Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
super.c
Go to the documentation of this file.
1 /*
2  * super.c
3  *
4  * PURPOSE
5  * Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  * OSTA-UDF(tm) = Optical Storage Technology Association
9  * Universal Disk Format.
10  *
11  * This code is based on version 2.00 of the UDF specification,
12  * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  * http://www.osta.org/
14  * http://www.ecma.ch/
15  * http://www.iso.org/
16  *
17  * COPYRIGHT
18  * This file is distributed under the terms of the GNU General Public
19  * License (GPL). Copies of the GPL can be obtained from:
20  * ftp://prep.ai.mit.edu/pub/gnu/GPL
21  * Each contributing author retains all rights to their own work.
22  *
23  * (C) 1998 Dave Boynton
24  * (C) 1998-2004 Ben Fennema
25  * (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  * 09/24/98 dgb changed to allow compiling outside of kernel, and
30  * added some debugging.
31  * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32  * 10/16/98 attempting some multi-session support
33  * 10/17/98 added freespace count for "df"
34  * 11/11/98 gr added novrs option
35  * 11/26/98 dgb added fileset,anchor mount options
36  * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37  * vol descs. rewrote option handling based on isofs
38  * 12/20/98 find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61 
62 #include "udf_sb.h"
63 #include "udf_i.h"
64 
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67 
68 #define VDS_POS_PRIMARY_VOL_DESC 0
69 #define VDS_POS_UNALLOC_SPACE_DESC 1
70 #define VDS_POS_LOGICAL_VOL_DESC 2
71 #define VDS_POS_PARTITION_DESC 3
72 #define VDS_POS_IMP_USE_VOL_DESC 4
73 #define VDS_POS_VOL_DESC_PTR 5
74 #define VDS_POS_TERMINATING_DESC 6
75 #define VDS_POS_LENGTH 7
76 
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78 
79 enum { UDF_MAX_LINKS = 0xffff };
80 
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88  struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90  struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct dentry *);
96 
98 {
99  struct logicalVolIntegrityDesc *lvid =
100  (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101  __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102  __u32 offset = number_of_partitions * 2 *
103  sizeof(uint32_t)/sizeof(uint8_t);
104  return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105 }
106 
107 /* UDF filesystem type */
108 static struct dentry *udf_mount(struct file_system_type *fs_type,
109  int flags, const char *dev_name, void *data)
110 {
111  return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112 }
113 
114 static struct file_system_type udf_fstype = {
115  .owner = THIS_MODULE,
116  .name = "udf",
117  .mount = udf_mount,
118  .kill_sb = kill_block_super,
119  .fs_flags = FS_REQUIRES_DEV,
120 };
121 
122 static struct kmem_cache *udf_inode_cachep;
123 
124 static struct inode *udf_alloc_inode(struct super_block *sb)
125 {
126  struct udf_inode_info *ei;
127  ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
128  if (!ei)
129  return NULL;
130 
131  ei->i_unique = 0;
132  ei->i_lenExtents = 0;
133  ei->i_next_alloc_block = 0;
134  ei->i_next_alloc_goal = 0;
135  ei->i_strat4096 = 0;
136  init_rwsem(&ei->i_data_sem);
137 
138  return &ei->vfs_inode;
139 }
140 
141 static void udf_i_callback(struct rcu_head *head)
142 {
143  struct inode *inode = container_of(head, struct inode, i_rcu);
144  kmem_cache_free(udf_inode_cachep, UDF_I(inode));
145 }
146 
147 static void udf_destroy_inode(struct inode *inode)
148 {
149  call_rcu(&inode->i_rcu, udf_i_callback);
150 }
151 
152 static void init_once(void *foo)
153 {
154  struct udf_inode_info *ei = (struct udf_inode_info *)foo;
155 
156  ei->i_ext.i_data = NULL;
158 }
159 
160 static int init_inodecache(void)
161 {
162  udf_inode_cachep = kmem_cache_create("udf_inode_cache",
163  sizeof(struct udf_inode_info),
166  init_once);
167  if (!udf_inode_cachep)
168  return -ENOMEM;
169  return 0;
170 }
171 
172 static void destroy_inodecache(void)
173 {
174  /*
175  * Make sure all delayed rcu free inodes are flushed before we
176  * destroy cache.
177  */
178  rcu_barrier();
179  kmem_cache_destroy(udf_inode_cachep);
180 }
181 
182 /* Superblock operations */
183 static const struct super_operations udf_sb_ops = {
184  .alloc_inode = udf_alloc_inode,
185  .destroy_inode = udf_destroy_inode,
186  .write_inode = udf_write_inode,
187  .evict_inode = udf_evict_inode,
188  .put_super = udf_put_super,
189  .sync_fs = udf_sync_fs,
190  .statfs = udf_statfs,
191  .remount_fs = udf_remount_fs,
192  .show_options = udf_show_options,
193 };
194 
195 struct udf_options {
196  unsigned char novrs;
197  unsigned int blocksize;
198  unsigned int session;
199  unsigned int lastblock;
200  unsigned int anchor;
201  unsigned int volume;
202  unsigned short partition;
203  unsigned int fileset;
204  unsigned int rootdir;
205  unsigned int flags;
212 };
213 
214 static int __init init_udf_fs(void)
215 {
216  int err;
217 
218  err = init_inodecache();
219  if (err)
220  goto out1;
221  err = register_filesystem(&udf_fstype);
222  if (err)
223  goto out;
224 
225  return 0;
226 
227 out:
228  destroy_inodecache();
229 
230 out1:
231  return err;
232 }
233 
234 static void __exit exit_udf_fs(void)
235 {
236  unregister_filesystem(&udf_fstype);
237  destroy_inodecache();
238 }
239 
240 module_init(init_udf_fs)
241 module_exit(exit_udf_fs)
242 
243 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
244 {
245  struct udf_sb_info *sbi = UDF_SB(sb);
246 
247  sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
248  GFP_KERNEL);
249  if (!sbi->s_partmaps) {
250  udf_err(sb, "Unable to allocate space for %d partition maps\n",
251  count);
252  sbi->s_partitions = 0;
253  return -ENOMEM;
254  }
255 
256  sbi->s_partitions = count;
257  return 0;
258 }
259 
260 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
261 {
262  int i;
263  int nr_groups = bitmap->s_nr_groups;
264  int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
265  nr_groups);
266 
267  for (i = 0; i < nr_groups; i++)
268  if (bitmap->s_block_bitmap[i])
269  brelse(bitmap->s_block_bitmap[i]);
270 
271  if (size <= PAGE_SIZE)
272  kfree(bitmap);
273  else
274  vfree(bitmap);
275 }
276 
277 static void udf_free_partition(struct udf_part_map *map)
278 {
279  int i;
280  struct udf_meta_data *mdata;
281 
283  iput(map->s_uspace.s_table);
285  iput(map->s_fspace.s_table);
287  udf_sb_free_bitmap(map->s_uspace.s_bitmap);
289  udf_sb_free_bitmap(map->s_fspace.s_bitmap);
291  for (i = 0; i < 4; i++)
292  brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
293  else if (map->s_partition_type == UDF_METADATA_MAP25) {
294  mdata = &map->s_type_specific.s_metadata;
295  iput(mdata->s_metadata_fe);
296  mdata->s_metadata_fe = NULL;
297 
298  iput(mdata->s_mirror_fe);
299  mdata->s_mirror_fe = NULL;
300 
301  iput(mdata->s_bitmap_fe);
302  mdata->s_bitmap_fe = NULL;
303  }
304 }
305 
306 static void udf_sb_free_partitions(struct super_block *sb)
307 {
308  struct udf_sb_info *sbi = UDF_SB(sb);
309  int i;
310 
311  for (i = 0; i < sbi->s_partitions; i++)
312  udf_free_partition(&sbi->s_partmaps[i]);
313  kfree(sbi->s_partmaps);
314  sbi->s_partmaps = NULL;
315 }
316 
317 static int udf_show_options(struct seq_file *seq, struct dentry *root)
318 {
319  struct super_block *sb = root->d_sb;
320  struct udf_sb_info *sbi = UDF_SB(sb);
321 
322  if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
323  seq_puts(seq, ",nostrict");
324  if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
325  seq_printf(seq, ",bs=%lu", sb->s_blocksize);
326  if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
327  seq_puts(seq, ",unhide");
328  if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
329  seq_puts(seq, ",undelete");
330  if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
331  seq_puts(seq, ",noadinicb");
332  if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
333  seq_puts(seq, ",shortad");
334  if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
335  seq_puts(seq, ",uid=forget");
336  if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
337  seq_puts(seq, ",uid=ignore");
338  if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
339  seq_puts(seq, ",gid=forget");
340  if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
341  seq_puts(seq, ",gid=ignore");
342  if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
343  seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
344  if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
345  seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
346  if (sbi->s_umask != 0)
347  seq_printf(seq, ",umask=%ho", sbi->s_umask);
348  if (sbi->s_fmode != UDF_INVALID_MODE)
349  seq_printf(seq, ",mode=%ho", sbi->s_fmode);
350  if (sbi->s_dmode != UDF_INVALID_MODE)
351  seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
352  if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
353  seq_printf(seq, ",session=%u", sbi->s_session);
354  if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
355  seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
356  if (sbi->s_anchor != 0)
357  seq_printf(seq, ",anchor=%u", sbi->s_anchor);
358  /*
359  * volume, partition, fileset and rootdir seem to be ignored
360  * currently
361  */
362  if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
363  seq_puts(seq, ",utf8");
364  if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
365  seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
366 
367  return 0;
368 }
369 
370 /*
371  * udf_parse_options
372  *
373  * PURPOSE
374  * Parse mount options.
