Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
fsl_dma.c
Go to the documentation of this file.
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <[email protected]>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2. This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  * This driver implements ASoC support for the Elo DMA controller, which is
13  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14  * the PCM driver is what handles the DMA buffer.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/gfp.h>
24 #include <linux/of_platform.h>
25 #include <linux/list.h>
26 #include <linux/slab.h>
27 
28 #include <sound/core.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/soc.h>
32 
33 #include <asm/io.h>
34 
35 #include "fsl_dma.h"
36 #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
37 
38 /*
39  * The formats that the DMA controller supports, which is anything
40  * that is 8, 16, or 32 bits.
41  */
42 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
43  SNDRV_PCM_FMTBIT_U8 | \
44  SNDRV_PCM_FMTBIT_S16_LE | \
45  SNDRV_PCM_FMTBIT_S16_BE | \
46  SNDRV_PCM_FMTBIT_U16_LE | \
47  SNDRV_PCM_FMTBIT_U16_BE | \
48  SNDRV_PCM_FMTBIT_S24_LE | \
49  SNDRV_PCM_FMTBIT_S24_BE | \
50  SNDRV_PCM_FMTBIT_U24_LE | \
51  SNDRV_PCM_FMTBIT_U24_BE | \
52  SNDRV_PCM_FMTBIT_S32_LE | \
53  SNDRV_PCM_FMTBIT_S32_BE | \
54  SNDRV_PCM_FMTBIT_U32_LE | \
55  SNDRV_PCM_FMTBIT_U32_BE)
56 
57 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
58  SNDRV_PCM_RATE_CONTINUOUS)
59 
60 struct dma_object {
64  unsigned int ssi_fifo_depth;
65  struct ccsr_dma_channel __iomem *channel;
66  unsigned int irq;
67  bool assigned;
68  char path[1];
69 };
70 
71 /*
72  * The number of DMA links to use. Two is the bare minimum, but if you
73  * have really small links you might need more.
74  */
75 #define NUM_DMA_LINKS 2
76 
100  struct ccsr_dma_channel __iomem *dma_channel;
101  unsigned int irq;
104  unsigned int ssi_fifo_depth;
106  unsigned int current_link;
110  size_t period_size;
111  unsigned int num_periods;
112 };
113 
133 static const struct snd_pcm_hardware fsl_dma_hardware = {
134 
140  .formats = FSLDMA_PCM_FORMATS,
141  .rates = FSLDMA_PCM_RATES,
142  .rate_min = 5512,
143  .rate_max = 192000,
144  .period_bytes_min = 512, /* A reasonable limit */
145  .period_bytes_max = (u32) -1,
147  .periods_max = (unsigned int) -1,
148  .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
149 };
150 
157 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
158 {
159  unsigned long flags;
160 
161  snd_pcm_stream_lock_irqsave(substream, flags);
162 
163  if (snd_pcm_running(substream))
165 
166  snd_pcm_stream_unlock_irqrestore(substream, flags);
167 }
168 
175 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
176 {
177  struct fsl_dma_link_descriptor *link =
178  &dma_private->link[dma_private->current_link];
179 
180  /* Update our link descriptors to point to the next period. On a 36-bit
181  * system, we also need to update the ESAD bits. We also set (keep) the
182  * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
183  */
184  if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
185  link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
186 #ifdef CONFIG_PHYS_64BIT
188  upper_32_bits(dma_private->dma_buf_next));
189 #endif
190  } else {
191  link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
192 #ifdef CONFIG_PHYS_64BIT
194  upper_32_bits(dma_private->dma_buf_next));
195 #endif
196  }
197 
198  /* Update our variables for next time */
199  dma_private->dma_buf_next += dma_private->period_size;
200 
201  if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
202  dma_private->dma_buf_next = dma_private->dma_buf_phys;
203 
204  if (++dma_private->current_link >= NUM_DMA_LINKS)
205  dma_private->current_link = 0;
206 }
207 
214 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
215 {
216  struct fsl_dma_private *dma_private = dev_id;
217  struct snd_pcm_substream *substream = dma_private->substream;
218  struct snd_soc_pcm_runtime *rtd = substream->private_data;
219  struct device *dev = rtd->platform->dev;
220  struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
222  u32 sr, sr2 = 0;
223 
224  /* We got an interrupt, so read the status register to see what we
225  were interrupted for.
