Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
super.c
Go to the documentation of this file.
1 /*
2  * linux/fs/hfs/super.c
3  *
4  * Copyright (C) 1995-1997 Paul H. Hargrove
5  * (C) 2003 Ardis Technologies <[email protected]>
6  * This file may be distributed under the terms of the GNU General Public License.
7  *
8  * This file contains hfs_read_super(), some of the super_ops and
9  * init_hfs_fs() and exit_hfs_fs(). The remaining super_ops are in
10  * inode.c since they deal with inodes.
11  *
12  * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
13  */
14 
15 #include <linux/module.h>
16 #include <linux/blkdev.h>
17 #include <linux/mount.h>
18 #include <linux/init.h>
19 #include <linux/nls.h>
20 #include <linux/parser.h>
21 #include <linux/seq_file.h>
22 #include <linux/slab.h>
23 #include <linux/vfs.h>
24 
25 #include "hfs_fs.h"
26 #include "btree.h"
27 
28 static struct kmem_cache *hfs_inode_cachep;
29 
30 MODULE_LICENSE("GPL");
31 
32 static int hfs_sync_fs(struct super_block *sb, int wait)
33 {
34  hfs_mdb_commit(sb);
35  return 0;
36 }
37 
38 /*
39  * hfs_put_super()
40  *
41  * This is the put_super() entry in the super_operations structure for
42  * HFS filesystems. The purpose is to release the resources
43  * associated with the superblock sb.
44  */
45 static void hfs_put_super(struct super_block *sb)
46 {
47  cancel_delayed_work_sync(&HFS_SB(sb)->mdb_work);
48  hfs_mdb_close(sb);
49  /* release the MDB's resources */
50  hfs_mdb_put(sb);
51 }
52 
53 static void flush_mdb(struct work_struct *work)
54 {
55  struct hfs_sb_info *sbi;
56  struct super_block *sb;
57 
58  sbi = container_of(work, struct hfs_sb_info, mdb_work.work);
59  sb = sbi->sb;
60 
61  spin_lock(&sbi->work_lock);
62  sbi->work_queued = 0;
63  spin_unlock(&sbi->work_lock);
64 
65  hfs_mdb_commit(sb);
66 }
67 
69 {
70  struct hfs_sb_info *sbi = HFS_SB(sb);
71  unsigned long delay;
72 
73  if (sb->s_flags & MS_RDONLY)
74  return;
75 
76  spin_lock(&sbi->work_lock);
77  if (!sbi->work_queued) {
80  sbi->work_queued = 1;
81  }
82  spin_unlock(&sbi->work_lock);
83 }
84 
85 /*
86  * hfs_statfs()
87  *
88  * This is the statfs() entry in the super_operations structure for
89  * HFS filesystems. The purpose is to return various data about the
90  * filesystem.
91  *
92  * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks.
93  */
94 static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf)
95 {
96  struct super_block *sb = dentry->d_sb;
97  u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
98 
99  buf->f_type = HFS_SUPER_MAGIC;
100  buf->f_bsize = sb->s_blocksize;
101  buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div;
102  buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div;
103  buf->f_bavail = buf->f_bfree;
104  buf->f_files = HFS_SB(sb)->fs_ablocks;
105  buf->f_ffree = HFS_SB(sb)->free_ablocks;
106  buf->f_fsid.val[0] = (u32)id;
107  buf->f_fsid.val[1] = (u32)(id >> 32);
108  buf->f_namelen = HFS_NAMELEN;
109 
110  return 0;
111 }
112 
113 static int hfs_remount(struct super_block *sb, int *flags, char *data)
114 {
115  *flags |= MS_NODIRATIME;
116  if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
117  return 0;
118  if (!(*flags & MS_RDONLY)) {
119  if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) {