375  *
376  * DESCRIPTION
377  * The following mount options are supported:
378  *
379  * gid= Set the default group.
380  * umask= Set the default umask.
381  * mode= Set the default file permissions.
382  * dmode= Set the default directory permissions.
383  * uid= Set the default user.
384  * bs= Set the block size.
385  * unhide Show otherwise hidden files.
386  * undelete Show deleted files in lists.
387  * adinicb Embed data in the inode (default)
388  * noadinicb Don't embed data in the inode
389  * shortad Use short ad's
390  * longad Use long ad's (default)
391  * nostrict Unset strict conformance
392  * iocharset= Set the NLS character set
393  *
394  * The remaining are for debugging and disaster recovery:
395  *
396  * novrs Skip volume sequence recognition
397  *
398  * The following expect a offset from 0.
399  *
400  * session= Set the CDROM session (default= last session)
401  * anchor= Override standard anchor location. (default= 256)
402  * volume= Override the VolumeDesc location. (unused)
403  * partition= Override the PartitionDesc location. (unused)
404  * lastblock= Set the last block of the filesystem/
405  *
406  * The following expect a offset from the partition root.
407  *
408  * fileset= Override the fileset block location. (unused)
409  * rootdir= Override the root directory location. (unused)
410  * WARNING: overriding the rootdir to a non-directory may
411  * yield highly unpredictable results.
412  *
413  * PRE-CONDITIONS
414  * options Pointer to mount options string.
415  * uopts Pointer to mount options variable.
416  *
417  * POST-CONDITIONS
418  * <return> 1 Mount options parsed okay.
419  * <return> 0 Error parsing mount options.
420  *
421  * HISTORY
422  * July 1, 1997 - Andrew E. Mileski
423  * Written, tested, and released.
424  */
425 
426 enum {
434 };
435 
436 static const match_table_t tokens = {
437  {Opt_novrs, "novrs"},
438  {Opt_nostrict, "nostrict"},
439  {Opt_bs, "bs=%u"},
440  {Opt_unhide, "unhide"},
441  {Opt_undelete, "undelete"},
442  {Opt_noadinicb, "noadinicb"},
443  {Opt_adinicb, "adinicb"},
444  {Opt_shortad, "shortad"},
445  {Opt_longad, "longad"},
446  {Opt_uforget, "uid=forget"},
447  {Opt_uignore, "uid=ignore"},
448  {Opt_gforget, "gid=forget"},
449  {Opt_gignore, "gid=ignore"},
450  {Opt_gid, "gid=%u"},
451  {Opt_uid, "uid=%u"},
452  {Opt_umask, "umask=%o"},
453  {Opt_session, "session=%u"},
454  {Opt_lastblock, "lastblock=%u"},
455  {Opt_anchor, "anchor=%u"},
456  {Opt_volume, "volume=%u"},
457  {Opt_partition, "partition=%u"},
458  {Opt_fileset, "fileset=%u"},
459  {Opt_rootdir, "rootdir=%u"},
460  {Opt_utf8, "utf8"},
461  {Opt_iocharset, "iocharset=%s"},
462  {Opt_fmode, "mode=%o"},
463  {Opt_dmode, "dmode=%o"},
464  {Opt_err, NULL}
465 };
466 
467 static int udf_parse_options(char *options, struct udf_options *uopt,
468  bool remount)
469 {
470  char *p;
471  int option;
472 
473  uopt->novrs = 0;
474  uopt->partition = 0xFFFF;
475  uopt->session = 0xFFFFFFFF;
476  uopt->lastblock = 0;
477  uopt->anchor = 0;
478  uopt->volume = 0xFFFFFFFF;
479  uopt->rootdir = 0xFFFFFFFF;
480  uopt->fileset = 0xFFFFFFFF;
481  uopt->nls_map = NULL;
482 
483  if (!options)
484  return 1;
485 
486  while ((p = strsep(&options, ",")) != NULL) {
488  int token;
489  if (!*p)
490  continue;
491 
492  token = match_token(p, tokens, args);
493  switch (token) {
494  case Opt_novrs:
495  uopt->novrs = 1;
496  break;
497  case Opt_bs:
498  if (match_int(&args[0], &option))
499  return 0;
500  uopt->blocksize = option;
501  uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
502  break;
503  case Opt_unhide:
504  uopt->flags |= (1 << UDF_FLAG_UNHIDE);
505  break;
506  case Opt_undelete:
507  uopt->flags |= (1 << UDF_FLAG_UNDELETE);
508  break;
509  case Opt_noadinicb:
510  uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
511  break;
512  case Opt_adinicb:
513  uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
514  break;
515  case Opt_shortad:
516  uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
517  break;
518  case Opt_longad:
519  uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
520  break;
521  case Opt_gid:
522  if (match_int(args, &option))
523  return 0;
524  uopt->gid = make_kgid(current_user_ns(), option);
525  if (!gid_valid(uopt->gid))
526  return 0;
527  uopt->flags |= (1 << UDF_FLAG_GID_SET);
528  break;
529  case Opt_uid:
530  if (match_int(args, &option))
531  return 0;
532  uopt->uid = make_kuid(current_user_ns(), option);
533  if (!uid_valid(uopt->uid))
534  return 0;
535  uopt->flags |= (1 << UDF_FLAG_UID_SET);
536  break;
537  case Opt_umask:
538  if (match_octal(args, &option))
539  return 0;
540  uopt->umask = option;
541  break;
542  case Opt_nostrict:
543  uopt->flags &= ~(1 << UDF_FLAG_STRICT);
544  break;
545  case Opt_session:
546  if (match_int(args, &option))
547  return 0;
548  uopt->session = option;
549  if (!remount)
550  uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
551  break;
552  case Opt_lastblock:
553  if (match_int(args, &option))
554  return 0;
555  uopt->lastblock = option;
556  if (!remount)
557  uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
558  break;
559  case Opt_anchor:
560  if (match_int(args, &option))
561  return 0;
562  uopt->anchor = option;
563  break;
564  case Opt_volume:
565  if (match_int(args, &option))
566  return 0;
567  uopt->volume = option;
568  break;
569  case Opt_partition:
570  if (match_int(args, &option))
571  return 0;
572  uopt->partition = option;
573  break;
574  case Opt_fileset:
575  if (match_int(args, &option))
576  return 0;
577  uopt->fileset = option;
578  break;
579  case Opt_rootdir:
580  if (match_int(args, &option))
581  return 0;
582  uopt->rootdir = option;
583  break;
584  case Opt_utf8:
585  uopt->flags |= (1 << UDF_FLAG_UTF8);
586  break;
587 #ifdef CONFIG_UDF_NLS
588  case Opt_iocharset:
589  uopt->nls_map = load_nls(args[0].from);
590  uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
591  break;
592 #endif
593  case Opt_uignore:
594  uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
595  break;
596  case Opt_uforget:
597  uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
598  break;
599  case Opt_gignore:
600  uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
601  break;
602  case Opt_gforget:
603  uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
604  break;
605  case Opt_fmode:
606  if (match_octal(args, &option))
607  return 0;
608  uopt->fmode = option & 0777;
609  break;
610  case Opt_dmode:
611  if (match_octal(args, &option))
612  return 0;
613  uopt->dmode = option & 0777;
614  break;
615  default:
616  pr_err("bad mount option \"%s\" or missing value\n", p);
617  return 0;
618  }
619  }
620  return 1;
621 }
622 
623 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
624 {
625  struct udf_options uopt;
626  struct udf_sb_info *sbi = UDF_SB(sb);
627  int error = 0;
628 
629  uopt.flags = sbi->s_flags;
630  uopt.uid = sbi->s_uid;
631  uopt.gid = sbi->s_gid;
632  uopt.umask = sbi->s_umask;
633  uopt.fmode = sbi->s_fmode;
634  uopt.dmode = sbi->s_dmode;
635 
636  if (!udf_parse_options(options, &uopt, true))
637  return -EINVAL;
638 
639  write_lock(&sbi->s_cred_lock);
640  sbi->s_flags = uopt.flags;
641  sbi->s_uid = uopt.uid;
642  sbi->s_gid = uopt.gid;
643  sbi->s_umask = uopt.umask;
644  sbi->s_fmode = uopt.fmode;
645  sbi->s_dmode = uopt.dmode;
646  write_unlock(&sbi->s_cred_lock);
647 
648  if (sbi->s_lvid_bh) {
649  int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
650  if (write_rev > UDF_MAX_WRITE_VERSION)
651  *flags |= MS_RDONLY;
652  }
653 
654  if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
655  goto out_unlock;
656 
657  if (*flags & MS_RDONLY)
658  udf_close_lvid(sb);
659  else
660  udf_open_lvid(sb);
661 
662 out_unlock:
663  return error;
664 }
665 
666 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
667 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
668 static loff_t udf_check_vsd(struct super_block *sb)
669 {
670  struct volStructDesc *vsd = NULL;
671  loff_t sector = 32768;
672  int sectorsize;
673  struct buffer_head *bh = NULL;
674  int nsr02 = 0;
675  int nsr03 = 0;
676  struct udf_sb_info *sbi;
677 
678  sbi = UDF_SB(sb);
679  if (sb->s_blocksize < sizeof(struct volStructDesc))
