[n++] = i_block >> ptrs_bits;
181  offsets[n++] = i_block & (ptrs - 1);
182  final = ptrs;
183  } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
184  offsets[n++] = EXT2_TIND_BLOCK;
185  offsets[n++] = i_block >> (ptrs_bits * 2);
186  offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
187  offsets[n++] = i_block & (ptrs - 1);
188  final = ptrs;
189  } else {
190  ext2_msg(inode->i_sb, KERN_WARNING,
191  "warning: %s: block is too big", __func__);
192  }
193  if (boundary)
194  *boundary = final - 1 - (i_block & (ptrs - 1));
195 
196  return n;
197 }
198 
228 static Indirect *ext2_get_branch(struct inode *inode,
229  int depth,
230  int *offsets,
231  Indirect chain[4],
232  int *err)
233 {
234  struct super_block *sb = inode->i_sb;
235  Indirect *p = chain;
236  struct buffer_head *bh;
237 
238  *err = 0;
239  /* i_data is not going away, no lock needed */
240  add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
241  if (!p->key)
242  goto no_block;
243  while (--depth) {
244  bh = sb_bread(sb, le32_to_cpu(p->key));
245  if (!bh)
246  goto failure;
247  read_lock(&EXT2_I(inode)->i_meta_lock);
248  if (!verify_chain(chain, p))
249  goto changed;
250  add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
251  read_unlock(&EXT2_I(inode)->i_meta_lock);
252  if (!p->key)
253  goto no_block;
254  }
255  return NULL;
256 
257 changed:
258  read_unlock(&EXT2_I(inode)->i_meta_lock);
259  brelse(bh);
260  *err = -EAGAIN;
261  goto no_block;
262 failure:
263  *err = -EIO;
264 no_block:
265  return p;
266 }
267 
288 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
289 {
290  struct ext2_inode_info *ei = EXT2_I(inode);
291  __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
292  __le32 *p;
293  ext2_fsblk_t bg_start;
294  ext2_fsblk_t colour;
295 
296  /* Try to find previous block */
297  for (p = ind->p - 1; p >= start; p--)
298  if (*p)
299  return le32_to_cpu(*p);
300 
301  /* No such thing, so let's try location of indirect block */
302  if (ind->bh)
303  return ind->bh->b_blocknr;
304 
305  /*
306  * It is going to be referred from inode itself? OK, just put it into
307  * the same cylinder group then.
308  */
309  bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
310  colour = (current->pid % 16) *
311  (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
312  return bg_start + colour;
313 }
314 
324 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
325  Indirect *partial)
326 {
327  struct ext2_block_alloc_info *block_i;
328 
329  block_i = EXT2_I(inode)->i_block_alloc_info;
330 
331  /*
332  * try the heuristic for sequential allocation,
333  * failing that at least try to get decent locality.
334  */
335  if (block_i && (block == block_i->last_alloc_logical_block + 1)
336  && (block_i->last_alloc_physical_block != 0)) {
337  return block_i->last_alloc_physical_block + 1;
338  }
339 
340  return ext2_find_near(inode, partial);
341 }
342 
355 static int
356 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
357  int blocks_to_boundary)
358 {
359  unsigned long count = 0;
360 
361  /*
362  * Simple case, [t,d]Indirect block(s) has not allocated yet
363  * then it's clear blocks on that path have not allocated
364  */
365  if (k > 0) {
366  /* right now don't hanel cross boundary allocation */
367  if (blks < blocks_to_boundary + 1)
368  count += blks;
369  else
370  count += blocks_to_boundary + 1;
371  return count;
372  }
373 
374  count++;
375  while (count < blks && count <= blocks_to_boundary
376  && le32_to_cpu(*(branch[0].p + count)) == 0) {
377  count++;
378  }
379  return count;
380 }
381 
392 static int ext2_alloc_blocks(struct inode *inode,
393  ext2_fsblk_t goal, int indirect_blks, int blks,
394  ext2_fsblk_t new_blocks[4], int *err)
395 {
396  int target, i;
397  unsigned long count = 0;
398  int index = 0;
399  ext2_fsblk_t current_block = 0;
400  int ret = 0;
401 
402  /*
403  * Here we try to allocate the requested multiple blocks at once,
404  * on a best-effort basis.