226  */
227  sr = in_be32(&dma_channel->sr);
228 
229  if (sr & CCSR_DMA_SR_TE) {
230  dev_err(dev, "dma transmit error\n");
231  fsl_dma_abort_stream(substream);
232  sr2 |= CCSR_DMA_SR_TE;
233  ret = IRQ_HANDLED;
234  }
235 
236  if (sr & CCSR_DMA_SR_CH)
237  ret = IRQ_HANDLED;
238 
239  if (sr & CCSR_DMA_SR_PE) {
240  dev_err(dev, "dma programming error\n");
241  fsl_dma_abort_stream(substream);
242  sr2 |= CCSR_DMA_SR_PE;
243  ret = IRQ_HANDLED;
244  }
245 
246  if (sr & CCSR_DMA_SR_EOLNI) {
247  sr2 |= CCSR_DMA_SR_EOLNI;
248  ret = IRQ_HANDLED;
249  }
250 
251  if (sr & CCSR_DMA_SR_CB)
252  ret = IRQ_HANDLED;
253 
254  if (sr & CCSR_DMA_SR_EOSI) {
255  /* Tell ALSA we completed a period. */
256  snd_pcm_period_elapsed(substream);
257 
258  /*
259  * Update our link descriptors to point to the next period. We
260  * only need to do this if the number of periods is not equal to
261  * the number of links.
262  */
263  if (dma_private->num_periods != NUM_DMA_LINKS)
264  fsl_dma_update_pointers(dma_private);
265 
266  sr2 |= CCSR_DMA_SR_EOSI;
267  ret = IRQ_HANDLED;
268  }
269 
270  if (sr & CCSR_DMA_SR_EOLSI) {
271  sr2 |= CCSR_DMA_SR_EOLSI;
272  ret = IRQ_HANDLED;
273  }
274 
275  /* Clear the bits that we set */
276  if (sr2)
277  out_be32(&dma_channel->sr, sr2);
278 
279  return ret;
280 }
281 
297 static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
298 {
299  struct snd_card *card = rtd->card->snd_card;
300  struct snd_pcm *pcm = rtd->pcm;
301  static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
302  int ret;
303 
304  if (!card->dev->dma_mask)
305  card->dev->dma_mask = &fsl_dma_dmamask;
306 
307  if (!card->dev->coherent_dma_mask)
308  card->dev->coherent_dma_mask = fsl_dma_dmamask;
309 
310  /* Some codecs have separate DAIs for playback and capture, so we
311  * should allocate a DMA buffer only for the streams that are valid.
312  */
313 
314  if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
316  fsl_dma_hardware.buffer_bytes_max,
317  &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
318  if (ret) {
319  dev_err(card->dev, "can't alloc playback dma buffer\n");
320  return ret;
321  }
322  }
323 
324  if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
326  fsl_dma_hardware.buffer_bytes_max,
327  &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
328  if (ret) {
329  dev_err(card->dev, "can't alloc capture dma buffer\n");
330  snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
331  return ret;
332  }
333  }
334 
335  return 0;
336 }
337 
400 static int fsl_dma_open(struct snd_pcm_substream *substream)
401 {
402  struct snd_pcm_runtime *runtime = substream->runtime;
403  struct snd_soc_pcm_runtime *rtd = substream->private_data;
404  struct device *dev = rtd->platform->dev;
405  struct dma_object *dma =
406  container_of(rtd->platform->driver, struct dma_object, dai);
407  struct fsl_dma_private *dma_private;
408  struct ccsr_dma_channel __iomem *dma_channel;
409  dma_addr_t ld_buf_phys;
410  u64 temp_link; /* Pointer to next link descriptor */
411  u32 mr;
412  unsigned int channel;
413  int ret = 0;
414  unsigned int i;
415 
416  /*
417  * Reject any DMA buffer whose size is not a multiple of the period
418  * size. We need to make sure that the DMA buffer can be evenly divided
419  * into periods.