680  sectorsize = sizeof(struct volStructDesc);
681  else
682  sectorsize = sb->s_blocksize;
683 
684  sector += (sbi->s_session << sb->s_blocksize_bits);
685 
686  udf_debug("Starting at sector %u (%ld byte sectors)\n",
687  (unsigned int)(sector >> sb->s_blocksize_bits),
688  sb->s_blocksize);
689  /* Process the sequence (if applicable) */
690  for (; !nsr02 && !nsr03; sector += sectorsize) {
691  /* Read a block */
692  bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
693  if (!bh)
694  break;
695 
696  /* Look for ISO descriptors */
697  vsd = (struct volStructDesc *)(bh->b_data +
698  (sector & (sb->s_blocksize - 1)));
699 
700  if (vsd->stdIdent[0] == 0) {
701  brelse(bh);
702  break;
703  } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
704  VSD_STD_ID_LEN)) {
705  switch (vsd->structType) {
706  case 0:
707  udf_debug("ISO9660 Boot Record found\n");
708  break;
709  case 1:
710  udf_debug("ISO9660 Primary Volume Descriptor found\n");
711  break;
712  case 2:
713  udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
714  break;
715  case 3:
716  udf_debug("ISO9660 Volume Partition Descriptor found\n");
717  break;
718  case 255:
719  udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
720  break;
721  default:
722  udf_debug("ISO9660 VRS (%u) found\n",
723  vsd->structType);
724  break;
725  }
726  } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
728  ; /* nothing */
729  else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
730  VSD_STD_ID_LEN)) {
731  brelse(bh);
732  break;
733  } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
735  nsr02 = sector;
736  else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
738  nsr03 = sector;
739  brelse(bh);
740  }
741 
742  if (nsr03)
743  return nsr03;
744  else if (nsr02)
745  return nsr02;
746  else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
747  return -1;
748  else
749  return 0;
750 }
751 
752 static int udf_find_fileset(struct super_block *sb,
753  struct kernel_lb_addr *fileset,
754  struct kernel_lb_addr *root)
755 {
756  struct buffer_head *bh = NULL;
757  long lastblock;
758  uint16_t ident;
759  struct udf_sb_info *sbi;
760 
761  if (fileset->logicalBlockNum != 0xFFFFFFFF ||
762  fileset->partitionReferenceNum != 0xFFFF) {
763  bh = udf_read_ptagged(sb, fileset, 0, &ident);
764 
765  if (!bh) {
766  return 1;
767  } else if (ident != TAG_IDENT_FSD) {
768  brelse(bh);
769  return 1;
770  }
771 
772  }
773 
774  sbi = UDF_SB(sb);
775  if (!bh) {
776  /* Search backwards through the partitions */
777  struct kernel_lb_addr newfileset;
778 
779 /* --> cvg: FIXME - is it reasonable? */
780  return 1;
781 
782  for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
783  (newfileset.partitionReferenceNum != 0xFFFF &&
784  fileset->logicalBlockNum == 0xFFFFFFFF &&
785  fileset->partitionReferenceNum == 0xFFFF);
786  newfileset.partitionReferenceNum--) {
787  lastblock = sbi->s_partmaps
788  [newfileset.partitionReferenceNum]
789  .s_partition_len;
790  newfileset.logicalBlockNum = 0;
791 
792  do {
793  bh = udf_read_ptagged(sb, &newfileset, 0,
794  &ident);
795  if (!bh) {
796  newfileset.logicalBlockNum++;
797  continue;
798  }
799 
800  switch (ident) {
801  case TAG_IDENT_SBD:
802  {
803  struct spaceBitmapDesc *sp;
804  sp = (struct spaceBitmapDesc *)
805  bh->b_data;
806  newfileset.logicalBlockNum += 1 +
807  ((le32_to_cpu(sp->numOfBytes) +
808  sizeof(struct spaceBitmapDesc)
809  - 1) >> sb->s_blocksize_bits);
810  brelse(bh);
811  break;
812  }
813  case TAG_IDENT_FSD:
814  *fileset = newfileset;
815  break;
816  default:
817  newfileset.logicalBlockNum++;
818  brelse(bh);
819  bh = NULL;
820  break;
821  }
822  } while (newfileset.logicalBlockNum < lastblock &&
823  fileset->logicalBlockNum == 0xFFFFFFFF &&
824  fileset->partitionReferenceNum == 0xFFFF);
825  }
826  }
827 
828  if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
829  fileset->partitionReferenceNum != 0xFFFF) && bh) {
830  udf_debug("Fileset at block=%d, partition=%d\n",
831  fileset->logicalBlockNum,
832  fileset->partitionReferenceNum);
833 
834  sbi->s_partition = fileset->partitionReferenceNum;
835  udf_load_fileset(sb, bh, root);
836  brelse(bh);
837  return 0;
838  }
839  return 1;
840 }
841 
842 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
843 {
844  struct primaryVolDesc *pvoldesc;
845  struct ustr *instr, *outstr;
846  struct buffer_head *bh;
847  uint16_t ident;
848  int ret = 1;
849 
850  instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
851  if (!instr)
852  return 1;
853 
854  outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
855  if (!outstr)
856  goto out1;
857 
858  bh = udf_read_tagged(sb, block, block, &ident);
859  if (!bh)
860  goto out2;
861 
862  BUG_ON(ident != TAG_IDENT_PVD);
863 
864  pvoldesc = (struct primaryVolDesc *)bh->b_data;
865 
866  if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
867  pvoldesc->recordingDateAndTime)) {
868 #ifdef UDFFS_DEBUG
869  struct timestamp *ts = &pvoldesc->recordingDateAndTime;
870  udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
871  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
873 #endif
874  }
875 
876  if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
877  if (udf_CS0toUTF8(outstr, instr)) {
878  strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
879  outstr->u_len > 31 ? 31 : outstr->u_len);
880  udf_debug("volIdent[] = '%s'\n",
881  UDF_SB(sb)->s_volume_ident);
882  }
883 
884  if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
885  if (udf_CS0toUTF8(outstr, instr))
886  udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
887 
888  brelse(bh);
889  ret = 0;
890 out2:
891  kfree(outstr);
892 out1:
893  kfree(instr);
894  return ret;
895 }
896 
897 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
898  u32 meta_file_loc, u32 partition_num)
899 {
900  struct kernel_lb_addr addr;
901  struct inode *metadata_fe;
902 
903  addr.logicalBlockNum = meta_file_loc;
905 
906  metadata_fe = udf_iget(sb, &addr);
907 
908  if (metadata_fe == NULL)
909  udf_warn(sb, "metadata inode efe not found\n");
910  else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
911  udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
912  iput(metadata_fe);
913  metadata_fe = NULL;
914  }
915 
916  return metadata_fe;
917 }
918 
919 static int udf_load_metadata_files(struct super_block *sb, int partition)
920 {
921  struct udf_sb_info *sbi = UDF_SB(sb);
922  struct udf_part_map *map;
923  struct udf_meta_data *mdata;
924  struct kernel_lb_addr addr;
925 
926  map = &sbi->s_partmaps[partition];
927  mdata = &map->s_type_specific.s_metadata;
928 
929  /* metadata address */
930  udf_debug("Metadata file location: block = %d part = %d\n",
931  mdata->s_meta_file_loc, map->s_partition_num);
932 
934  mdata->s_meta_file_loc, map->s_partition_num);
935 
936  if (mdata->s_metadata_fe == NULL) {
937  /* mirror file entry */
938  udf_debug("Mirror metadata file location: block = %d part = %d\n",
939  mdata->s_mirror_file_loc, map->s_partition_num);
940 
942  mdata->s_mirror_file_loc, map->s_partition_num);
943 
944  if (mdata->s_mirror_fe == NULL) {
945  udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
946  goto error_exit;
947  }
948  }
949 
950  /*
951  * bitmap file entry
952  * Note:
953  * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
954  */
955  if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
956  addr.logicalBlockNum = mdata->s_bitmap_file_loc;
957  addr.partitionReferenceNum = map->s_partition_num;
958 
959  udf_debug("Bitmap file location: block = %d part = %d\n",
960  addr.logicalBlockNum, addr.partitionReferenceNum);
961 
962  mdata->s_bitmap_fe = udf_iget(sb, &addr);
963 
964  if (mdata->s_bitmap_fe == NULL) {
965  if (sb->s_flags & MS_RDONLY)
966  udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
967  else {
968  udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
969  goto error_exit;
970  }
971  }
972  }
973 
974  udf_debug("udf_load_metadata_files Ok\n");
975 
976  return 0;
977 
978 error_exit:
979  return 1;
980 }
981 
982 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
983  struct kernel_lb_addr *root)
984 {
985  struct fileSetDesc *fset;
986 
987  fset = (struct fileSetDesc *)bh->b_data;