405  * To build a branch, we should allocate blocks for
406  * the indirect blocks(if not allocated yet), and at least
407  * the first direct block of this branch. That's the
408  * minimum number of blocks need to allocate(required)
409  */
410  target = blks + indirect_blks;
411 
412  while (1) {
413  count = target;
414  /* allocating blocks for indirect blocks and direct blocks */
415  current_block = ext2_new_blocks(inode,goal,&count,err);
416  if (*err)
417  goto failed_out;
418 
419  target -= count;
420  /* allocate blocks for indirect blocks */
421  while (index < indirect_blks && count) {
422  new_blocks[index++] = current_block++;
423  count--;
424  }
425 
426  if (count > 0)
427  break;
428  }
429 
430  /* save the new block number for the first direct block */
431  new_blocks[index] = current_block;
432 
433  /* total number of blocks allocated for direct blocks */
434  ret = count;
435  *err = 0;
436  return ret;
437 failed_out:
438  for (i = 0; i <index; i++)
439  ext2_free_blocks(inode, new_blocks[i], 1);
440  if (index)
441  mark_inode_dirty(inode);
442  return ret;
443 }
444 
470 static int ext2_alloc_branch(struct inode *inode,
471  int indirect_blks, int *blks, ext2_fsblk_t goal,
472  int *offsets, Indirect *branch)
473 {
474  int blocksize = inode->i_sb->s_blocksize;
475  int i, n = 0;
476  int err = 0;
477  struct buffer_head *bh;
478  int num;
479  ext2_fsblk_t new_blocks[4];
480  ext2_fsblk_t current_block;
481 
482  num = ext2_alloc_blocks(inode, goal, indirect_blks,
483  *blks, new_blocks, &err);
484  if (err)
485  return err;
486 
487  branch[0].key = cpu_to_le32(new_blocks[0]);
488  /*
489  * metadata blocks and data blocks are allocated.
490  */
491  for (n = 1; n <= indirect_blks; n++) {
492  /*
493  * Get buffer_head for parent block, zero it out
494  * and set the pointer to new one, then send
495  * parent to disk.
496  */
497  bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
498  branch[n].bh = bh;
499  lock_buffer(bh);
500  memset(bh->b_data, 0, blocksize);
501  branch[n].p = (__le32 *) bh->b_data + offsets[n];
502  branch[n].key = cpu_to_le32(new_blocks[n]);
503  *branch[n].p = branch[n].key;
504  if ( n == indirect_blks) {
505  current_block = new_blocks[n];
506  /*
507  * End of chain, update the last new metablock of
508  * the chain to point to the new allocated
509  * data blocks numbers
510  */
511  for (i=1; i < num; i++)
512  *(branch[n].p + i) = cpu_to_le32(++current_block);
513  }
514  set_buffer_uptodate(bh);
515  unlock_buffer(bh);
516  mark_buffer_dirty_inode(bh, inode);
517  /* We used to sync bh here if IS_SYNC(inode).
518  * But we now rely upon generic_write_sync()
519  * and b_inode_buffers. But not for directories.
520  */
521  if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
522  sync_dirty_buffer(bh);
523  }
524  *blks = num;
525  return err;
526 }
527 
540 static void ext2_splice_branch(struct inode *inode,
541  long block, Indirect *where, int num, int blks)
542 {
543  int i;
544  struct ext2_block_alloc_info *block_i;
545  ext2_fsblk_t current_block;
546 
547  block_i = EXT2_I(inode)->i_block_alloc_info;
548 
549  /* XXX LOCKING probably should have i_meta_lock ?*/
550  /* That's it */
551 
552  *where->p = where->key;
553 
554  /*
555  * Update the host buffer_head or inode to point to more just allocated
556  * direct blocks blocks
557  */
558  if (num == 0 && blks > 1) {
559  current_block = le32_to_cpu(where->key) + 1;
560  for (i = 1; i < blks; i++)
561  *(where->p + i ) = cpu_to_le32(current_block++);
562  }
563 
564  /*
565  * update the most recently allocated logical & physical block
566  * in i_block_alloc_info, to assist find the proper goal block for next
567  * allocation
568  */
569  if (block_i) {
570  block_i->last_alloc_logical_block = block + blks - 1;
571  block_i->last_alloc_physical_block =
572  le32_to_cpu(where[num].key) + blks - 1;
573  }
574 
575  /* We are done with atomic stuff, now do the rest of housekeeping */
576 
577  /* had we spliced it onto indirect block? */
578  if (where->bh)
579  mark_buffer_dirty_inode(where->bh, inode);
580 
581  inode->i_ctime = CURRENT_TIME_SEC;
582  mark_inode_dirty(inode);
583 }
584 
585 /*
586  * Allocation strategy is simple: if we have to allocate something, we will
587  * have to go the whole way to leaf. So let's do it before attaching anything
588  * to tree, set linkage between the newborn blocks, write them if sync is
589  * required, recheck the path, free and repeat if check fails, otherwise
590  * set the last missing link (that will protect us from any truncate-generated
591  * removals - all blocks on the path are immune now) and possibly force the
592  * write on the parent block.