420  */
421  ret = snd_pcm_hw_constraint_integer(runtime,
423  if (ret < 0) {
424  dev_err(dev, "invalid buffer size\n");
425  return ret;
426  }
427 
428  channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
429 
430  if (dma->assigned) {
431  dev_err(dev, "dma channel already assigned\n");
432  return -EBUSY;
433  }
434 
435  dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
436  &ld_buf_phys, GFP_KERNEL);
437  if (!dma_private) {
438  dev_err(dev, "can't allocate dma private data\n");
439  return -ENOMEM;
440  }
441  if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
442  dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
443  else
444  dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
445 
446  dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
447  dma_private->dma_channel = dma->channel;
448  dma_private->irq = dma->irq;
449  dma_private->substream = substream;
450  dma_private->ld_buf_phys = ld_buf_phys;
451  dma_private->dma_buf_phys = substream->dma_buffer.addr;
452 
453  ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
454  dma_private);
455  if (ret) {
456  dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
457  dma_private->irq, ret);
458  dma_free_coherent(dev, sizeof(struct fsl_dma_private),
459  dma_private, dma_private->ld_buf_phys);
460  return ret;
461  }
462 
463  dma->assigned = 1;
464 
465  snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
466  snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
467  runtime->private_data = dma_private;
468 
469  /* Program the fixed DMA controller parameters */
470 
471  dma_channel = dma_private->dma_channel;
472 
473  temp_link = dma_private->ld_buf_phys +
474  sizeof(struct fsl_dma_link_descriptor);
475 
476  for (i = 0; i < NUM_DMA_LINKS; i++) {
477  dma_private->link[i].next = cpu_to_be64(temp_link);
478 
479  temp_link += sizeof(struct fsl_dma_link_descriptor);
480  }
481  /* The last link descriptor points to the first */
482  dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
483 
484  /* Tell the DMA controller where the first link descriptor is */
485  out_be32(&dma_channel->clndar,
486  CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
487  out_be32(&dma_channel->eclndar,
488  CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
489 
490  /* The manual says the BCR must be clear before enabling EMP */
491  out_be32(&dma_channel->bcr, 0);
492 
493  /*
494  * Program the mode register for interrupts, external master control,
495  * and source/destination hold. Also clear the Channel Abort bit.
496  */
497  mr = in_be32(&dma_channel->mr) &
499 
500  /*
501  * We want External Master Start and External Master Pause enabled,
502  * because the SSI is controlling the DMA controller. We want the DMA
503  * controller to be set up in advance, and then we signal only the SSI
504  * to start transferring.
505  *
506  * We want End-Of-Segment Interrupts enabled, because this will generate
507  * an interrupt at the end of each segment (each link descriptor
508  * represents one segment). Each DMA segment is the same thing as an
509  * ALSA period, so this is how we get an interrupt at the end of every
510  * period.
511  *
512  * We want Error Interrupt enabled, so that we can get an error if
513  * the DMA controller is mis-programmed somehow.
514  */
517 
518  /* For playback, we want the destination address to be held. For
519  capture, set the source address to be held. */
520  mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
522 
523  out_be32(&dma_channel->mr, mr);
524 
525  return 0;
526 }
527 
552 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
553  struct snd_pcm_hw_params *hw_params)
554 {
555  struct snd_pcm_runtime *runtime = substream->runtime;
556  struct fsl_dma_private *dma_private = runtime->private_data;
557  struct snd_soc_pcm_runtime *rtd = substream->private_data;
558  struct device *dev = rtd->platform->dev;
559 
560  /* Number of bits per sample */
561  unsigned int sample_bits =
563 
564  /* Number of bytes per frame */
565  unsigned int sample_bytes = sample_bits / 8;
566 
567  /* Bus address of SSI STX register */
568  dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
569 
570  /* Size of the DMA buffer, in bytes */
571  size_t buffer_size = params_buffer_bytes(hw_params);
572 
573  /* Number of bytes per period */
574  size_t period_size = params_period_bytes(hw_params);
575 
576  /* Pointer to next period */
577  dma_addr_t temp_addr = substream->dma_buffer.addr;
578 
579  /* Pointer to DMA controller */
580  struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
581 
582  u32 mr; /* DMA Mode Register */
583 
584  unsigned int i;
585 
586  /* Initialize our DMA tracking variables */
587  dma_private->period_size = period_size;
588  dma_private->num_periods = params_periods(hw_params);
589  dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
590  dma_private->dma_buf_next = dma_private->dma_buf_phys +
591  (NUM_DMA_LINKS * period_size);
592 
593  if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
594  /* This happens if the number of periods == NUM_DMA_LINKS */
595  dma_private->dma_buf_next = dma_private->dma_buf_phys;
596 
597  mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
599 
600  /* Due to a quirk of the SSI's STX register, the target address
601  * for the DMA operations depends on the sample size. So we calculate
602  * that offset here. While we're at it, also tell the DMA controller
603  * how much data to transfer per sample.