120  printk(KERN_WARNING "hfs: filesystem was not cleanly unmounted, "
121  "running fsck.hfs is recommended. leaving read-only.\n");
122  sb->s_flags |= MS_RDONLY;
123  *flags |= MS_RDONLY;
124  } else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) {
125  printk(KERN_WARNING "hfs: filesystem is marked locked, leaving read-only.\n");
126  sb->s_flags |= MS_RDONLY;
127  *flags |= MS_RDONLY;
128  }
129  }
130  return 0;
131 }
132 
133 static int hfs_show_options(struct seq_file *seq, struct dentry *root)
134 {
135  struct hfs_sb_info *sbi = HFS_SB(root->d_sb);
136 
137  if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f))
138  seq_printf(seq, ",creator=%.4s", (char *)&sbi->s_creator);
139  if (sbi->s_type != cpu_to_be32(0x3f3f3f3f))
140  seq_printf(seq, ",type=%.4s", (char *)&sbi->s_type);
141  seq_printf(seq, ",uid=%u,gid=%u",
144  if (sbi->s_file_umask != 0133)
145  seq_printf(seq, ",file_umask=%o", sbi->s_file_umask);
146  if (sbi->s_dir_umask != 0022)
147  seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask);
148  if (sbi->part >= 0)
149  seq_printf(seq, ",part=%u", sbi->part);
150  if (sbi->session >= 0)
151  seq_printf(seq, ",session=%u", sbi->session);
152  if (sbi->nls_disk)
153  seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset);
154  if (sbi->nls_io)
155  seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset);
156  if (sbi->s_quiet)
157  seq_printf(seq, ",quiet");
158  return 0;
159 }
160 
161 static struct inode *hfs_alloc_inode(struct super_block *sb)
162 {
163  struct hfs_inode_info *i;
164 
165  i = kmem_cache_alloc(hfs_inode_cachep, GFP_KERNEL);
166  return i ? &i->vfs_inode : NULL;
167 }
168 
169 static void hfs_i_callback(struct rcu_head *head)
170 {
171  struct inode *inode = container_of(head, struct inode, i_rcu);
172  kmem_cache_free(hfs_inode_cachep, HFS_I(inode));
173 }
174 
175 static void hfs_destroy_inode(struct inode *inode)
176 {
177  call_rcu(&inode->i_rcu, hfs_i_callback);
178 }
179 
180 static const struct super_operations hfs_super_operations = {
181  .alloc_inode = hfs_alloc_inode,
182  .destroy_inode = hfs_destroy_inode,
183  .write_inode = hfs_write_inode,
184  .evict_inode = hfs_evict_inode,
185  .put_super = hfs_put_super,
186  .sync_fs = hfs_sync_fs,
187  .statfs = hfs_statfs,
188  .remount_fs = hfs_remount,
189  .show_options = hfs_show_options,
190 };
191 
192 enum {
197 };
198 
199 static const match_table_t tokens = {
200  { opt_uid, "uid=%u" },
201  { opt_gid, "gid=%u" },
202  { opt_umask, "umask=%o" },
203  { opt_file_umask, "file_umask=%o" },
204  { opt_dir_umask, "dir_umask=%o" },
205  { opt_part, "part=%u" },
206  { opt_session, "session=%u" },
207  { opt_type, "type=%s" },
208  { opt_creator, "creator=%s" },
209  { opt_quiet, "quiet" },
210  { opt_codepage, "codepage=%s" },
211  { opt_iocharset, "iocharset=%s" },
212  { opt_err, NULL }
213 };
214 
215 static inline int match_fourchar(substring_t *arg, u32 *result)
216 {
217  if (arg->to - arg->from != 4)
218  return -EINVAL;
219  memcpy(result, arg->from, 4);
220  return 0;
221 }
222 
223 /*
224  * parse_options()
225  *
226  * adapted from linux/fs/msdos/inode.c written 1992,93 by Werner Almesberger
227  * This function is called by hfs_read_super() to parse the mount options.