593  * That has a nice additional property: no special recovery from the failed
594  * allocations is needed - we simply release blocks and do not touch anything
595  * reachable from inode.
596  *
597  * `handle' can be NULL if create == 0.
598  *
599  * return > 0, # of blocks mapped or allocated.
600  * return = 0, if plain lookup failed.
601  * return < 0, error case.
602  */
603 static int ext2_get_blocks(struct inode *inode,
604  sector_t iblock, unsigned long maxblocks,
605  struct buffer_head *bh_result,
606  int create)
607 {
608  int err = -EIO;
609  int offsets[4];
610  Indirect chain[4];
611  Indirect *partial;
612  ext2_fsblk_t goal;
613  int indirect_blks;
614  int blocks_to_boundary = 0;
615  int depth;
616  struct ext2_inode_info *ei = EXT2_I(inode);
617  int count = 0;
618  ext2_fsblk_t first_block = 0;
619 
620  depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
621 
622  if (depth == 0)
623  return (err);
624 
625  partial = ext2_get_branch(inode, depth, offsets, chain, &err);
626  /* Simplest case - block found, no allocation needed */
627  if (!partial) {
628  first_block = le32_to_cpu(chain[depth - 1].key);
629  clear_buffer_new(bh_result); /* What's this do? */
630  count++;
631  /*map more blocks*/
632  while (count < maxblocks && count <= blocks_to_boundary) {
634 
635  if (!verify_chain(chain, chain + depth - 1)) {
636  /*
637  * Indirect block might be removed by
638  * truncate while we were reading it.
639  * Handling of that case: forget what we've
640  * got now, go to reread.
641  */
642  err = -EAGAIN;
643  count = 0;
644  break;
645  }
646  blk = le32_to_cpu(*(chain[depth-1].p + count));
647  if (blk == first_block + count)
648  count++;
649  else
650  break;
651  }
652  if (err != -EAGAIN)
653  goto got_it;
654  }
655 
656  /* Next simple case - plain lookup or failed read of indirect block */
657  if (!create || err == -EIO)
658  goto cleanup;
659 
661  /*
662  * If the indirect block is missing while we are reading
663  * the chain(ext2_get_branch() returns -EAGAIN err), or
664  * if the chain has been changed after we grab the semaphore,
665  * (either because another process truncated this branch, or
666  * another get_block allocated this branch) re-grab the chain to see if
667  * the request block has been allocated or not.
668  *
669  * Since we already block the truncate/other get_block
670  * at this point, we will have the current copy of the chain when we
671  * splice the branch into the tree.
672  */
673  if (err == -EAGAIN || !verify_chain(chain, partial)) {
674  while (partial > chain) {
675  brelse(partial->bh);
676  partial--;
677  }
678  partial = ext2_get_branch(inode, depth, offsets, chain, &err);
679  if (!partial) {
680  count++;
682  if (err)
683  goto cleanup;
684  clear_buffer_new(bh_result);
685  goto got_it;
686  }
687  }
688 
689  /*
690  * Okay, we need to do block allocation. Lazily initialize the block
691  * allocation info here if necessary
692  */
693  if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
695 
696  goal = ext2_find_goal(inode, iblock, partial);
697 
698  /* the number of blocks need to allocate for [d,t]indirect blocks */
699  indirect_blks = (chain + depth) - partial - 1;
700  /*
701  * Next look up the indirect map to count the totoal number of
702  * direct blocks to allocate for this branch.