604  */
605  switch (sample_bits) {
606  case 8:
608  ssi_sxx_phys += 3;
609  break;
610  case 16:
612  ssi_sxx_phys += 2;
613  break;
614  case 32:
616  break;
617  default:
618  /* We should never get here */
619  dev_err(dev, "unsupported sample size %u\n", sample_bits);
620  return -EINVAL;
621  }
622 
623  /*
624  * BWC determines how many bytes are sent/received before the DMA
625  * controller checks the SSI to see if it needs to stop. BWC should
626  * always be a multiple of the frame size, so that we always transmit
627  * whole frames. Each frame occupies two slots in the FIFO. The
628  * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
629  * (MR[BWC] can only represent even powers of two).
630  *
631  * To simplify the process, we set BWC to the largest value that is
632  * less than or equal to the FIFO watermark. For playback, this ensures
633  * that we transfer the maximum amount without overrunning the FIFO.
634  * For capture, this ensures that we transfer the maximum amount without
635  * underrunning the FIFO.
636  *
637  * f = SSI FIFO depth
638  * w = SSI watermark value (which equals f - 2)
639  * b = DMA bandwidth count (in bytes)
640  * s = sample size (in bytes, which equals frame_size * 2)
641  *
642  * For playback, we never transmit more than the transmit FIFO
643  * watermark, otherwise we might write more data than the FIFO can hold.
644  * The watermark is equal to the FIFO depth minus two.
645  *
646  * For capture, two equations must hold:
647  * w > f - (b / s)
648  * w >= b / s
649  *
650  * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
651  * b = s * w, which is equal to
652  * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
653  */
654  mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
655 
656  out_be32(&dma_channel->mr, mr);
657 
658  for (i = 0; i < NUM_DMA_LINKS; i++) {
659  struct fsl_dma_link_descriptor *link = &dma_private->link[i];
660 
661  link->count = cpu_to_be32(period_size);
662 
663  /* The snoop bit tells the DMA controller whether it should tell
664  * the ECM to snoop during a read or write to an address. For
665  * audio, we use DMA to transfer data between memory and an I/O
666  * device (the SSI's STX0 or SRX0 register). Snooping is only
667  * needed if there is a cache, so we need to snoop memory
668  * addresses only. For playback, that means we snoop the source
669  * but not the destination. For capture, we snoop the
670  * destination but not the source.
671  *
672  * Note that failing to snoop properly is unlikely to cause
673  * cache incoherency if the period size is larger than the
674  * size of L1 cache. This is because filling in one period will
675  * flush out the data for the previous period. So if you
676  * increased period_bytes_min to a large enough size, you might
677  * get more performance by not snooping, and you'll still be
678  * okay. You'll need to update fsl_dma_update_pointers() also.
679  */
680  if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
681  link->source_addr = cpu_to_be32(temp_addr);
683  upper_32_bits(temp_addr));
684 
685  link->dest_addr = cpu_to_be32(ssi_sxx_phys);
687  upper_32_bits(ssi_sxx_phys));
688  } else {
689  link->source_addr = cpu_to_be32(ssi_sxx_phys);
691  upper_32_bits(ssi_sxx_phys));
692 
693  link->dest_addr = cpu_to_be32(temp_addr);
695  upper_32_bits(temp_addr));
696  }
697 
698  temp_addr += period_size;
699  }
700 
701  return 0;
702 }
703 
716 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
717 {
718  struct snd_pcm_runtime *runtime = substream->runtime;
719  struct fsl_dma_private *dma_private = runtime->private_data;
720  struct snd_soc_pcm_runtime *rtd = substream->private_data;
721  struct device *dev = rtd->platform->dev;
722  struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
723  dma_addr_t position;
724  snd_pcm_uframes_t frames;
725 
726  /* Obtain the current DMA pointer, but don't read the ESAD bits if we
727  * only have 32-bit DMA addresses. This function is typically called
728  * in interrupt context, so we need to optimize it.