988 
989  *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
990 
991  UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
992 
993  udf_debug("Rootdir at block=%d, partition=%d\n",
995 }
996 
997 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
998 {
999  struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1000  return DIV_ROUND_UP(map->s_partition_len +
1001  (sizeof(struct spaceBitmapDesc) << 3),
1002  sb->s_blocksize * 8);
1003 }
1004 
1005 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1006 {
1007  struct udf_bitmap *bitmap;
1008  int nr_groups;
1009  int size;
1010 
1011  nr_groups = udf_compute_nr_groups(sb, index);
1012  size = sizeof(struct udf_bitmap) +
1013  (sizeof(struct buffer_head *) * nr_groups);
1014 
1015  if (size <= PAGE_SIZE)
1016  bitmap = kzalloc(size, GFP_KERNEL);
1017  else
1018  bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1019 
1020  if (bitmap == NULL)
1021  return NULL;
1022 
1023  bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
1024  bitmap->s_nr_groups = nr_groups;
1025  return bitmap;
1026 }
1027 
1028 static int udf_fill_partdesc_info(struct super_block *sb,
1029  struct partitionDesc *p, int p_index)
1030 {
1031  struct udf_part_map *map;
1032  struct udf_sb_info *sbi = UDF_SB(sb);
1033  struct partitionHeaderDesc *phd;
1034 
1035  map = &sbi->s_partmaps[p_index];
1036 
1037  map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1039 
1048 
1049  udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1050  p_index, map->s_partition_type,
1051  map->s_partition_root, map->s_partition_len);
1052 
1055  return 0;
1056 
1057  phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1058  if (phd->unallocSpaceTable.extLength) {
1059  struct kernel_lb_addr loc = {
1060  .logicalBlockNum = le32_to_cpu(
1061  phd->unallocSpaceTable.extPosition),
1062  .partitionReferenceNum = p_index,
1063  };
1064 
1065  map->s_uspace.s_table = udf_iget(sb, &loc);
1066  if (!map->s_uspace.s_table) {
1067  udf_debug("cannot load unallocSpaceTable (part %d)\n",
1068  p_index);
1069  return 1;
1070  }
1072  udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1073  p_index, map->s_uspace.s_table->i_ino);
1074  }
1075 
1076  if (phd->unallocSpaceBitmap.extLength) {
1077  struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1078  if (!bitmap)
1079  return 1;
1080  map->s_uspace.s_bitmap = bitmap;
1081  bitmap->s_extLength = le32_to_cpu(
1082  phd->unallocSpaceBitmap.extLength);
1083  bitmap->s_extPosition = le32_to_cpu(
1084  phd->unallocSpaceBitmap.extPosition);
1086  udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1087  p_index, bitmap->s_extPosition);
1088  }
1089 
1090  if (phd->partitionIntegrityTable.extLength)
1091  udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1092 
1093  if (phd->freedSpaceTable.extLength) {
1094  struct kernel_lb_addr loc = {
1096  phd->freedSpaceTable.extPosition),
1097  .partitionReferenceNum = p_index,
1098  };
1099 
1100  map->s_fspace.s_table = udf_iget(sb, &loc);
1101  if (!map->s_fspace.s_table) {
1102  udf_debug("cannot load freedSpaceTable (part %d)\n",
1103  p_index);
1104  return 1;
1105  }
1106 
1108  udf_debug("freedSpaceTable (part %d) @ %ld\n",
1109  p_index, map->s_fspace.s_table->i_ino);
1110  }
1111 
1112  if (phd->freedSpaceBitmap.extLength) {
1113  struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1114  if (!bitmap)
1115  return 1;
1116  map->s_fspace.s_bitmap = bitmap;
1117  bitmap->s_extLength = le32_to_cpu(
1118  phd->freedSpaceBitmap.extLength);
1119  bitmap->s_extPosition = le32_to_cpu(
1120  phd->freedSpaceBitmap.extPosition);
1122  udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1123  p_index, bitmap->s_extPosition);
1124  }
1125  return 0;
1126 }
1127 
1128 static void udf_find_vat_block(struct super_block *sb, int p_index,
1129  int type1_index, sector_t start_block)
1130 {
1131  struct udf_sb_info *sbi = UDF_SB(sb);
1132  struct udf_part_map *map = &sbi->s_partmaps[p_index];
1133  sector_t vat_block;
1134  struct kernel_lb_addr ino;
1135 
1136  /*
1137  * VAT file entry is in the last recorded block. Some broken disks have
1138  * it a few blocks before so try a bit harder...
1139  */
1140  ino.partitionReferenceNum = type1_index;
1141  for (vat_block = start_block;
1142  vat_block >= map->s_partition_root &&
1143  vat_block >= start_block - 3 &&
1144  !sbi->s_vat_inode; vat_block--) {
1145  ino.logicalBlockNum = vat_block - map->s_partition_root;
1146  sbi->s_vat_inode = udf_iget(sb, &ino);
1147  }
1148 }
1149 
1150 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1151 {
1152  struct udf_sb_info *sbi = UDF_SB(sb);
1153  struct udf_part_map *map = &sbi->s_partmaps[p_index];
1154  struct buffer_head *bh = NULL;
1155  struct udf_inode_info *vati;
1156  uint32_t pos;
1157  struct virtualAllocationTable20 *vat20;
1158  sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1159 
1160  udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1161  if (!sbi->s_vat_inode &&
1162  sbi->s_last_block != blocks - 1) {
1163  pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1164  (unsigned long)sbi->s_last_block,
1165  (unsigned long)blocks - 1);
1166  udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1167  }
1168  if (!sbi->s_vat_inode)
1169  return 1;
1170 
1171  if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1172  map->s_type_specific.s_virtual.s_start_offset = 0;
1173  map->s_type_specific.s_virtual.s_num_entries =
1174  (sbi->s_vat_inode->i_size - 36) >> 2;
1175  } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1176  vati = UDF_I(sbi->s_vat_inode);
1177  if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1178  pos = udf_block_map(sbi->s_vat_inode, 0);
1179  bh = sb_bread(sb, pos);
1180  if (!bh)
1181  return 1;
1182  vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1183  } else {
1184  vat20 = (struct virtualAllocationTable20 *)
1185  vati->i_ext.i_data;
1186  }
1187 
1188  map->s_type_specific.s_virtual.s_start_offset =
1189  le16_to_cpu(vat20->lengthHeader);
1190  map->s_type_specific.s_virtual.s_num_entries =
1191  (sbi->s_vat_inode->i_size -
1193  s_start_offset) >> 2;
1194  brelse(bh);
1195  }
1196  return 0;
1197 }
1198 
1199 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1200 {
1201  struct buffer_head *bh;
1202  struct partitionDesc *p;
1203  struct udf_part_map *map;
1204  struct udf_sb_info *sbi = UDF_SB(sb);
1205  int i, type1_idx;
1207  uint16_t ident;
1208  int ret = 0;
1209 
1210  bh = udf_read_tagged(sb, block, block, &ident);
1211  if (!bh)
1212  return 1;
1213  if (ident != TAG_IDENT_PD)
1214  goto out_bh;
1215 
1216  p = (struct partitionDesc *)bh->b_data;
1217  partitionNumber = le16_to_cpu(p->partitionNumber);
1218 
1219  /* First scan for TYPE1, SPARABLE and METADATA partitions */
1220  for (i = 0; i < sbi->s_partitions; i++) {
1221  map = &sbi->s_partmaps[i];
1222  udf_debug("Searching map: (%d == %d)\n",
1223  map->s_partition_num, partitionNumber);
1224  if (map->s_partition_num == partitionNumber &&
1225  (map->s_partition_type == UDF_TYPE1_MAP15 ||
1227  break;
1228  }
1229 
1230  if (i >= sbi->s_partitions) {
1231  udf_debug("Partition (%d) not found in partition map\n",
1232  partitionNumber);
1233  goto out_bh;
1234  }
1235 
1236  ret = udf_fill_partdesc_info(sb, p, i);
1237 
1238  /*
1239  * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1240  * PHYSICAL partitions are already set up
1241  */
1242  type1_idx = i;
1243  for (i = 0; i < sbi->s_partitions; i++) {
1244  map = &sbi->s_partmaps[i];
1245 
1246  if (map->s_partition_num == partitionNumber &&
1250  break;
1251  }
1252 
1253  if (i >= sbi->s_partitions)
1254  goto out_bh;
1255 
1256  ret = udf_fill_partdesc_info(sb, p, i);
1257  if (ret)
1258  goto out_bh;
1259 
1260  if (map->s_partition_type == UDF_METADATA_MAP25) {
1261  ret = udf_load_metadata_files(sb, i);
1262  if (ret) {
1263  udf_err(sb, "error loading MetaData partition map %d\n",
1264  i);
1265  goto out_bh;
1266  }
1267  } else {
1268  ret = udf_load_vat(sb, i, type1_idx);
1269  if (ret)
1270  goto out_bh;
1271  /*
1272  * Mark filesystem read-only if we have a partition with
1273  * virtual map since we don't handle writing to it (we
1274  * overwrite blocks instead of relocating them).