703  */
704  count = ext2_blks_to_allocate(partial, indirect_blks,
705  maxblocks, blocks_to_boundary);
706  /*
707  * XXX ???? Block out ext2_truncate while we alter the tree
708  */
709  err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
710  offsets + (partial - chain), partial);
711 
712  if (err) {
714  goto cleanup;
715  }
716 
717  if (ext2_use_xip(inode->i_sb)) {
718  /*
719  * we need to clear the block
720  */
721  err = ext2_clear_xip_target (inode,
722  le32_to_cpu(chain[depth-1].key));
723  if (err) {
725  goto cleanup;
726  }
727  }
728 
729  ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
731  set_buffer_new(bh_result);
732 got_it:
733  map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
734  if (count > blocks_to_boundary)
735  set_buffer_boundary(bh_result);
736  err = count;
737  /* Clean up and exit */
738  partial = chain + depth - 1; /* the whole chain */
739 cleanup:
740  while (partial > chain) {
741  brelse(partial->bh);
742  partial--;
743  }
744  return err;
745 }
746 
747 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
748 {
749  unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
750  int ret = ext2_get_blocks(inode, iblock, max_blocks,
751  bh_result, create);
752  if (ret > 0) {
753  bh_result->b_size = (ret << inode->i_blkbits);
754  ret = 0;
755  }
756  return ret;
757 
758 }
759 
760 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
761  u64 start, u64 len)
762 {
763  return generic_block_fiemap(inode, fieinfo, start, len,
765 }
766 
767 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
768 {
769  return block_write_full_page(page, ext2_get_block, wbc);
770 }
771 
772 static int ext2_readpage(struct file *file, struct page *page)
773 {
774  return mpage_readpage(page, ext2_get_block);
775 }
776 
777 static int
778 ext2_readpages(struct file *file, struct address_space *mapping,
779  struct list_head *pages, unsigned nr_pages)
780 {
781  return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
782 }
783 
784 static int
785 ext2_write_begin(struct file *file, struct address_space *mapping,
786  loff_t pos, unsigned len, unsigned flags,
787  struct page **pagep, void **fsdata)
788 {
789  int ret;
790 
791  ret = block_write_begin(mapping, pos, len, flags, pagep,
793  if (ret < 0)
794  ext2_write_failed(mapping, pos + len);
795  return ret;
796 }
797 
798 static int ext2_write_end(struct file *file, struct address_space *mapping,
799  loff_t pos, unsigned len, unsigned copied,
800  struct page *page, void *fsdata)
801 {
802  int ret;
803 
804  ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
805  if (ret < len)
806  ext2_write_failed(mapping, pos + len);
807  return ret;
808 }
809 
810 static int
811 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
812  loff_t pos, unsigned len, unsigned flags,
813  struct page **pagep, void **fsdata)
814 {
815  int ret;
816 
817  ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
819  if (ret < 0)
820  ext2_write_failed(mapping, pos + len);
821  return ret;
822 }
823 
824 static int ext2_nobh_writepage(struct page *page,
825  struct writeback_control *wbc)
826 {
827  return nobh_writepage(page, ext2_get_block, wbc);
828 }
829 
830 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
831 {
832  return generic_block_bmap(mapping,block,ext2_get_block);
833 }
834 
835 static ssize_t
836 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
837  loff_t offset, unsigned long nr_segs)
838 {
839  struct file *file = iocb->ki_filp;
840  struct address_space *mapping = file->f_mapping;
841  struct inode *inode = mapping->host;
842  ssize_t ret;
843 
844  ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
846  if (ret < 0 && (rw & WRITE))
847  ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
848  return ret;
849 }
850 
851 static int
852 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
853 {
854  return mpage_writepages(mapping, wbc, ext2_get_block);
855 }
856 
858  .readpage = ext2_readpage,
859  .readpages = ext2_readpages,
860  .writepage = ext2_writepage,
861  .write_begin = ext2_write_begin,
862  .write_end = ext2_write_end,
863  .bmap = ext2_bmap,
864  .direct_IO = ext2_direct_IO,
865  .writepages = ext2_writepages,
866  .migratepage = buffer_migrate_page,
867  .is_partially_uptodate = block_is_partially_uptodate,
868  .error_remove_page = generic_error_remove_page,
869 };
870 
872  .bmap = ext2_bmap,
873  .get_xip_mem = ext2_get_xip_mem,
874 };
875 
877  .readpage = ext2_readpage,
878  .readpages = ext2_readpages,
879  .writepage = ext2_nobh_writepage,
880  .write_begin = ext2_nobh_write_begin,
881  .write_end = nobh_write_end,
882  .bmap = ext2_bmap,
883  .direct_IO = ext2_direct_IO,
884  .writepages = ext2_writepages,
885  .migratepage = buffer_migrate_page,
886  .error_remove_page = generic_error_remove_page,
887 };
888 
889 /*
890  * Probably it should be a library function... search for first non-zero word
891  * or memcmp with zero_page, whatever is better for particular architecture.
892  * Linus?
893  */
894 static inline int all_zeroes(__le32 *p, __le32 *q)
895 {
896  while (p < q)
897  if (*p++)
898  return 0;
899  return 1;
900 }
901 
936 static Indirect *ext2_find_shared(struct inode *inode,
937  int depth,
938  int offsets[4],
939  Indirect chain[4],
940  __le32 *top)
941 {
942  Indirect *partial, *p;
943  int k, err;
944 
945  *top = 0;
946  for (k = depth; k > 1 && !offsets[k-1]; k--)
947  ;
948  partial = ext2_get_branch(inode, k, offsets, chain, &err);
949  if (!partial)
950  partial = chain + k-1;
951  /*
952  * If the branch acquired continuation since we've looked at it -
953  * fine, it should all survive and (new) top doesn't belong to us.