729  */
730  if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
731  position = in_be32(&dma_channel->sar);
732 #ifdef CONFIG_PHYS_64BIT
733  position |= (u64)(in_be32(&dma_channel->satr) &
734  CCSR_DMA_ATR_ESAD_MASK) << 32;
735 #endif
736  } else {
737  position = in_be32(&dma_channel->dar);
738 #ifdef CONFIG_PHYS_64BIT
739  position |= (u64)(in_be32(&dma_channel->datr) &
740  CCSR_DMA_ATR_ESAD_MASK) << 32;
741 #endif
742  }
743 
744  /*
745  * When capture is started, the SSI immediately starts to fill its FIFO.
746  * This means that the DMA controller is not started until the FIFO is
747  * full. However, ALSA calls this function before that happens, when
748  * MR.DAR is still zero. In this case, just return zero to indicate
749  * that nothing has been received yet.
750  */
751  if (!position)
752  return 0;
753 
754  if ((position < dma_private->dma_buf_phys) ||
755  (position > dma_private->dma_buf_end)) {
756  dev_err(dev, "dma pointer is out of range, halting stream\n");
757  return SNDRV_PCM_POS_XRUN;
758  }
759 
760  frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
761 
762  /*
763  * If the current address is just past the end of the buffer, wrap it
764  * around.
765  */
766  if (frames == runtime->buffer_size)
767  frames = 0;
768 
769  return frames;
770 }
771 
780 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
781 {
782  struct snd_pcm_runtime *runtime = substream->runtime;
783  struct fsl_dma_private *dma_private = runtime->private_data;
784 
785  if (dma_private) {
786  struct ccsr_dma_channel __iomem *dma_channel;
787 
788  dma_channel = dma_private->dma_channel;
789 
790  /* Stop the DMA */
791  out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
792  out_be32(&dma_channel->mr, 0);
793 
794  /* Reset all the other registers */
795  out_be32(&dma_channel->sr, -1);
796  out_be32(&dma_channel->clndar, 0);
797  out_be32(&dma_channel->eclndar, 0);
798  out_be32(&dma_channel->satr, 0);
799  out_be32(&dma_channel->sar, 0);
800  out_be32(&dma_channel->datr, 0);
801  out_be32(&dma_channel->dar, 0);
802  out_be32(&dma_channel->bcr, 0);
803  out_be32(&dma_channel->nlndar, 0);
804  out_be32(&dma_channel->enlndar, 0);
805  }
806 
807  return 0;
808 }
809 
813 static int fsl_dma_close(struct snd_pcm_substream *substream)
814 {
815  struct snd_pcm_runtime *runtime = substream->runtime;
816  struct fsl_dma_private *dma_private = runtime->private_data;
817  struct snd_soc_pcm_runtime *rtd = substream->private_data;
818  struct device *dev = rtd->platform->dev;
819  struct dma_object *dma =
820  container_of(rtd->platform->driver, struct dma_object, dai);
821 
822  if (dma_private) {
823  if (dma_private->irq)
824  free_irq(dma_private->irq, dma_private);
825 
826  /* Deallocate the fsl_dma_private structure */
827  dma_free_coherent(dev, sizeof(struct fsl_dma_private),
828  dma_private, dma_private->ld_buf_phys);
829  substream->runtime->private_data = NULL;
830  }
831 
832  dma->assigned = 0;
833 
834  return 0;
835 }
836 
837 /*
838  * Remove this PCM driver.