1275  */
1276  sb->s_flags |= MS_RDONLY;
1277  pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1278  }
1279 out_bh:
1280  /* In case loading failed, we handle cleanup in udf_fill_super */
1281  brelse(bh);
1282  return ret;
1283 }
1284 
1285 static int udf_load_sparable_map(struct super_block *sb,
1286  struct udf_part_map *map,
1287  struct sparablePartitionMap *spm)
1288 {
1289  uint32_t loc;
1290  uint16_t ident;
1291  struct sparingTable *st;
1293  int i;
1294  struct buffer_head *bh;
1295 
1297  sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1298  if (!is_power_of_2(sdata->s_packet_len)) {
1299  udf_err(sb, "error loading logical volume descriptor: "
1300  "Invalid packet length %u\n",
1301  (unsigned)sdata->s_packet_len);
1302  return -EIO;
1303  }
1304  if (spm->numSparingTables > 4) {
1305  udf_err(sb, "error loading logical volume descriptor: "
1306  "Too many sparing tables (%d)\n",
1307  (int)spm->numSparingTables);
1308  return -EIO;
1309  }
1310 
1311  for (i = 0; i < spm->numSparingTables; i++) {
1312  loc = le32_to_cpu(spm->locSparingTable[i]);
1313  bh = udf_read_tagged(sb, loc, loc, &ident);
1314  if (!bh)
1315  continue;
1316 
1317  st = (struct sparingTable *)bh->b_data;
1318  if (ident != 0 ||
1319  strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1320  strlen(UDF_ID_SPARING)) ||
1321  sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1322  sb->s_blocksize) {
1323  brelse(bh);
1324  continue;
1325  }
1326 
1327  sdata->s_spar_map[i] = bh;
1328  }
1330  return 0;
1331 }
1332 
1333 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1334  struct kernel_lb_addr *fileset)
1335 {
1336  struct logicalVolDesc *lvd;
1337  int i, offset;
1338  uint8_t type;
1339  struct udf_sb_info *sbi = UDF_SB(sb);
1340  struct genericPartitionMap *gpm;
1341  uint16_t ident;
1342  struct buffer_head *bh;
1343  unsigned int table_len;
1344  int ret = 0;
1345 
1346  bh = udf_read_tagged(sb, block, block, &ident);
1347  if (!bh)
1348  return 1;
1349  BUG_ON(ident != TAG_IDENT_LVD);
1350  lvd = (struct logicalVolDesc *)bh->b_data;
1351  table_len = le32_to_cpu(lvd->mapTableLength);
1352  if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1353  udf_err(sb, "error loading logical volume descriptor: "
1354  "Partition table too long (%u > %lu)\n", table_len,
1355  sb->s_blocksize - sizeof(*lvd));
1356  ret = 1;
1357  goto out_bh;
1358  }
1359 
1360  ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1361  if (ret)
1362  goto out_bh;
1363 
1364  for (i = 0, offset = 0;
1365  i < sbi->s_partitions && offset < table_len;
1366  i++, offset += gpm->partitionMapLength) {
1367  struct udf_part_map *map = &sbi->s_partmaps[i];
1368  gpm = (struct genericPartitionMap *)
1369  &(lvd->partitionMaps[offset]);
1370  type = gpm->partitionMapType;
1371  if (type == 1) {
1372  struct genericPartitionMap1 *gpm1 =
1373  (struct genericPartitionMap1 *)gpm;
1375  map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1377  map->s_partition_func = NULL;
1378  } else if (type == 2) {
1379  struct udfPartitionMap2 *upm2 =
1380  (struct udfPartitionMap2 *)gpm;
1381  if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1382  strlen(UDF_ID_VIRTUAL))) {
1383  u16 suf =
1384  le16_to_cpu(((__le16 *)upm2->partIdent.
1385  identSuffix)[0]);
1386  if (suf < 0x0200) {
1387  map->s_partition_type =
1389  map->s_partition_func =
1391  } else {
1392  map->s_partition_type =
1394  map->s_partition_func =
1396  }
1397  } else if (!strncmp(upm2->partIdent.ident,
1399  strlen(UDF_ID_SPARABLE))) {
1400  if (udf_load_sparable_map(sb, map,
1401  (struct sparablePartitionMap *)gpm) < 0) {
1402  ret = 1;
1403  goto out_bh;
1404  }
1405  } else if (!strncmp(upm2->partIdent.ident,
1407  strlen(UDF_ID_METADATA))) {
1408  struct udf_meta_data *mdata =
1410  struct metadataPartitionMap *mdm =
1411  (struct metadataPartitionMap *)
1412  &(lvd->partitionMaps[offset]);
1413  udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1414  i, type, UDF_ID_METADATA);
1415 
1418 
1419  mdata->s_meta_file_loc =
1421  mdata->s_mirror_file_loc =
1423  mdata->s_bitmap_file_loc =
1425  mdata->s_alloc_unit_size =
1426  le32_to_cpu(mdm->allocUnitSize);
1427  mdata->s_align_unit_size =
1428  le16_to_cpu(mdm->alignUnitSize);
1429  if (mdm->flags & 0x01)
1430  mdata->s_flags |= MF_DUPLICATE_MD;
1431 
1432  udf_debug("Metadata Ident suffix=0x%x\n",
1433  le16_to_cpu(*(__le16 *)
1434  mdm->partIdent.identSuffix));
1435  udf_debug("Metadata part num=%d\n",
1436  le16_to_cpu(mdm->partitionNum));
1437  udf_debug("Metadata part alloc unit size=%d\n",
1438  le32_to_cpu(mdm->allocUnitSize));
1439  udf_debug("Metadata file loc=%d\n",
1441  udf_debug("Mirror file loc=%d\n",
1443  udf_debug("Bitmap file loc=%d\n",
1445  udf_debug("Flags: %d %d\n",
1446  mdata->s_flags, mdm->flags);
1447  } else {
1448  udf_debug("Unknown ident: %s\n",
1449  upm2->partIdent.ident);
1450  continue;
1451  }
1452  map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1454  }
1455  udf_debug("Partition (%d:%d) type %d on volume %d\n",
1456  i, map->s_partition_num, type, map->s_volumeseqnum);
1457  }
1458 
1459  if (fileset) {
1460  struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1461 
1462  *fileset = lelb_to_cpu(la->extLocation);
1463  udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1464  fileset->logicalBlockNum,
1465  fileset->partitionReferenceNum);
1466  }
1467  if (lvd->integritySeqExt.extLength)
1468  udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1469 
1470 out_bh:
1471  brelse(bh);
1472  return ret;
1473 }
1474 
1475 /*
1476  * udf_load_logicalvolint
1477  *
1478  */
1479 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1480 {
1481  struct buffer_head *bh = NULL;
1482  uint16_t ident;
1483  struct udf_sb_info *sbi = UDF_SB(sb);
1484  struct logicalVolIntegrityDesc *lvid;
1485 
1486  while (loc.extLength > 0 &&
1487  (bh = udf_read_tagged(sb, loc.extLocation,
1488  loc.extLocation, &ident)) &&
1489  ident == TAG_IDENT_LVID) {
1490  sbi->s_lvid_bh = bh;
1491  lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1492 
1493  if (lvid->nextIntegrityExt.extLength)
1494  udf_load_logicalvolint(sb,
1495  leea_to_cpu(lvid->nextIntegrityExt));
1496 
1497  if (sbi->s_lvid_bh != bh)
1498  brelse(bh);
1499  loc.extLength -= sb->s_blocksize;
1500  loc.extLocation++;
1501  }
1502  if (sbi->s_lvid_bh != bh)
1503  brelse(bh);
1504 }
1505 
1506 /*
1507  * udf_process_sequence
1508  *
1509  * PURPOSE
1510  * Process a main/reserve volume descriptor sequence.