228  */
229 static int parse_options(char *options, struct hfs_sb_info *hsb)
230 {
231  char *p;
233  int tmp, token;
234 
235  /* initialize the sb with defaults */
236  hsb->s_uid = current_uid();
237  hsb->s_gid = current_gid();
238  hsb->s_file_umask = 0133;
239  hsb->s_dir_umask = 0022;
240  hsb->s_type = hsb->s_creator = cpu_to_be32(0x3f3f3f3f); /* == '????' */
241  hsb->s_quiet = 0;
242  hsb->part = -1;
243  hsb->session = -1;
244 
245  if (!options)
246  return 1;
247 
248  while ((p = strsep(&options, ",")) != NULL) {
249  if (!*p)
250  continue;
251 
252  token = match_token(p, tokens, args);
253  switch (token) {
254  case opt_uid:
255  if (match_int(&args[0], &tmp)) {
256  printk(KERN_ERR "hfs: uid requires an argument\n");
257  return 0;
258  }
259  hsb->s_uid = make_kuid(current_user_ns(), (uid_t)tmp);
260  if (!uid_valid(hsb->s_uid)) {
261  printk(KERN_ERR "hfs: invalid uid %d\n", tmp);
262  return 0;
263  }
264  break;
265  case opt_gid:
266  if (match_int(&args[0], &tmp)) {
267  printk(KERN_ERR "hfs: gid requires an argument\n");
268  return 0;
269  }
270  hsb->s_gid = make_kgid(current_user_ns(), (gid_t)tmp);
271  if (!gid_valid(hsb->s_gid)) {
272  printk(KERN_ERR "hfs: invalid gid %d\n", tmp);
273  return 0;
274  }
275  break;
276  case opt_umask:
277  if (match_octal(&args[0], &tmp)) {
278  printk(KERN_ERR "hfs: umask requires a value\n");
279  return 0;
280  }
281  hsb->s_file_umask = (umode_t)tmp;
282  hsb->s_dir_umask = (umode_t)tmp;
283  break;
284  case opt_file_umask:
285  if (match_octal(&args[0], &tmp)) {
286  printk(KERN_ERR "hfs: file_umask requires a value\n");
287  return 0;
288  }
289  hsb->s_file_umask = (umode_t)tmp;
290  break;
291  case opt_dir_umask:
292  if (match_octal(&args[0], &tmp)) {
293  printk(KERN_ERR "hfs: dir_umask requires a value\n");
294  return 0;
295  }
296  hsb->s_dir_umask = (umode_t)tmp;
297  break;
298  case opt_part:
299  if (match_int(&args[0], &hsb->part)) {
300  printk(KERN_ERR "hfs: part requires an argument\n");
301  return 0;
302  }
303  break;
304  case opt_session:
305  if (match_int(&args[0], &hsb->session)) {
306  printk(KERN_ERR "hfs: session requires an argument\n");
307  return 0;
308  }
309  break;
310  case opt_type:
311  if (match_fourchar(&args[0], &hsb->s_type)) {
312  printk(KERN_ERR "hfs: type requires a 4 character value\n");
313  return 0;
314  }
315  break;
316  case opt_creator:
317  if (match_fourchar(&args[0], &hsb->s_creator)) {
318  printk(KERN_ERR "hfs: creator requires a 4 character value\n");
319  return 0;
320  }
321  break;
322  case opt_quiet:
323  hsb->s_quiet = 1;
324  break;
325  case opt_codepage:
326  if (hsb->nls_disk) {
327  printk(KERN_ERR "hfs: unable to change codepage\n");
328  return 0;
329  }
330  p = match_strdup(&args[0]);
331  if (p)
332  hsb->nls_disk = load_nls(p);
333  if (!hsb->nls_disk) {
334  printk(KERN_ERR "hfs: unable to load codepage \"%s\"\n", p);
335  kfree(p);
336  return 0;
337  }
338  kfree(p);
339  break;
340  case opt_iocharset:
341  if (hsb->nls_io) {
342  printk(KERN_ERR "hfs: unable to change iocharset\n");
343  return 0;
344  }
345  p = match_strdup(&args[0]);
346  if (p)
347  hsb->nls_io = load_nls(p);
348  if (!hsb->nls_io) {
349  printk(KERN_ERR "hfs: unable to load iocharset \"%s\"\n", p);
350  kfree(p);
351  return 0;
352  }
353  kfree(p);
354  break;
355  default:
356  return 0;
357  }
358  }
359 
360  if (hsb->nls_disk && !hsb->nls_io) {
361  hsb->nls_io = load_nls_default();
362  if (!hsb->nls_io) {
363  printk(KERN_ERR "hfs: unable to load default iocharset\n");
364  return 0;
365  }
366  }
367  hsb->s_dir_umask &= 0777;
368  hsb->s_file_umask &= 0577;
369 
370  return 1;
371 }
372 
373 /*
374  * hfs_read_super()
375  *
376  * This is the function that is responsible for mounting an HFS
377  * filesystem. It performs all the tasks necessary to get enough data
378  * from the disk to read the root inode. This includes parsing the
379  * mount options, dealing with Macintosh partitions, reading the
380  * superblock and the allocation bitmap blocks, calling
381  * hfs_btree_init() to get the necessary data about the extents and
382  * catalog B-trees and, finally, reading the root inode into memory.