839  */
840 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
841 {
842  struct snd_pcm_substream *substream;
843  unsigned int i;
844 
845  for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
846  substream = pcm->streams[i].substream;
847  if (substream) {
848  snd_dma_free_pages(&substream->dma_buffer);
849  substream->dma_buffer.area = NULL;
850  substream->dma_buffer.addr = 0;
851  }
852  }
853 }
854 
866 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
867 {
868  struct device_node *ssi_np, *np;
869 
870  for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
871  /* Check each DMA phandle to see if it points to us. We
872  * assume that device_node pointers are a valid comparison.
873  */
874  np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
875  of_node_put(np);
876  if (np == dma_channel_np)
877  return ssi_np;
878 
879  np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
880  of_node_put(np);
881  if (np == dma_channel_np)
882  return ssi_np;
883  }
884 
885  return NULL;
886 }
887 
888 static struct snd_pcm_ops fsl_dma_ops = {
889  .open = fsl_dma_open,
890  .close = fsl_dma_close,
891  .ioctl = snd_pcm_lib_ioctl,
892  .hw_params = fsl_dma_hw_params,
893  .hw_free = fsl_dma_hw_free,
894  .pointer = fsl_dma_pointer,
895 };
896 
897 static int __devinit fsl_soc_dma_probe(struct platform_device *pdev)
898  {
899  struct dma_object *dma;
900  struct device_node *np = pdev->dev.of_node;
901  struct device_node *ssi_np;
902  struct resource res;
903  const uint32_t *iprop;
904  int ret;
905 
906  /* Find the SSI node that points to us. */
907  ssi_np = find_ssi_node(np);
908  if (!ssi_np) {
909  dev_err(&pdev->dev, "cannot find parent SSI node\n");
910  return -ENODEV;
911  }
912 
913  ret = of_address_to_resource(ssi_np, 0, &res);
914  if (ret) {
915  dev_err(&pdev->dev, "could not determine resources for %s\n",
916  ssi_np->full_name);
917  of_node_put(ssi_np);
918  return ret;
919  }
920 
921  dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
922  if (!dma) {
923  dev_err(&pdev->dev, "could not allocate dma object\n");
924  of_node_put(ssi_np);
925  return -ENOMEM;
926  }
927 
928  strcpy(dma->path, np->full_name);
929  dma->dai.ops = &fsl_dma_ops;
930  dma->dai.pcm_new = fsl_dma_new;
931  dma->dai.pcm_free = fsl_dma_free_dma_buffers;
932 
933  /* Store the SSI-specific information that we need */
934  dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
935  dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
936 
937  iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
938  if (iprop)
939  dma->ssi_fifo_depth = be32_to_cpup(iprop);
940  else
941  /* Older 8610 DTs didn't have the fifo-depth property */
942  dma->ssi_fifo_depth = 8;
943 
944  of_node_put(ssi_np);
945 
946  ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
947  if (ret) {
948  dev_err(&pdev->dev, "could not register platform\n");
949  kfree(dma);
950  return ret;
951  }
952 
953  dma->channel = of_iomap(np, 0);
954  dma->irq = irq_of_parse_and_map(np, 0);
955 
956  dev_set_drvdata(&pdev->dev, dma);
957 
958  return 0;
959 }
960 
961 static int __devexit fsl_soc_dma_remove(struct platform_device *pdev)
962 {
963  struct dma_object *dma = dev_get_drvdata(&pdev->dev);
964 
966  iounmap(dma->channel);
967  irq_dispose_mapping(dma->irq);
968  kfree(dma);
969 
970  return 0;
971 }
972 
973 static const struct of_device_id fsl_soc_dma_ids[] = {
974  { .compatible = "fsl,ssi-dma-channel", },
975  {}
976 };
977 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
978 
979 static struct platform_driver fsl_soc_dma_driver = {
980  .driver = {
981  .name = "fsl-pcm-audio",
982  .owner = THIS_MODULE,
983  .of_match_table = fsl_soc_dma_ids,
984  },
985  .probe = fsl_soc_dma_probe,
986  .remove = __devexit_p(fsl_soc_dma_remove),
987 };
988 
989 module_platform_driver(fsl_soc_dma_driver);
990 
991 MODULE_AUTHOR("Timur Tabi <[email protected]>");
992 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
993 MODULE_LICENSE("GPL v2");