1511  *
1512  * PRE-CONDITIONS
1513  * sb Pointer to _locked_ superblock.
1514  * block First block of first extent of the sequence.
1515  * lastblock Lastblock of first extent of the sequence.
1516  *
1517  * HISTORY
1518  * July 1, 1997 - Andrew E. Mileski
1519  * Written, tested, and released.
1520  */
1521 static noinline int udf_process_sequence(struct super_block *sb, long block,
1522  long lastblock, struct kernel_lb_addr *fileset)
1523 {
1524  struct buffer_head *bh = NULL;
1525  struct udf_vds_record vds[VDS_POS_LENGTH];
1526  struct udf_vds_record *curr;
1527  struct generic_desc *gd;
1528  struct volDescPtr *vdp;
1529  int done = 0;
1530  uint32_t vdsn;
1531  uint16_t ident;
1532  long next_s = 0, next_e = 0;
1533 
1534  memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1535 
1536  /*
1537  * Read the main descriptor sequence and find which descriptors
1538  * are in it.
1539  */
1540  for (; (!done && block <= lastblock); block++) {
1541 
1542  bh = udf_read_tagged(sb, block, block, &ident);
1543  if (!bh) {
1544  udf_err(sb,
1545  "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1546  (unsigned long long)block);
1547  return 1;
1548  }
1549 
1550  /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1551  gd = (struct generic_desc *)bh->b_data;
1552  vdsn = le32_to_cpu(gd->volDescSeqNum);
1553  switch (ident) {
1554  case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1555  curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1556  if (vdsn >= curr->volDescSeqNum) {
1557  curr->volDescSeqNum = vdsn;
1558  curr->block = block;
1559  }
1560  break;
1561  case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1562  curr = &vds[VDS_POS_VOL_DESC_PTR];
1563  if (vdsn >= curr->volDescSeqNum) {
1564  curr->volDescSeqNum = vdsn;
1565  curr->block = block;
1566 
1567  vdp = (struct volDescPtr *)bh->b_data;
1568  next_s = le32_to_cpu(
1569  vdp->nextVolDescSeqExt.extLocation);
1570  next_e = le32_to_cpu(
1571  vdp->nextVolDescSeqExt.extLength);
1572  next_e = next_e >> sb->s_blocksize_bits;
1573  next_e += next_s;
1574  }
1575  break;
1576  case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1577  curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1578  if (vdsn >= curr->volDescSeqNum) {
1579  curr->volDescSeqNum = vdsn;
1580  curr->block = block;
1581  }
1582  break;
1583  case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1584  curr = &vds[VDS_POS_PARTITION_DESC];
1585  if (!curr->block)
1586  curr->block = block;
1587  break;
1588  case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1589  curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1590  if (vdsn >= curr->volDescSeqNum) {
1591  curr->volDescSeqNum = vdsn;
1592  curr->block = block;
1593  }
1594  break;
1595  case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1596  curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1597  if (vdsn >= curr->volDescSeqNum) {
1598  curr->volDescSeqNum = vdsn;
1599  curr->block = block;
1600  }
1601  break;
1602  case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1603  vds[VDS_POS_TERMINATING_DESC].block = block;
1604  if (next_e) {
1605  block = next_s;
1606  lastblock = next_e;
1607  next_s = next_e = 0;
1608  } else
1609  done = 1;
1610  break;
1611  }
1612  brelse(bh);
1613  }
1614  /*
1615  * Now read interesting descriptors again and process them
1616  * in a suitable order
1617  */
1618  if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1619  udf_err(sb, "Primary Volume Descriptor not found!\n");
1620  return 1;
1621  }
1622  if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1623  return 1;
1624 
1625  if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1626  vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1627  return 1;
1628 
1629  if (vds[VDS_POS_PARTITION_DESC].block) {
1630  /*
1631  * We rescan the whole descriptor sequence to find
1632  * partition descriptor blocks and process them.
1633  */
1634  for (block = vds[VDS_POS_PARTITION_DESC].block;
1635  block < vds[VDS_POS_TERMINATING_DESC].block;
1636  block++)
1637  if (udf_load_partdesc(sb, block))
1638  return 1;
1639  }
1640 
1641  return 0;
1642 }
1643 
1644 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1645  struct kernel_lb_addr *fileset)
1646 {
1647  struct anchorVolDescPtr *anchor;
1648  long main_s, main_e, reserve_s, reserve_e;
1649 
1650  anchor = (struct anchorVolDescPtr *)bh->b_data;
1651 
1652  /* Locate the main sequence */
1653  main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1654  main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1655  main_e = main_e >> sb->s_blocksize_bits;
1656  main_e += main_s;
1657 
1658  /* Locate the reserve sequence */
1659  reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1660  reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1661  reserve_e = reserve_e >> sb->s_blocksize_bits;
1662  reserve_e += reserve_s;
1663 
1664  /* Process the main & reserve sequences */
1665  /* responsible for finding the PartitionDesc(s) */
1666  if (!udf_process_sequence(sb, main_s, main_e, fileset))
1667  return 1;
1668  udf_sb_free_partitions(sb);
1669  if (!udf_process_sequence(sb, reserve_s, reserve_e, fileset))
1670  return 1;
1671  udf_sb_free_partitions(sb);
1672  return 0;
1673 }
1674 
1675 /*
1676  * Check whether there is an anchor block in the given block and
1677  * load Volume Descriptor Sequence if so.
1678  */
1679 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1680  struct kernel_lb_addr *fileset)
1681 {
1682  struct buffer_head *bh;
1683  uint16_t ident;
1684  int ret;
1685 
1686  if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1687  udf_fixed_to_variable(block) >=
1688  sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1689  return 0;
1690 
1691  bh = udf_read_tagged(sb, block, block, &ident);
1692  if (!bh)
1693  return 0;
1694  if (ident != TAG_IDENT_AVDP) {
1695  brelse(bh);
1696  return 0;
1697  }
1698  ret = udf_load_sequence(sb, bh, fileset);
1699  brelse(bh);
1700  return ret;
1701 }
1702 
1703 /* Search for an anchor volume descriptor pointer */
1704 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1705  struct kernel_lb_addr *fileset)
1706 {
1707  sector_t last[6];
1708  int i;
1709  struct udf_sb_info *sbi = UDF_SB(sb);
1710  int last_count = 0;
1711 
1712  /* First try user provided anchor */
1713  if (sbi->s_anchor) {
1714  if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1715  return lastblock;
1716  }
1717  /*
1718  * according to spec, anchor is in either:
1719  * block 256
1720  * lastblock-256
1721  * lastblock
1722  * however, if the disc isn't closed, it could be 512.
1723  */
1724  if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1725  return lastblock;
1726  /*
1727  * The trouble is which block is the last one. Drives often misreport
1728  * this so we try various possibilities.
1729  */
1730  last[last_count++] = lastblock;
1731  if (lastblock >= 1)
1732  last[last_count++] = lastblock - 1;
1733  last[last_count++] = lastblock + 1;
1734  if (lastblock >= 2)
1735  last[last_count++] = lastblock - 2;
1736  if (lastblock >= 150)
1737  last[last_count++] = lastblock - 150;
1738  if (lastblock >= 152)
1739  last[last_count++] = lastblock - 152;
1740 
1741  for (i = 0; i < last_count; i++) {
1742  if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1743  sb->s_blocksize_bits)
1744  continue;
1745  if (udf_check_anchor_block(sb, last[i], fileset))
1746  return last[i];
1747  if (last[i] < 256)
1748  continue;
1749  if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1750  return last[i];
1751  }
1752 
1753  /* Finally try block 512 in case media is open */
1754  if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1755  return last[0];
1756  return 0;
1757 }
1758 
1759 /*
1760  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1761  * area specified by it. The function expects sbi->s_lastblock to be the last
1762  * block on the media.
1763  *
1764  * Return 1 if ok, 0 if not found.