954  */
955  write_lock(&EXT2_I(inode)->i_meta_lock);
956  if (!partial->key && *partial->p) {
957  write_unlock(&EXT2_I(inode)->i_meta_lock);
958  goto no_top;
959  }
960  for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
961  ;
962  /*
963  * OK, we've found the last block that must survive. The rest of our
964  * branch should be detached before unlocking. However, if that rest
965  * of branch is all ours and does not grow immediately from the inode
966  * it's easier to cheat and just decrement partial->p.
967  */
968  if (p == chain + k - 1 && p > chain) {
969  p->p--;
970  } else {
971  *top = *p->p;
972  *p->p = 0;
973  }
974  write_unlock(&EXT2_I(inode)->i_meta_lock);
975 
976  while(partial > p)
977  {
978  brelse(partial->bh);
979  partial--;
980  }
981 no_top:
982  return partial;
983 }
984 
995 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
996 {
997  unsigned long block_to_free = 0, count = 0;
998  unsigned long nr;
999 
1000  for ( ; p < q ; p++) {
1001  nr = le32_to_cpu(*p);
1002  if (nr) {
1003  *p = 0;
1004  /* accumulate blocks to free if they're contiguous */
1005  if (count == 0)
1006  goto free_this;
1007  else if (block_to_free == nr - count)
1008  count++;
1009  else {
1010  ext2_free_blocks (inode, block_to_free, count);
1011  mark_inode_dirty(inode);
1012  free_this:
1013  block_to_free = nr;
1014  count = 1;
1015  }
1016  }
1017  }
1018  if (count > 0) {
1019  ext2_free_blocks (inode, block_to_free, count);
1020  mark_inode_dirty(inode);
1021  }
1022 }
1023 
1035 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1036 {
1037  struct buffer_head * bh;
1038  unsigned long nr;
1039 
1040  if (depth--) {
1041  int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1042  for ( ; p < q ; p++) {
1043  nr = le32_to_cpu(*p);
1044  if (!nr)
1045  continue;
1046  *p = 0;
1047  bh = sb_bread(inode->i_sb, nr);
1048  /*
1049  * A read failure? Report error and clear slot
1050  * (should be rare).
1051  */
1052  if (!bh) {
1053  ext2_error(inode->i_sb, "ext2_free_branches",
1054  "Read failure, inode=%ld, block=%ld",
1055  inode->i_ino, nr);
1056  continue;
1057  }
1058  ext2_free_branches(inode,
1059  (__le32*)bh->b_data,
1060  (__le32*)bh->b_data + addr_per_block,
1061  depth);
1062  bforget(bh);
1063  ext2_free_blocks(inode, nr, 1);
1064  mark_inode_dirty(inode);
1065  }
1066  } else
1067  ext2_free_data(inode, p, q);
1068 }
1069 
1070 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1071 {
1072  __le32 *i_data = EXT2_I(inode)->i_data;
1073  struct ext2_inode_info *ei = EXT2_I(inode);
1074  int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1075  int offsets[4];
1076  Indirect chain[4];
1077  Indirect *partial;
1078  __le32 nr = 0;
1079  int n;
1080  long iblock;
1081  unsigned blocksize;
1082  blocksize = inode->i_sb->s_blocksize;
1083  iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1084 
1085  n = ext2_block_to_path(inode, iblock, offsets, NULL);
1086  if (n == 0)
1087  return;
1088 
1089  /*
1090  * From here we block out all ext2_get_block() callers who want to
1091  * modify the block allocation tree.
1092  */
1093  mutex_lock(&ei->truncate_mutex);
1094 
1095  if (n == 1) {
1096  ext2_free_data(inode, i_data+offsets[0],
1097  i_data + EXT2_NDIR_BLOCKS);
1098  goto do_indirects;
1099  }
1100 
1101  partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1102  /* Kill the top of shared branch (already detached) */
1103  if (nr) {
1104  if (partial == chain)
1105  mark_inode_dirty(inode);
1106  else
1107  mark_buffer_dirty_inode(partial->bh, inode);
1108  ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1109  }
1110  /* Clear the ends of indirect blocks on the shared branch */
1111  while (partial > chain) {
1112  ext2_free_branches(inode,
1113  partial->p + 1,
1114  (__le32*)partial->bh->b_data+addr_per_block,
1115  (chain+n-1) - partial);
1116  mark_buffer_dirty_inode(partial->bh, inode);
1117  brelse (partial->bh);
1118  partial--;
1119  }
1120 do_indirects:
1121  /* Kill the remaining (whole) subtrees */
1122  switch (offsets[0]) {
1123  default:
1124  nr = i_data[EXT2_IND_BLOCK];
1125  if (nr) {
1126  i_data[EXT2_IND_BLOCK] = 0;
1127  mark_inode_dirty(inode);
1128  ext2_free_branches(inode, &nr, &nr+1, 1);
1129  }
1130  case EXT2_IND_BLOCK:
1131  nr = i_data[EXT2_DIND_BLOCK];
1132  if (nr) {
1133  i_data[EXT2_DIND_BLOCK] = 0;
1134  mark_inode_dirty(inode);
1135  ext2_free_branches(inode, &nr, &nr+1, 2);
1136  }
1137  case EXT2_DIND_BLOCK:
1138  nr = i_data[EXT2_TIND_BLOCK];
1139  if (nr) {
1140  i_data[EXT2_TIND_BLOCK] = 0;
1141  mark_inode_dirty(inode);
1142  ext2_free_branches(inode, &nr, &nr+1, 3);
1143  }
1144  case EXT2_TIND_BLOCK:
1145  ;
1146  }
1147 
1148  ext2_discard_reservation(inode);
1149 
1151 }
1152 
1153 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1154 {
1155  /*
1156  * XXX: it seems like a bug here that we don't allow
1157  * IS_APPEND inode to have blocks-past-i_size trimmed off.