383  */
384 static int hfs_fill_super(struct super_block *sb, void *data, int silent)
385 {
386  struct hfs_sb_info *sbi;
387  struct hfs_find_data fd;
388  hfs_cat_rec rec;
389  struct inode *root_inode;
390  int res;
391 
392  sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL);
393  if (!sbi)
394  return -ENOMEM;
395 
396  sbi->sb = sb;
397  sb->s_fs_info = sbi;
398  spin_lock_init(&sbi->work_lock);
399  INIT_DELAYED_WORK(&sbi->mdb_work, flush_mdb);
400 
401  res = -EINVAL;
402  if (!parse_options((char *)data, sbi)) {
403  printk(KERN_ERR "hfs: unable to parse mount options.\n");
404  goto bail;
405  }
406 
407  sb->s_op = &hfs_super_operations;
408  sb->s_flags |= MS_NODIRATIME;
409  mutex_init(&sbi->bitmap_lock);
410 
411  res = hfs_mdb_get(sb);
412  if (res) {
413  if (!silent)
414  printk(KERN_WARNING "hfs: can't find a HFS filesystem on dev %s.\n",
415  hfs_mdb_name(sb));
416  res = -EINVAL;
417  goto bail;
418  }
419 
420  /* try to get the root inode */
421  hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
422  res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd);
423  if (!res) {
424  if (fd.entrylength > sizeof(rec) || fd.entrylength < 0) {
425  res = -EIO;
426  goto bail;
427  }
428  hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength);
429  }
430  if (res) {
431  hfs_find_exit(&fd);
432  goto bail_no_root;
433  }
434  res = -EINVAL;
435  root_inode = hfs_iget(sb, &fd.search_key->cat, &rec);
436  hfs_find_exit(&fd);
437  if (!root_inode)
438  goto bail_no_root;
439 
441  res = -ENOMEM;
442  sb->s_root = d_make_root(root_inode);
443  if (!sb->s_root)
444  goto bail_no_root;
445 
446  /* everything's okay */
447  return 0;
448 
449 bail_no_root:
450  printk(KERN_ERR "hfs: get root inode failed.\n");
451 bail:
452  hfs_mdb_put(sb);
453  return res;
454 }
455 
456 static struct dentry *hfs_mount(struct file_system_type *fs_type,
457  int flags, const char *dev_name, void *data)
458 {
459  return mount_bdev(fs_type, flags, dev_name, data, hfs_fill_super);
460 }
461 
462 static struct file_system_type hfs_fs_type = {
463  .owner = THIS_MODULE,
464  .name = "hfs",
465  .mount = hfs_mount,
466  .kill_sb = kill_block_super,
467  .fs_flags = FS_REQUIRES_DEV,
468 };
469 
470 static void hfs_init_once(void *p)
471 {
472  struct hfs_inode_info *i = p;
473 
475 }
476 
477 static int __init init_hfs_fs(void)
478 {
479  int err;
480 
481  hfs_inode_cachep = kmem_cache_create("hfs_inode_cache",
482  sizeof(struct hfs_inode_info), 0, SLAB_HWCACHE_ALIGN,
483  hfs_init_once);
484  if (!hfs_inode_cachep)
485  return -ENOMEM;
486  err = register_filesystem(&hfs_fs_type);
487  if (err)
488  kmem_cache_destroy(hfs_inode_cachep);
489  return err;
490 }
491 
492 static void __exit exit_hfs_fs(void)
493 {
494  unregister_filesystem(&hfs_fs_type);
495 
496  /*
497  * Make sure all delayed rcu free inodes are flushed before we
498  * destroy cache.
499  */
500  rcu_barrier();
501  kmem_cache_destroy(hfs_inode_cachep);
502 }
503 
504 module_init(init_hfs_fs)
505 module_exit(exit_hfs_fs)