1765  *
1766  */
1767 static int udf_find_anchor(struct super_block *sb,
1768  struct kernel_lb_addr *fileset)
1769 {
1770  sector_t lastblock;
1771  struct udf_sb_info *sbi = UDF_SB(sb);
1772 
1773  lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1774  if (lastblock)
1775  goto out;
1776 
1777  /* No anchor found? Try VARCONV conversion of block numbers */
1778  UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1779  /* Firstly, we try to not convert number of the last block */
1780  lastblock = udf_scan_anchors(sb,
1782  fileset);
1783  if (lastblock)
1784  goto out;
1785 
1786  /* Secondly, we try with converted number of the last block */
1787  lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1788  if (!lastblock) {
1789  /* VARCONV didn't help. Clear it. */
1790  UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1791  return 0;
1792  }
1793 out:
1794  sbi->s_last_block = lastblock;
1795  return 1;
1796 }
1797 
1798 /*
1799  * Check Volume Structure Descriptor, find Anchor block and load Volume
1800  * Descriptor Sequence
1801  */
1802 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1803  int silent, struct kernel_lb_addr *fileset)
1804 {
1805  struct udf_sb_info *sbi = UDF_SB(sb);
1806  loff_t nsr_off;
1807 
1808  if (!sb_set_blocksize(sb, uopt->blocksize)) {
1809  if (!silent)
1810  udf_warn(sb, "Bad block size\n");
1811  return 0;
1812  }
1813  sbi->s_last_block = uopt->lastblock;
1814  if (!uopt->novrs) {
1815  /* Check that it is NSR02 compliant */
1816  nsr_off = udf_check_vsd(sb);
1817  if (!nsr_off) {
1818  if (!silent)
1819  udf_warn(sb, "No VRS found\n");
1820  return 0;
1821  }
1822  if (nsr_off == -1)
1823  udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1824  if (!sbi->s_last_block)
1825  sbi->s_last_block = udf_get_last_block(sb);
1826  } else {
1827  udf_debug("Validity check skipped because of novrs option\n");
1828  }
1829 
1830  /* Look for anchor block and load Volume Descriptor Sequence */
1831  sbi->s_anchor = uopt->anchor;
1832  if (!udf_find_anchor(sb, fileset)) {
1833  if (!silent)
1834  udf_warn(sb, "No anchor found\n");
1835  return 0;
1836  }
1837  return 1;
1838 }
1839 
1840 static void udf_open_lvid(struct super_block *sb)
1841 {
1842  struct udf_sb_info *sbi = UDF_SB(sb);
1843  struct buffer_head *bh = sbi->s_lvid_bh;
1844  struct logicalVolIntegrityDesc *lvid;
1845  struct logicalVolIntegrityDescImpUse *lvidiu;
1846 
1847  if (!bh)
1848  return;
1849 
1850  mutex_lock(&sbi->s_alloc_mutex);
1851  lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1852  lvidiu = udf_sb_lvidiu(sbi);
1853 
1854  lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1855  lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1857  CURRENT_TIME);
1859 
1860  lvid->descTag.descCRC = cpu_to_le16(
1861  crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1862  le16_to_cpu(lvid->descTag.descCRCLength)));
1863 
1864  lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1865  mark_buffer_dirty(bh);
1866  sbi->s_lvid_dirty = 0;
1867  mutex_unlock(&sbi->s_alloc_mutex);
1868 }
1869 
1870 static void udf_close_lvid(struct super_block *sb)
1871 {
1872  struct udf_sb_info *sbi = UDF_SB(sb);
1873  struct buffer_head *bh = sbi->s_lvid_bh;
1874  struct logicalVolIntegrityDesc *lvid;
1875  struct logicalVolIntegrityDescImpUse *lvidiu;
1876 
1877  if (!bh)
1878  return;
1879 
1880  mutex_lock(&sbi->s_alloc_mutex);
1881  lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1882  lvidiu = udf_sb_lvidiu(sbi);
1883  lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1884  lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1888  if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1889  lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1890  if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1891  lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1893 
1894  lvid->descTag.descCRC = cpu_to_le16(
1895  crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1896  le16_to_cpu(lvid->descTag.descCRCLength)));
1897 
1898  lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1899  /*
1900  * We set buffer uptodate unconditionally here to avoid spurious
1901  * warnings from mark_buffer_dirty() when previous EIO has marked
1902  * the buffer as !uptodate
1903  */
1904  set_buffer_uptodate(bh);
1905  mark_buffer_dirty(bh);
1906  sbi->s_lvid_dirty = 0;
1907  mutex_unlock(&sbi->s_alloc_mutex);
1908 }
1909 
1911 {
1912  struct buffer_head *bh;
1913  struct udf_sb_info *sbi = UDF_SB(sb);
1914  struct logicalVolIntegrityDesc *lvid;
1915  struct logicalVolHeaderDesc *lvhd;
1916  u64 uniqueID;
1917  u64 ret;
1918 
1919  bh = sbi->s_lvid_bh;
1920  if (!bh)
1921  return 0;
1922 
1923  lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1924  lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1925 
1926  mutex_lock(&sbi->s_alloc_mutex);
1927  ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1928  if (!(++uniqueID & 0xFFFFFFFF))
1929  uniqueID += 16;
1930  lvhd->uniqueID = cpu_to_le64(uniqueID);
1931  mutex_unlock(&sbi->s_alloc_mutex);
1932  mark_buffer_dirty(bh);
1933 
1934  return ret;
1935 }
1936 
1937 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1938 {
1939  int ret;
1940  struct inode *inode = NULL;
1941  struct udf_options uopt;
1942  struct kernel_lb_addr rootdir, fileset;
1943  struct udf_sb_info *sbi;
1944 
1945  uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1946  uopt.uid = INVALID_UID;
1947  uopt.gid = INVALID_GID;
1948  uopt.umask = 0;
1949  uopt.fmode = UDF_INVALID_MODE;
1950  uopt.dmode = UDF_INVALID_MODE;
1951 
1952  sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1953  if (!sbi)
1954  return -ENOMEM;
1955 
1956  sb->s_fs_info = sbi;
1957 
1958  mutex_init(&sbi->s_alloc_mutex);
1959 
1960  if (!udf_parse_options((char *)options, &uopt, false))
1961  goto error_out;
1962 
1963  if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1964  uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1965  udf_err(sb, "utf8 cannot be combined with iocharset\n");
1966  goto error_out;
1967  }
1968 #ifdef CONFIG_UDF_NLS
1969  if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1970  uopt.nls_map = load_nls_default();
1971  if (!uopt.nls_map)
1972  uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1973  else
1974  udf_debug("Using default NLS map\n");
1975  }
1976 #endif
1977  if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1978  uopt.flags |= (1 << UDF_FLAG_UTF8);
1979 
1980  fileset.logicalBlockNum = 0xFFFFFFFF;
1981  fileset.partitionReferenceNum = 0xFFFF;
1982 
1983  sbi->s_flags = uopt.flags;
1984  sbi->s_uid = uopt.uid;
1985  sbi->s_gid = uopt.gid;
1986  sbi->s_umask = uopt.umask;
1987  sbi->s_fmode = uopt.fmode;
1988  sbi->s_dmode = uopt.dmode;
1989  sbi->s_nls_map = uopt.nls_map;
1990  rwlock_init(&sbi->s_cred_lock);
1991 
1992  if (uopt.session == 0xFFFFFFFF)
1993  sbi->s_session = udf_get_last_session(sb);
1994  else
1995  sbi->s_session = uopt.session;
1996 
1997  udf_debug("Multi-session=%d\n", sbi->s_session);
1998 
1999  /* Fill in the rest of the superblock */
2000  sb->s_op = &udf_sb_ops;
2001  sb->s_export_op = &udf_export_ops;
2002 
2003  sb->s_magic = UDF_SUPER_MAGIC;
2004  sb->s_time_gran = 1000;
2005 
2006  if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2007  ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2008  } else {
2009  uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2010  ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2011  if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2012  if (!silent)
2013  pr_notice("Rescanning with blocksize %d\n",
2015  brelse(sbi->s_lvid_bh);
2016  sbi->s_lvid_bh = NULL;
2018  ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2019  }
2020  }
2021  if (!ret) {
2022  udf_warn(sb, "No partition found (1)\n");
2023  goto error_out;
2024  }
2025 
2026  udf_debug("Lastblock=%d\n", sbi->s_last_block);
2027 
2028  if (sbi->s_lvid_bh) {
2029  struct logicalVolIntegrityDescImpUse *lvidiu =
2030  udf_sb_lvidiu(sbi);
2033  /* uint16_t maxUDFWriteRev =
2034  le16_to_cpu(lvidiu->maxUDFWriteRev); */
2035 
2036  if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2037  udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2038  le16_to_cpu(lvidiu->minUDFReadRev),
2040  goto error_out;
2041  } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2042  sb->s_flags |= MS_RDONLY;
2043 
2044  sbi->s_udfrev = minUDFWriteRev;
2045 
2046  if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2047  UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2048  if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2049  UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2050  }
2051 
2052  if (!sbi->s_partitions) {
2053  udf_warn(sb, "No partition found (2)\n");
2054  goto error_out;
2055  }
2056 
2057  if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2059  pr_notice("Partition marked readonly; forcing readonly mount\n");
2060  sb->s_flags |= MS_RDONLY;
2061  }
2062 
2063  if (udf_find_fileset(sb, &fileset, &rootdir)) {
2064  udf_warn(sb, "No fileset found\n");
2065  goto error_out;
2066  }
2067 
2068  if (!silent) {
2069  struct timestamp ts;
2071  udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2072  sbi->s_volume_ident,
2073  le16_to_cpu(ts.year), ts.month, ts.day,
2074  ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2075  }
2076  if (!(sb->s_flags & MS_RDONLY))
2077  udf_open_lvid(sb);
2078 
2079  /* Assign the root inode */
2080  /* assign inodes by physical block number */
2081  /* perhaps it's not extensible enough, but for now ... */
2082  inode = udf_iget(sb, &rootdir);
2083  if (!inode) {
2084  udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2085  rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2086  goto error_out;
2087  }
2088 
2089  /* Allocate a dentry for the root inode */
2090  sb->s_root = d_make_root(inode);
2091  if (!sb->s_root) {
2092  udf_err(sb, "Couldn't allocate root dentry\n");
2093  goto error_out;
2094  }
2095  sb->s_maxbytes = MAX_LFS_FILESIZE;
2096  sb->s_max_links = UDF_MAX_LINKS;
2097  return 0;
2098 
2099 error_out:
2100  if (sbi->s_vat_inode)
2101  iput(sbi->s_vat_inode);
2102 #ifdef CONFIG_UDF_NLS
2103  if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2104  unload_nls(sbi->s_nls_map);
2105 #endif
2106  if (!(sb->s_flags & MS_RDONLY))
2107  udf_close_lvid(sb);
2108  brelse(sbi->s_lvid_bh);
2109  udf_sb_free_partitions(sb);
2110  kfree(sbi);
2111  sb->s_fs_info = NULL;
2112 
2113  return -EINVAL;
2114 }
2115 
2116 void _udf_err(struct super_block *sb, const char *function,
2117  const char *fmt, ...)