1158  * review and fix this.
1159  *
1160  * Also would be nice to be able to handle IO errors and such,
1161  * but that's probably too much to ask.
1162  */
1163  if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1164  S_ISLNK(inode->i_mode)))
1165  return;
1166  if (ext2_inode_is_fast_symlink(inode))
1167  return;
1168  if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1169  return;
1170  __ext2_truncate_blocks(inode, offset);
1171 }
1172 
1173 static int ext2_setsize(struct inode *inode, loff_t newsize)
1174 {
1175  int error;
1176 
1177  if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1178  S_ISLNK(inode->i_mode)))
1179  return -EINVAL;
1180  if (ext2_inode_is_fast_symlink(inode))
1181  return -EINVAL;
1182  if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1183  return -EPERM;
1184 
1185  inode_dio_wait(inode);
1186 
1187  if (mapping_is_xip(inode->i_mapping))
1188  error = xip_truncate_page(inode->i_mapping, newsize);
1189  else if (test_opt(inode->i_sb, NOBH))
1190  error = nobh_truncate_page(inode->i_mapping,
1191  newsize, ext2_get_block);
1192  else
1193  error = block_truncate_page(inode->i_mapping,
1194  newsize, ext2_get_block);
1195  if (error)
1196  return error;
1197 
1198  truncate_setsize(inode, newsize);
1199  __ext2_truncate_blocks(inode, newsize);
1200 
1201  inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1202  if (inode_needs_sync(inode)) {
1204  sync_inode_metadata(inode, 1);
1205  } else {
1206  mark_inode_dirty(inode);
1207  }
1208 
1209  return 0;
1210 }
1211 
1212 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1213  struct buffer_head **p)
1214 {
1215  struct buffer_head * bh;
1216  unsigned long block_group;
1217  unsigned long block;
1218  unsigned long offset;
1219  struct ext2_group_desc * gdp;
1220 
1221  *p = NULL;
1222  if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1223  ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1224  goto Einval;
1225 
1226  block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1227  gdp = ext2_get_group_desc(sb, block_group, NULL);
1228  if (!gdp)
1229  goto Egdp;
1230  /*
1231  * Figure out the offset within the block group inode table
1232  */
1233  offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1234  block = le32_to_cpu(gdp->bg_inode_table) +
1235  (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1236  if (!(bh = sb_bread(sb, block)))
1237  goto Eio;
1238 
1239  *p = bh;
1240  offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1241  return (struct ext2_inode *) (bh->b_data + offset);
1242 
1243 Einval:
1244  ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1245  (unsigned long) ino);
1246  return ERR_PTR(-EINVAL);
1247 Eio:
1248  ext2_error(sb, "ext2_get_inode",
1249  "unable to read inode block - inode=%lu, block=%lu",
1250  (unsigned long) ino, block);
1251 Egdp:
1252  return ERR_PTR(-EIO);
1253 }
1254 
1255 void ext2_set_inode_flags(struct inode *inode)
1256 {
1257  unsigned int flags = EXT2_I(inode)->i_flags;
1258 
1260  if (flags & EXT2_SYNC_FL)
1261  inode->i_flags |= S_SYNC;
1262  if (flags & EXT2_APPEND_FL)
1263  inode->i_flags |= S_APPEND;
1264  if (flags & EXT2_IMMUTABLE_FL)
1265  inode->i_flags |= S_IMMUTABLE;
1266  if (flags & EXT2_NOATIME_FL)
1267  inode->i_flags |= S_NOATIME;
1268  if (flags & EXT2_DIRSYNC_FL)
1269  inode->i_flags |= S_DIRSYNC;
1270 }
1271 
1272 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1274 {
1275  unsigned int flags = ei->vfs_inode.i_flags;
1276 
1279  if (flags & S_SYNC)
1280  ei->i_flags |= EXT2_SYNC_FL;
1281  if (flags & S_APPEND)
1282  ei->i_flags |= EXT2_APPEND_FL;
1283  if (flags & S_IMMUTABLE)
1284  ei->i_flags |= EXT2_IMMUTABLE_FL;
1285  if (flags & S_NOATIME)
1286  ei->i_flags |= EXT2_NOATIME_FL;
1287  if (flags & S_DIRSYNC)
1288  ei->i_flags |= EXT2_DIRSYNC_FL;
1289 }
1290 
1291 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1292 {
1293  struct ext2_inode_info *ei;
1294  struct buffer_head * bh;
1295  struct ext2_inode *raw_inode;
1296  struct inode *inode;
1297  long ret = -EIO;
1298  int n;
1299  uid_t i_uid;
1300  gid_t i_gid;
1301 
1302  inode = iget_locked(sb, ino);
1303  if (!inode)
1304  return ERR_PTR(-ENOMEM);
1305  if (!(inode->i_state & I_NEW))
1306  return inode;
1307 
1308  ei = EXT2_I(inode);
1309  ei->i_block_alloc_info = NULL;
1310 
1311  raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1312  if (IS_ERR(raw_inode)) {
1313  ret = PTR_ERR(raw_inode);
1314  goto bad_inode;
1315  }
1316 
1317  inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1318  i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1319  i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1320  if (!(test_opt (inode->i_sb, NO_UID32))) {
1321  i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1322  i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1323  }
1324  i_uid_write(inode, i_uid);
1325  i_gid_write(inode, i_gid);
1326  set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1327  inode->i_size = le32_to_cpu(raw_inode->i_size);
1328  inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1329  inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1330  inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1331  inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1332  ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1333  /* We now have enough fields to check if the inode was active or not.
1334  * This is needed because nfsd might try to access dead inodes
1335  * the test is that same one that e2fsck uses
1336  * NeilBrown 1999oct15
1337  */
1338  if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1339  /* this inode is deleted */
1340  brelse (bh);
1341  ret = -ESTALE;
1342  goto bad_inode;
1343  }
1344  inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1345  ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1346  ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1347  ei->i_frag_no = raw_inode->i_frag;
1348  ei->i_frag_size = raw_inode->i_fsize;
1349  ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1350  ei->i_dir_acl = 0;
1351  if (S_ISREG(inode->i_mode))
1352  inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1353  else
1354  ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1355  ei->i_dtime = 0;
1356  inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1357  ei->i_state = 0;
1358  ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1359  ei->i_dir_start_lookup = 0;
1360 
1361  /*
1362  * NOTE! The in-memory inode i_data array is in little-endian order
1363  * even on big-endian machines: we do NOT byteswap the block numbers!
1364  */
1365  for (n = 0; n < EXT2_N_BLOCKS; n++)
1366  ei->i_data[n] = raw_inode->i_block[n];
1367 
1368  if (S_ISREG(inode->i_mode)) {
1369  inode->i_op = &ext2_file_inode_operations;
1370  if (ext2_use_xip(inode->i_sb)) {
1371  inode->i_mapping->a_ops = &ext2_aops_xip;
1372  inode->i_fop = &ext2_xip_file_operations;
1373  } else if (test_opt(inode->i_sb, NOBH)) {
1374  inode->i_mapping->a_ops = &ext2_nobh_aops;
1375  inode->i_fop = &ext2_file_operations;
1376  } else {
1377  inode->i_mapping->a_ops = &ext2_aops;
1378  inode->i_fop = &ext2_file_operations;
1379  }
1380  } else if (S_ISDIR(inode->i_mode)) {
1381  inode->i_op = &ext2_dir_inode_operations;
1382  inode->i_fop = &ext2_dir_operations;
1383  if (test_opt(inode->i_sb, NOBH))
1384  inode->i_mapping->a_ops = &ext2_nobh_aops;
1385  else
1386  inode->i_mapping->a_ops = &ext2_aops;
1387  } else if (S_ISLNK(inode->i_mode)) {
1388  if (ext2_inode_is_fast_symlink(inode)) {
1390  nd_terminate_link(ei->i_data, inode->i_size,
1391  sizeof(ei->i_data) - 1);
1392  } else {
1394  if (test_opt(inode->i_sb, NOBH))
1395  inode->i_mapping->a_ops = &ext2_nobh_aops;
1396  else
1397  inode->i_mapping->a_ops = &ext2_aops;
1398  }
1399  } else {
1401  if (raw_inode->i_block[0])
1402  init_special_inode(inode, inode->i_mode,
1403  old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1404  else
1405  init_special_inode(inode, inode->i_mode,
1406  new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1407  }
1408  brelse (bh);
1409  ext2_set_inode_flags(inode);
1410  unlock_new_inode(inode);
1411  return inode;
1412 
1413 bad_inode:
1414  iget_failed(inode);
1415  return ERR_PTR(ret);
1416 }
1417 
1418 static int __ext2_write_inode(struct inode *inode, int do_sync)
1419 {
1420  struct ext2_inode_info *ei = EXT2_I(inode);
1421  struct super_block *sb = inode->i_sb;
1422  ino_t ino = inode->i_ino;
1423  uid_t uid = i_uid_read(inode);
1424  gid_t gid = i_gid_read(inode);
1425  struct buffer_head * bh;