2118 {
2119  struct va_format vaf;
2120  va_list args;
2121 
2122  va_start(args, fmt);
2123 
2124  vaf.fmt = fmt;
2125  vaf.va = &args;
2126 
2127  pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2128 
2129  va_end(args);
2130 }
2131 
2132 void _udf_warn(struct super_block *sb, const char *function,
2133  const char *fmt, ...)
2134 {
2135  struct va_format vaf;
2136  va_list args;
2137 
2138  va_start(args, fmt);
2139 
2140  vaf.fmt = fmt;
2141  vaf.va = &args;
2142 
2143  pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2144 
2145  va_end(args);
2146 }
2147 
2148 static void udf_put_super(struct super_block *sb)
2149 {
2150  struct udf_sb_info *sbi;
2151 
2152  sbi = UDF_SB(sb);
2153 
2154  if (sbi->s_vat_inode)
2155  iput(sbi->s_vat_inode);
2156 #ifdef CONFIG_UDF_NLS
2157  if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2158  unload_nls(sbi->s_nls_map);
2159 #endif
2160  if (!(sb->s_flags & MS_RDONLY))
2161  udf_close_lvid(sb);
2162  brelse(sbi->s_lvid_bh);
2163  udf_sb_free_partitions(sb);
2164  kfree(sb->s_fs_info);
2165  sb->s_fs_info = NULL;
2166 }
2167 
2168 static int udf_sync_fs(struct super_block *sb, int wait)
2169 {
2170  struct udf_sb_info *sbi = UDF_SB(sb);
2171 
2172  mutex_lock(&sbi->s_alloc_mutex);
2173  if (sbi->s_lvid_dirty) {
2174  /*
2175  * Blockdevice will be synced later so we don't have to submit
2176  * the buffer for IO
2177  */
2179  sbi->s_lvid_dirty = 0;
2180  }
2181  mutex_unlock(&sbi->s_alloc_mutex);
2182 
2183  return 0;
2184 }
2185 
2186 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2187 {
2188  struct super_block *sb = dentry->d_sb;
2189  struct udf_sb_info *sbi = UDF_SB(sb);
2190  struct logicalVolIntegrityDescImpUse *lvidiu;
2191  u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2192 
2193  if (sbi->s_lvid_bh != NULL)
2194  lvidiu = udf_sb_lvidiu(sbi);
2195  else
2196  lvidiu = NULL;
2197 
2198  buf->f_type = UDF_SUPER_MAGIC;
2199  buf->f_bsize = sb->s_blocksize;
2200  buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2201  buf->f_bfree = udf_count_free(sb);
2202  buf->f_bavail = buf->f_bfree;
2203  buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2204  le32_to_cpu(lvidiu->numDirs)) : 0)
2205  + buf->f_bfree;
2206  buf->f_ffree = buf->f_bfree;
2207  buf->f_namelen = UDF_NAME_LEN - 2;
2208  buf->f_fsid.val[0] = (u32)id;
2209  buf->f_fsid.val[1] = (u32)(id >> 32);
2210 
2211  return 0;
2212 }
2213 
2214 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2215  struct udf_bitmap *bitmap)
2216 {
2217  struct buffer_head *bh = NULL;
2218  unsigned int accum = 0;
2219  int index;
2220  int block = 0, newblock;
2221  struct kernel_lb_addr loc;
2222  uint32_t bytes;
2223  uint8_t *ptr;
2224  uint16_t ident;
2225  struct spaceBitmapDesc *bm;
2226 
2227  loc.logicalBlockNum = bitmap->s_extPosition;
2228  loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2229  bh = udf_read_ptagged(sb, &loc, 0, &ident);
2230 
2231  if (!bh) {
2232  udf_err(sb, "udf_count_free failed\n");
2233  goto out;
2234  } else if (ident != TAG_IDENT_SBD) {
2235  brelse(bh);
2236  udf_err(sb, "udf_count_free failed\n");
2237  goto out;
2238  }
2239 
2240  bm = (struct spaceBitmapDesc *)bh->b_data;
2241  bytes = le32_to_cpu(bm->numOfBytes);
2242  index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2243  ptr = (uint8_t *)bh->b_data;
2244 
2245  while (bytes > 0) {
2246  u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2247  accum += bitmap_weight((const unsigned long *)(ptr + index),
2248  cur_bytes * 8);
2249  bytes -= cur_bytes;
2250  if (bytes) {
2251  brelse(bh);
2252  newblock = udf_get_lb_pblock(sb, &loc, ++block);
2253  bh = udf_tread(sb, newblock);
2254  if (!bh) {
2255  udf_debug("read failed\n");
2256  goto out;
2257  }
2258  index = 0;
2259  ptr = (uint8_t *)bh->b_data;
2260  }
2261  }
2262  brelse(bh);
2263 out:
2264  return accum;
2265 }
2266 
2267 static unsigned int udf_count_free_table(struct super_block *sb,
2268  struct inode *table)
2269 {
2270  unsigned int accum = 0;
2271  uint32_t elen;
2272  struct kernel_lb_addr eloc;
2273  int8_t etype;
2274  struct extent_position epos;
2275 
2276  mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2277  epos.block = UDF_I(table)->i_location;
2278  epos.offset = sizeof(struct unallocSpaceEntry);
2279  epos.bh = NULL;
2280 
2281  while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2282  accum += (elen >> table->i_sb->s_blocksize_bits);
2283 
2284  brelse(epos.bh);
2285  mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2286 
2287  return accum;
2288 }
2289 
2290 static unsigned int udf_count_free(struct super_block *sb)
2291 {
2292  unsigned int accum = 0;
2293  struct udf_sb_info *sbi;
2294  struct udf_part_map *map;
2295 
2296  sbi = UDF_SB(sb);
2297  if (sbi->s_lvid_bh) {
2298  struct logicalVolIntegrityDesc *lvid =
2299  (struct logicalVolIntegrityDesc *)
2300  sbi->s_lvid_bh->b_data;
2301  if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2302  accum = le32_to_cpu(
2303  lvid->freeSpaceTable[sbi->s_partition]);
2304  if (accum == 0xFFFFFFFF)
2305  accum = 0;
2306  }
2307  }
2308 
2309  if (accum)
2310  return accum;
2311 
2312  map = &sbi->s_partmaps[sbi->s_partition];
2314  accum += udf_count_free_bitmap(sb,
2315  map->s_uspace.s_bitmap);
2316  }
2318  accum += udf_count_free_bitmap(sb,
2319  map->s_fspace.s_bitmap);
2320  }
2321  if (accum)
2322  return accum;
2323 
2325  accum += udf_count_free_table(sb,
2326  map->s_uspace.s_table);
2327  }
2329  accum += udf_count_free_table(sb,
2330  map->s_fspace.s_table);
2331  }
2332 
2333  return accum;
2334 }