1426  struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1427  int n;
1428  int err = 0;
1429 
1430  if (IS_ERR(raw_inode))
1431  return -EIO;
1432 
1433  /* For fields not not tracking in the in-memory inode,
1434  * initialise them to zero for new inodes. */
1435  if (ei->i_state & EXT2_STATE_NEW)
1436  memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1437 
1439  raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1440  if (!(test_opt(sb, NO_UID32))) {
1441  raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1442  raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1443 /*
1444  * Fix up interoperability with old kernels. Otherwise, old inodes get
1445  * re-used with the upper 16 bits of the uid/gid intact
1446  */
1447  if (!ei->i_dtime) {
1448  raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1449  raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1450  } else {
1451  raw_inode->i_uid_high = 0;
1452  raw_inode->i_gid_high = 0;
1453  }
1454  } else {
1455  raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1456  raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1457  raw_inode->i_uid_high = 0;
1458  raw_inode->i_gid_high = 0;
1459  }
1460  raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1461  raw_inode->i_size = cpu_to_le32(inode->i_size);
1462  raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1463  raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1464  raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1465 
1466  raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1467  raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1468  raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1469  raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1470  raw_inode->i_frag = ei->i_frag_no;
1471  raw_inode->i_fsize = ei->i_frag_size;
1472  raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1473  if (!S_ISREG(inode->i_mode))
1474  raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1475  else {
1476  raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1477  if (inode->i_size > 0x7fffffffULL) {
1480  EXT2_SB(sb)->s_es->s_rev_level ==
1482  /* If this is the first large file
1483  * created, add a flag to the superblock.
1484  */
1485  spin_lock(&EXT2_SB(sb)->s_lock);
1489  spin_unlock(&EXT2_SB(sb)->s_lock);
1490  ext2_write_super(sb);
1491  }
1492  }
1493  }
1494 
1495  raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1496  if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1497  if (old_valid_dev(inode->i_rdev)) {
1498  raw_inode->i_block[0] =
1499  cpu_to_le32(old_encode_dev(inode->i_rdev));
1500  raw_inode->i_block[1] = 0;
1501  } else {
1502  raw_inode->i_block[0] = 0;
1503  raw_inode->i_block[1] =
1504  cpu_to_le32(new_encode_dev(inode->i_rdev));
1505  raw_inode->i_block[2] = 0;
1506  }
1507  } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1508  raw_inode->i_block[n] = ei->i_data[n];
1509  mark_buffer_dirty(bh);
1510  if (do_sync) {
1511  sync_dirty_buffer(bh);
1512  if (buffer_req(bh) && !buffer_uptodate(bh)) {
1513  printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1514  sb->s_id, (unsigned long) ino);
1515  err = -EIO;
1516  }
1517  }
1518  ei->i_state &= ~EXT2_STATE_NEW;
1519  brelse (bh);
1520  return err;
1521 }
1522 
1523 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1524 {
1525  return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1526 }
1527 
1528 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1529 {
1530  struct inode *inode = dentry->d_inode;
1531  int error;
1532 
1533  error = inode_change_ok(inode, iattr);
1534  if (error)
1535  return error;
1536 
1537  if (is_quota_modification(inode, iattr))
1538  dquot_initialize(inode);
1539  if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1540  (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1541  error = dquot_transfer(inode, iattr);
1542  if (error)
1543  return error;
1544  }
1545  if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1546  error = ext2_setsize(inode, iattr->ia_size);
1547  if (error)
1548  return error;
1549  }
1550  setattr_copy(inode, iattr);
1551  if (iattr->ia_valid & ATTR_MODE)
1552  error = ext2_acl_chmod(inode);
1553  mark_inode_dirty(inode);
1554 
1555  return error;
1556 }